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1. Gaussian process emulator for principal components6

In this section, we outline our statistical approach for ice sheet model emulation using7

Gaussian process (GP) models and principal component (PC) analysis (often referred to as8

empirical orthogonal functions, EOFs). Our approach follows Chang et al. (2013) in that9

we summarize the ice sheet model runs as PCs and calibrate the ice sheet parameters based10

on GP emulators for PCs. Our description of methods below therefore also closely follows11

the notation and description in Chang et al. (2013). By decomposing spatial patterns into a12

small number of variables representing important characteristics of model runs, our approach13

drastically increases computational efficiency without causing significant information loss.14

We denote the number of model runs by p and the number of spatial locations spatial15

locations by n. For the SICOPOLIS model output (from Applegate et al. 2012) we use here,16

p = 99 and n = 264. We let Y (θ, s) denote the ice thickness from the ice sheet model17

at a parameter setting θ = (θ1, . . . , θ5)
T and a spatial location s. We let s1, . . . , sn be the18

spatial locations of the model grid points and Y(θ) = (Y (θ, s1), . . . , Y (θ, sn)) be the vector19
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of model output at a parameter setting θ. Let θ1, . . . ,θp be the vectors of input parameters20

for our model. Y is an n× p matrix of the ice sheet model output where its rows correspond21

to spatial locations and columns to parameter settings, i.e.22

Y =



Y (θ1, s1), Y (θ2, s1), . . . , Y (θp, s1)

Y (θ1, s2), Y (θ2, s2), . . . , Y (θp, s2)

...,
...,

. . . ,
...

Y (θ1, sn), Y (θ2, sp), . . . , Y (θp, sn)


.

Similarly, Z(s) denotes the observed ice sheet thickness at a location s, and Z = (Z(s1), . . . , Z(sn))T23

is the n× 1 vector of the observational data.24

2. Principal component analysis for model output25

The first step is summarizing the model output by principal component analysis. Fol-26

lowing the standard procedure of principal component analysis, the column means are sub-27

tracted from each element in the corresponding columns such that each column is centered28

on zero. We apply singular value decomposition to this centered output matrix to find the29

scaled principal basis vectors k1 =
√
λ1e1, . . . ,kp =

√
λpep, where λ1 > λ2 > · · · > λp30

and e1, . . . , ep are ordered eigenvalues and their eigenvectors respectively. Each eigenvalue31

represents the explained variation for the corresponding principal component. We keep only32

the first J � p PCs with the largest explained variation (i.e. the largest eigenvalues) to33

minimize the information loss due to dimension reduction. The principal components for34

model output can be computed by35

YR = (KT
yKy)

−1KT
yY = (YR

1 . . .Y
R
J )T

where Ky = (k1, . . . ,kJ) is the principal basis matrix. YR
i = (Y R

i (θ1), . . . , Y
R
i (θp))

T is the36

p× 1 vector of the ith principal components, and Y R
i (θj) is the ith principal component at37

the parameter setting θj. The resulting matrix YR is the summarized output matrix with38

2



rows for PCs and columns for parameter settings . The procedure reduces the size of the39

data from n× p to J × p.40

3. Gaussian process emulator41

We emulate the ice sheet model output using Gaussian processes (GP), a fast method42

for probabilistic interpolation between existing model runs (Sacks et al. 1989; Higdon et al.43

2008; Drignei et al. 2008; Holden et al. 2010; Bhat et al. 2012; Olson et al. 2012, 2013) . The44

GP emulator approach yields a flexible approximation without requiring detailed physical45

information on the ice sheet model, unlike linear regression-based emulators (cf. Piani et al.46

2005). Moreover, in addition to its optimality in interpolating smoothly varying functions,47

the method enables a natural quantification of uncertainty. The interpolator is essentially a48

random process with a mean that the optimal interpolation between ice sheet model runs in49

terms of the expected mean squared error and a variance that quantifies the uncertainty of50

the interpolation.51

Because the principal components are uncorrelated with each other by construction, we52

can model each of them separately using independent GPs. Note that this basically ignores53

the dependence between the principal components that is not captured by the covariances.54

