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Abstract 12 

Computer models of ice sheet behavior are important tools for projecting future sea level rise.  13 

The simulated modern ice sheets generated by these models differ markedly as input parameters 14 

are varied.  To ensure accurate ice sheet mass loss projections, these parameters must be 15 

constrained using observational data.  Which model parameter combinations make sense, given 16 

observations?  Our method assigns probabilities to parameter combinations based on how well 17 

the model reproduces the Greenland Ice Sheet profile.  We improve on the previous state of the 18 

art by accounting for spatial information, and by carefully sampling the full range of realistic 19 

parameter combinations, using statistically rigorous methods.  Specifically, we estimate the 20 

joint posterior probability density function of model parameters using Gaussian process-based 21 

emulation and calibration.  This method is an important step toward calibrated probabilistic 22 

projections of ice sheet contributions to sea level rise, in that it uses data-model fusion to learn 23 

about parameter values.  This information can, in turn, be used to make projections while taking 24 

into account various sources of uncertainty, including parametric uncertainty, data-model 25 

discrepancy, and spatial correlation in the error structure.  We demonstrate the utility of our 26 

method using a perfect model experiment, which shows that many different parameter 27 

combinations can generate similar modern ice sheet profiles.  This result suggests that the large 28 

divergence of projections from different ice sheet models is partly due to parametric 29 



 2 

uncertainty.  Moreover, our method enables insight into ice sheet processes represented by 1 

parameter interactions in the model.   2 

 3 

1 Introduction 4 

Accurate projections of future sea level rise are important for present-day adaptation decisions.  5 

Global mean sea level has risen 0.2-0.3 m over the last two to three centuries (e.g. Church and 6 

White, 2006; Jevrejeva et al., 2008), and this rise is expected to continue in the future (Meehl 7 

et al., 2007, Alexander et al., 2013; Edwards 2014a, 2014b).  A significant fraction of world 8 

population and built infrastructure lies near present-day sea level, and these people and 9 

resources are at risk from sea level rise.  Projections of sea level rise with sound characterization 10 

of the associated uncertainties can inform the design of risk management strategies (e.g., 11 

Lempert et al., 2012).   12 

Here, we focus on the Greenland Ice Sheet component of future sea level rise, as estimated by 13 

ice sheet models.  Computer models of ice sheet behavior make up an important member of a 14 

suite of methods for projecting sea level rise.  Enhanced mass loss from the Greenland Ice Sheet 15 

is just one component of overall sea level rise, which also includes contributions from the 16 

Antarctic Ice Sheets, small glaciers, thermal expansion of ocean water, and the transfer of water 17 

stored on land to the oceans.  However, the Greenland Ice Sheet is a large potential contributor 18 

to sea level rise, and also a highly uncertain one; if this ice sheet were to melt completely, sea 19 

level would rise by about 7 m (Bamber et al., 2001, 2013; Lemke et al., 2007), and both the rate 20 

of ice loss and its final magnitude are uncertain (Lenton et al., 2008).  Present estimates of 21 

future sea level rise are often derived from semi-empirical extrapolations of tide gauge data 22 

(e.g., Rahmstorf, 2007; Grinsted et al., 2009; Jevrejeva et al., 2012) and expert assessments of 23 

future ice sheet behavior (e.g., Pfeffer et al., 2008; Bamber and Aspinall, 2013).  Ice sheet 24 

models complement these methods, in that they provide internally-consistent representations of 25 

the processes that are important to the growth and decay of ice sheets.  Although imperfect, 26 

such models have been the focus of intense development effort since the fourth 27 

Intergovernmental Panel on Climate Change assessment report (e.g., Bindschadler et al., 2013; 28 