However, according to our experiences for various models including SICOPOLIS, the emula-55

tor based on this assumption usually provides a very accurate approximation to the original56

model that is being emulated. We model each YR
i using a GP with mean zero and covariance57

determined by the following squared exponential covariance function:58

Cov(Y R
i (θj), Y

R
i (θk); ζi, κy,i, φi) = ζi1(θj = θk) + κy,i exp

(
−

5∑
l=1

(
θjl − θkl
φil

)2
)
,

where ζi, κy,i, φi1, . . . , φi5 > 0 are covariance parameters, θjl is the lth element of θj, and 1(·) is59

the index function. The covariance parameters (ζ1, κ1,y, φ11, . . . , φ15), . . . , (ζJ , κy,J , φJ1, . . . , φJ5)60

are estimated by maximum likelihood estimation (MLE). Our emulator, denoted by J × 161

vector-valued function η(θ,YR), is the predictive distribution of PCs at an untried param-62
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eter setting θ defined by the fitted GPs. Using the PC emulator, we can also emulate the63

original model transect by computing Kyη(θ,YR).64

Note that our approach allows significant improvements in computational efficiency.65

Without any dimension reduction, the computational cost for a single likelihood evaluation66

scales as O(n3p3), which corresponds to a few hours of computing time. Thus, application67

of any numerical methods requiring repeated evaluation of the likelihood function is com-68

putationally prohibitive if no dimensional reduction is performed. Our approach decreases69

the computational complexity to O(Jp3), and this is a reduction from 3.18 × 1014 flops to70

1.56× 108 flops in our case. The computing time reduces to less than a second for a single71

likelihood evaluation.72

4. Model parameter calibration73

In this section, we formulate the probability model for calibration using the PC emula-74

tor constructed above and explain the inference procedure for the model parameters using75

Markov chain Monte Carlo (MCMC).76

We assume that the observational dataset is emulator output contaminated by model77

discrepancy and observational error;78

Z = Kyη(θ∗,YR) + Kdν + ε, (S1)

where θ∗ is the best fit input parameter setting (Bayarri et al. 2007) for the observational79

data, and ε ∼ N(0, σ2In) is the observational error with variance σ2 > 0. Kdν is the80

model-observation discrepancy picking up systematic differences between the model and the81

observations (cf. Bayarri et al. 2007; Bhat et al. 2012), where Kd is a kernel basis matrix82

relating the spatial locations s1, . . . , sn to Jd knot locations a1, . . . , aJd , and ν ∼ N(0, κdIJd)83

is the vector of knot processes, a set of random variables assigned to each of the knot locations84

with variance κd > 0. Our choice for the kernel function is an exponential covariance given85
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by86

{Kd}ij = exp

(
−|si − aj|

φd

)
,

with φd > 0. The variance parameter κd is subject to inference, and the correlation parame-87

ter φd is pre-specified by expert judgment. In our implementation, we choose φd as 5% of the88

maximum distance between the spatial locations on the model grid to yields a sufficiently89

flexible discrepancy pattern. Note that the kernel basis often needs to be substituted by its90

scaled principal basis (eigenvectors) to improve identifiability. See Chang et al. (2013) for a91

more detailed discussion. We used the 30 leading principal basis for Kd in our implementa-92

tion. We apply a similar dimension reduction described in the previous section to find ZR,93

a summary of the observed transect as follows:94

ZR = (KTK)−1KTZ, (S2)

and therefore the model for ZR can be written as95

ZR ∼ N


 µη

0

 ,

 Ση 0

0 κdIJd

+ σ2(KTK)−1

 ,

where µη and Ση are the mean and covariance, respectively, of the emulator η(θ∗,YR).96

The parameters to be estimated in the calibration model are the ice sheet model input97

parameters θ∗, the discrepancy parameter κd, and the observational error variance σ2. We98

also re-estimate the partial sill parameters κy = (κy,1, . . . , κy,J) for the emulator (Bayarri99

et al. 2007; Bhat et al. 2012; Chang et al. 2013). We define the posterior density based on the100

likelihood function given by (S2) denoted by `(ZR|θ∗,κy, κd, σ
2,YR) and some standard prior101

specifications denoted by f(θ∗), f(κy), f(κd), and f(σ2) (Higdon et al. 2008; Chang et al.102

2013). Each of the input parameters in θ∗ receives a flat prior on a broad range determined103

by model ensemble design and physical knowledge. The observational error variance σ2 and104

the variance for the discrepancy κd have non-informative inverse-gamma priors with small105

shape parameters. We specify somewhat informative priors for κy,1, . . . , κy,J by specifying106

a large shape parameter in order to avoid numerical instability and identifiability issues107
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(Higdon et al. 2008). The posterior distribution resulting from the above model is108

π(θ∗,κy, κd, σ
2|ZR,YR) ∝ `(ZR|θ∗,κy, κd, σ

2,YR)f(θ∗)f(κy)f(κd)f(σ2),

where109

`(ZR|θ∗,κy, κd, σ
2,YR) ∝

∣∣Ση + KTKσ2
∣∣− 1

2 exp

(
−1

2
ZR

T (
Ση + KTKσ2

)−1
ZR
)

f(θ∗) ∝ 1(θ∗ ∈ Θ), Θ represents the range of θ,

f(κy) ∝
J∏
i=1

κ
−ay,i−1
y,i exp

(
− by,i
κy,i

)
, ay,1, . . . , ay,J , by,1, . . . , by,J > 0

f(κd) ∝ κ−ad−1
d exp

(
− bd
κd

)
, ad, bd > 0

f(σ2) ∝ σ−2(aσ+1) exp

(
− bσ
σ2

)
, aσ, bσ > 0.

For each i, we set ay,i = 50 and choose by,i such that the mode of the prior density by,i/(ay,i+1)110

coincides with the MLE of κy,i computed in the emulation stage. For other parameters, we111

impose vague priors by setting ad = 2, bd = 3, aσ = 2, and bσ = 3.112

The synthetic observations used in our perfect model experiment are constructed by113

superimposing a random error generated from a Gaussian process model on the assumed114

true ice sheet status (run # 67). The covariance function that we use for the Gaussian115

process model here is a squared exponential covariance having range of 2100 km, partial116

sill of 2500 m, and a nugget of 1 m. Our choice for the discrepancy process is based on117

the following two general assumptions: (i) the discrepancy is statistically identifiable from118

the emulator process, and (ii) SICOPOLIS has an enough skill to reproduce the observed119

ice profile. (i) is related to the value of the range parameter, which controls the effective120

distance at which two spatial locations are uncorrelated. To ensure that the discrepancy121

process is identifiable from the emulator process, we set the range parameter to be very122

large (80% of the spatial range of the model output) so that the discrepancy operates in123

a different spatial scale to the emulator process. (ii) is related to the value of the partial124

sill, which defines the magnitude of the discrepancy. Here we let the value of the partial125

sill to be reasonably small to simulate the situation that the structural error is not large126
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and therefore SICOPOLIS can reproduce the observed ice profile reasonably well. Note that127

calibration based on any framework including our approach can become problematic if any128

of the assumptions are violated; if the discrepancy process operates in a similar spatial scale129

to the emulator process (i.e. (i) does not hold), the discrepancy causes identifiability issues130

and hence introduces a significant bias in the calibration result. If the magnitude of the131

discrepancy is too large (i.e. (ii) does not hold) compared to the variation between model132

outputs, the calibration results will become essentially non-informative (i.e. resulting in133

a very dispersed posterior density). Note that these are common issues for most existing134

calibration methods in general.135

Based on the pseudo observations, we infer the parameters using the MCMC sample136

from the above posterior distribution obtained by the Metropolis-Hastings algorithm (cf.137