Shannon et al., 2013; Edwards et al., 2014a).   29 

To yield accurate projections, ice sheet models must be started from an initial condition that 30 

resembles the real ice sheet as closely as possible, both in terms of the spatial distribution and 31 

flow of ice and the temperature distribution within the ice body.  Ice flow is driven primarily 32 
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by thickness and surface slope (e.g., Alley et al., 2010), and warm ice deforms more easily than 1 

cold ice.  Similarly, the melt rate of a patch of the ice sheet's surface is strongly sensitive to its 2 

elevation (Born and Nisancioglu, 2012).  Thus, errors in the initial condition used for ice sheet 3 

model projections will lead to inaccuracies in simulated future ice distributions and sea level 4 

rise contributions.  In practice, all models include simplifications that also affect projection 5 

accuracy (e.g., Kirchner et al., 2011), perhaps more than initial condition errors.  However, 6 

matching the modern ice sheet is a frequently-recurring theme in the literature (e.g., Ritz et al., 7 

1997; Greve, 1997; Huybrechts, 2002; Stone et al., 2010; Greve et al., 2011; Pollard and 8 

DeConto, 2012).   9 

The initial condition used in ice sheet models is a function of input parameter values, as well as 10 

the spinup method.  Because the thermal field within the ice sheet is incompletely known, most 11 

modeling studies perform an initialization to bring the simulated ice sheet to a state that is 12 

consistent with the present-day climatology (e.g., Stone et al., 2010), climate model output (e.g., 13 

Fyke et al., 2011), or climate history estimated from ice cores (e.g., Applegate et al., 2012).  14 

Most studies allow the simulated ice sheet's surface topography to evolve during the spinup 15 

period; thus, the estimated initial condition usually does not exactly match the observed ice 16 

sheet topography (Bamber et al., 2001, 2013).  For example, many studies obtain a simulated 17 

modern Greenland ice sheet that is larger than expected (e.g. Heimbach et al., 2008; Stone et 18 

al., 2010; Robinson et al., 2010; Vizcaino et al., 2010; Greve et al., 2011; cf. Bamber et al., 19 

2001, 2013).  Ice sheet models have many uncertain parameters that affect the softness of the 20 

ice, the speed of basal sliding, and the intensity of surface melting, among other processes (Ritz 21 

et al., 1997; Hebeler et al., 2008; Stone et al., 2010; Fitzgerald et al., 2011; Applegate et al., 22 

2012).  Adjusting these parameters changes the simulated modern ice sheet (Stone et al., 2010; 23 

Applegate et al., 2012).  24 

Despite the importance of achieving a good match between ice sheet model output and the 25 

present-day ice geometry, it remains unclear how to use data on the modern ice sheet to assess 26 

the relative plausibility of different model runs, in cases where the modeled ice sheet surface 27 

topography can evolve freely.  The root-mean-squared error (RMSE) is sometimes used for this 28 

purpose (e.g., Greve and Otsu, 2007; Stone et al., 2010).  However, it is unclear how to translate 29 

the RMSE values from a set of model runs into probabilistic projections of ice volume change, 30 

as required for sea level studies.  Using a probability model that accounts for various 31 

uncertainties, as we do here, helps overcome this limitation.  Recent work by McNeall et al. 32 
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(2013) and Gladstone et al. (2012) partly addresses the challenge of identifying appropriate 1 

parameter combinations, given observations and a freely-evolving ice sheet model.  McNeall 2 

et al. (2013) train a statistical emulator (e.g., Sacks et al., 1989; Kennedy and O'Hagan, 2001) 3 

to relate input parameter combinations to highly-aggregated metrics describing the Greenland 4 

ice sheet's geometry (volume, area, and maximum thickness; Ritz et al., 1997; Stone et al., 5 

2010), using a previously-published ensemble of ice sheet model runs (Stone et al., 2010).  The 6 

work of McNeall et al. (2013) is groundbreaking in its application of a computationally-efficient 7 

statistical emulator to an ice sheet model, allowing estimation of model output at many more 8 

design points than would have been possible with the model itself.  However, the highly-9 

aggregated metrics used by McNeall et al. (2013) neglect information on the spatial distribution 10 

of ice, which might further limit the parameter combinations that agree well with the observed 11 

geometry of the modern ice sheet. Moreover, their calibration approach is based on “historical 12 

mapping” and does not provide probabilistic projections. Gladstone et al. (2012) proposed a 13 

simple, but statistically robust, probabilistic approach for calibrating a flowline model of Pine 14 