Higdon et al. 2009). In particular, we infer the input parameters in θ∗ by investigating138

their marginal density π(θ∗|ZR,YR). In our perfect model experiment, we obtained 300,000139

draws using block updating when estimating the full joint density of all five parameters. The140

computing time takes about eight hours on a single high-performance core. For inference on141

individual input parameter, only 30,000 draws using block updating is sufficient. In both142

cases, we confirmed that the Monte Carlo chain is well-mixed by comparing the densities of143

the first half of the chain with the entire chain. We find the probability density of the input144

parameters via kernel density estimation for the MCMC sample. The estimated density can145

be easily plotted for visual analysis as shown in Figures 3 and 4. Note that ignoring the146

spatially correlated discrepancy results in a notably biased calibration results in our perfect147

model experiment. See Figure S2 for a comparison of posterior densities with and without148

the discrepancy term.149

5. Ice volume change projection based on calibrated pa-150

rameters151
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One important purpose of parameter calibration is making better projections for the152

future ice sheet mass loss. Making future projections based on calibration results requires153

a function that relates input parameter values θ∗ to future changes in ice sheet volume. In154

our illustrative example, the variable that we want to project is the ice volume change from155

present to 2100 in meters of sea level equivalence. For each model run, we compute the156

ice volume change by subtracting the current ice volume from the future ice volume. We157

then obtain a 5-dimensional surface of ice volume change by interpolation between those158

computed changes.159

Among many possible choices for the interpolator, we use the Gaussian process emulator160

similar to the model described in 3. More specifically, we fit a Gaussian process model for161

the ice volume change over the input parameter space with zero-mean and the covariance162

function163

Cov(∆v(θj),∆v(θk); ζ
vol, κvol, φvol) = ζvol1(θj = θk) + κvol exp

(
−

5∑
l=1

|θjl − θkl|
φvoll

)
,

for any given design points θj and θk (j, k = 1, · · · , 100), where ∆v(θ) is the volume change164

at a parameter setting θ, and ζvol.κvol, φvol1 , . . . , φvol5 > 0 are the covariance parameters165

that need to be estimated via MLE. The resulting function can predict ice volume change166

at any given value of θ as the conditional mean given by the standard kriging approach167

(Cressie 1993). Figure S1 shows the marginal surface of the projection as a function of input168

parameters. To validate the emulator constructed here, we have conducted leave-5-percent-169

out cross validation and the mean error rate is around 16%; the error rate is a little higher170

than the heuristic upper limit for the generally acceptable emulation error (10%) due to the171

irregular behavior of the volume change surface.172

We obtain a Monte Carlo sample of ice volume projections by supplying the posterior173

sample of the calibrated parameters to the interpolation function. Each element of the174

posterior sample is converted to ice volume change. The predictive density of the ice volume175

projection can be found by applying kernel density estimation. We find the prior density of176

the projections in the same manner; we convert the design points of the existing model runs177

8



into the ice volume changes and compute the predictive density for it using kernel density178

estimation.179

To investigate whether the perfect model experiment results shown in the main text180

are sensitive to the values of input parameters assumed as the synthetic truth, we have181

conducted perfect model experiments for additional parameter settings other than the one182

used in the manuscript. As illustrative examples, we below present the calibrated ice volume183

change projections (Figure S3 and S4) for two input parameter settings that result in the184

minimum and the maximum projected ice volume changes from 2005 to 2100 among the185

parameter settings that produce the modern ice volumes within 15 percent of the observed186

ice volume (Bamber et al. 2001). The results are essentially the same as the one presented187

in the manuscript; the densities of projected sea level rise peak around the true sea level188

rise values and the projection uncertainties have been significantly reduced comparing to the189

simpler method by Applegate et al. (2012).190

6. Summary191

We describe an ice sheet model calibration approach based on PCs of the model output192

and the observational data. We build a GP emulator for the PCs of the model output as193

a fast approximation to the ice sheet model. The calibration model links the observed PCs194

with the input parameters using the GP emulator while taking the systematic discrepancy195

into account. We infer the input parameters along with other statistical parameters in196

the calibration model using MCMC. Combined with projections generated by the ice sheet197

model, the resulting posterior density of the parameters provide calibrated probabilistic198

projections of the future ice sheet volume changes.199
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List of Figures235

S1 Surfaces of ice volume change projections between 2005 and 2100 projected236

onto marginal spaces of all pairs of input parameters. Many local maxima237

and minima are scattered around the parameter space, indicating that the238

surfaces behave very irregularly and exhibit highly nonlinear relationship with239

the input parameters. m sle, meters of sea level equivalent. 14240

S2 Comparison between calibration results with and without the discrepancy241

term Kdν in the calibration model in (S1). In each panel, we tried to learn242

each of the parameters while fixing the other parameters at their assumed-243

true values. The prior densities are assumed to be uniform over a broad range244

(dashed red lines). While the posterior densities computed by including the245

discrepancy term in the model (solid black curves) pick up the true parameter246

values without notable biases, the posterior densities without the discrepancy247

term (solid blue curves) cannot recover the true values. 15248

S3 Illustrative (not “real”) ice volume change projections between 2005 and 2100249

for model run #23 in Applegate et al. (2012), based on three different methods:250

i) the prior density of the input parameters (dashed green line); ii) parameter251

settings that pass the 10% ice volume filter used by Applegate et al. (2012)252

(solid blue line); and iii) the posterior density computed by our calibration253

approach (solid red line). The model run has the smallest projected ice volume254

change from 2005 to 2100 among the model runs that yield modern ice volume255

within 15% of the observed modern ice volume. The vertical line shows the256

ice volume change projection for the assumed-true parameter setting. The257

horizontal lines and the parentheses on them represent the range and the 95%258

prediction intervals, respectively; the crosses indicate the median projection259

from each method. 16260
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S4 The same comparison as Figure S3 for the model run #91 in Applegate et al.261

(2012), which results in the largest projected ice volume change from 2005 to262

2100 among the model runs that yields the modern ice volume within 15% of263

the observed volume. 17264
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Fig. S1. Surfaces of ice volume change projections between 2005 and 2100 projected onto
marginal spaces of all pairs of input parameters. Many local maxima and minima are scat-
tered around the parameter space, indicating that the surfaces behave very irregularly and
exhibit highly nonlinear relationship with the input parameters. m sle, meters of sea level
equivalent.
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Fig. S2. Comparison between calibration results with and without the discrepancy term
Kdν in the calibration model in (S1). In each panel, we tried to learn each of the parameters
while fixing the other parameters at their assumed-true values. The prior densities are
assumed to be uniform over a broad range (dashed red lines). While the posterior densities
computed by including the discrepancy term in the model (solid black curves) pick up the
true parameter values without notable biases, the posterior densities without the discrepancy
term (solid blue curves) cannot recover the true values.
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Fig. S3. Illustrative (not “real”) ice volume change projections between 2005 and 2100 for
model run #23 in Applegate et al. (2012), based on three different methods: i) the prior
density of the input parameters (dashed green line); ii) parameter settings that pass the
10% ice volume filter used by Applegate et al. (2012) (solid blue line); and iii) the posterior
density computed by our calibration approach (solid red line). The model run has the
smallest projected ice volume change from 2005 to 2100 among the model runs that yield
modern ice volume within 15% of the observed modern ice volume. The vertical line shows
the ice volume change projection for the assumed-true parameter setting. The horizontal
lines and the parentheses on them represent the range and the 95% prediction intervals,
respectively; the crosses indicate the median projection from each method.
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Fig. S4. The same comparison as Figure S3 for the model run #91 in Applegate et al.
(2012), which results in the largest projected ice volume change from 2005 to 2100 among
the model runs that yields the modern ice volume within 15% of the observed volume.
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