Island Glacier in West Antarctica, but their approach is applicable only when the ice flow model 15 

is computationally cheap and the observational data include only a small number of 16 

observations. 17 

A second challenge involves characterizing the effects of input parameter choice on the 18 

agreement between modeled and observed ice sheets.  In an ensemble of Greenland Ice Sheet 19 

model runs carried out by Applegate et al. (2012; described below), the parameter combinations 20 

that agree well with the modern ice sheet's volume are widely distributed over parameter space, 21 

with no easily-discernable structure.  This result may arise from uncharacterized interactions 22 

among the model parameters.  This outcome also has strong implications for model projections 23 

of sea level rise from the ice sheet, in that the model runs that agree well with the modern 24 

volume constraint give widely diverging sea level rise projections (Applegate et al., 2012).   25 

Finally, estimates of future sea level rise require projections of ice volume change with well-26 

characterized uncertainties.  Perturbed-parameter ensembles (e.g., Stone et al., 2010; Applegate 27 

et al., 2012, Edwards et al., 2014a) represent an important step toward this goal, but the 28 

relatively small number of model runs that can be performed in a reasonable time (usually 102-29 

103; Stone et al., 2010; Applegate et al., 2012) are insufficient to fully explore model parameter 30 

space.  As McNeall et al. (2013) demonstrate, statistical emulators help overcome this 31 

dimensionality problem; however, some method for assigning plausibility scores to the 32 
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emulator output is also needed. In a slightly different but relevant context, Little et al. (2013) 1 

and Edwards et al. (2014b) use Bayesian model averaging to assign scores to model runs in 2 

perturbed-parameter ensembles, but the scores in these methods are essentially based on RMSE 3 

for low-dimensional summaries of model output and therefore do not fully account for the 4 

spatial information in ice model output. 5 

Here, we address these challenges using a Bayesian framework that combines data, models, and 6 

prior beliefs about model input parameter values.  Like McNeall et al. (2013), we train an 7 

emulator on an ensemble of ice sheet model runs.  However, we build on their work by using 8 

an explicit likelihood function, and by incorporating information from a north-south profile of 9 

average ice thicknesses.  Specifically, we use a Gaussian process emulator to estimate the first 10 

10 principal components of the zonal mean ice thickness profile, following a recent climate 11 

model calibration study (Chang et al., 2013).  Further, we perform a perfect model experiment 12 

to investigate the interactions between input parameters.  Our approach recovers the correct 13 

parameter values and projected ice volume changes from an "assumed-true" model realization, 14 

and the multi-dimensional probability density function displays expected physical interactions 15 

(Section 1.2, below).  These interactions were not evident from the simple analysis employed 16 

by Applegate et al. (2012, their Fig. 1).   17 

The above paragraphs discuss the case in which the ice sheet model is free to evolve to the state 18 

that is most consistent with the selected parameter combination, the bedrock topography and 19 

the climate (whether steady or varying).  In such studies, parameters such as the basal sliding 20 

coefficient are held constant over the geographic area of the ice sheet.  However, a number of 21 

recent studies (e.g., Shannon et al., 2013; Edwards et al., 2014b) have used an alternative 22 

approach in which the spatially-distributed basal sliding coefficients and/or surface mass 23 

balance fields are tuned so that the ice sheet model matches the observed modern geometry.  24 

This approach has several advantages; the simulated modern ice sheet is guaranteed to match 25 

the observed modern one, and the estimated basal sliding coefficients vary spatially, as is almost 26 

certainly the case for the real ice sheet.  However, such studies are silent on interactions between 27 

parameters besides the basal sliding coefficient and surface mass balance, as we investigate 28 

here.   29 

The paper proceeds as follows.  In the remainder of the Introduction, we describe the ensemble 30 

that we use to train the emulator.  In Section 2, we outline our method for using a Gaussian 31 

process emulator to estimate the principal components of the zonally-averaged ice thicknesses, 32 
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and the setup of our perfect model experiment.  Section 3 presents the results of the perfect 1 

model experiment.  In Section 4, we conclude by pointing out the implications of our work, as 2 

well as its limitations and potential directions for future research. 3 

1.1 The ensemble 4 

We train our emulator with a 100-member perturbed-parameter ensemble described in 5 

Applegate et al. (2012).  This ensemble uses the three-dimensional ice sheet model SICOPOLIS 6 

(Greve, 1997; Greve et al., 2011).  Each model run spans the period from 125,000 years ago 7 

(125 ka BP) to 3500, driven by surface temperature and sea level histories derived from 8 

geologic data (Imbrie et al., 1984; Dansgaard et al., 1993; Johnsen et al., 1997) and forced into 9 

the future with an asymptotic warming to ~5 OC above present values.  SICOPOLIS is a shallow 10 

ice-approximation model, meaning that it neglects longitudinal stresses within the ice body 11 

(Kirchner et al., 2011). Like most ice sheet models, it also includes many simplifications in 12 

calculating the surface mass balance, notably through its use of the positive degree-day method 13 

for relating surface temperatures to melting (Braithwaite, 1995; Calov and Greve, 2005; van 14 

der Berg et al., 2011).  These simplifications improve SICOPOLIS' computational efficiency 15 

relative to higher-order or full-Stokes models (e.g., Seddik et al., 2012), allowing it to be run 16 

repeatedly over 105-yr time scales.   17 

The parameter combinations in the Applegate et al. (2012) ensemble were chosen by Latin 18 

hypercube sampling (McKay et al., 1979), following the earlier work of Stone et al. (2010).  19 

Latin hypercube sampling distributes points throughout parameter space more efficiently than 20 

Monte Carlo methods (Urban and Fricker, 2010).  In their experiment, Applegate et al. (2012) 21 

varied the ice flow enhancement factor, the ice and snow positive degree-day factors, the 22 

geothermal heat flux, and the basal sliding factor (Ritz et al., 1997; cf. Stone et al., 2010; 23 

Fitzgerald et al., 2011).  These parameters control the softness of ice, the rapidity with which 24 

the ice sheet's surface lowers at a given temperature, the amount of heat that enters the base of 25 

the ice sheet, and the speed of sliding at a given stress (see Applegate et al., 2012, for an 26 

explanation of how each parameter affects model behavior).   27 

McNeall et al. (2013) trained their emulator using a perturbed-parameter ensemble of ice sheet 28 

model runs published by Stone et al. (2010).  Key differences between the Applegate et al. 29 

(2012) ensemble and the Stone et al. (2010) ensemble involve the parameters varied in the 30 

ensembles and the processes included in the simulations.  Stone et al. (2010) varied the lapse 31 
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rate instead of the basal sliding factor adjusted by Applegate et al. (2012).  The model used by 1 

Stone et al. (2010; Glimmer v. 1.0.4; see Rutt et al., 2009) neglects basal sliding, a process 2 

included in the SICOPOLIS runs presented by Applegate et al. (2012).  3 

The results presented by Applegate et al. (2012) suggest that widely diverging ice sheet model 4 

parameter values yield comparable modern ice sheets, but substantially different sea level rise 5 

projections.  Applegate et al. (2012) assessed the plausibility of their model runs by comparing 6 

the simulated ice volumes in 2005 to the estimated modern ice volume (Bamber et al., 2001; 7 

Lemke et al., 2007); those runs that yielded modern ice volumes within 10% of the estimated 8 

value were kept.  These plausible runs yielded a range of future sea level rise projections that 9 

was ~75% of the median estimate.   10 

Moreover, the parameter combinations that agree well with the modern ice volume constraint 11 

are widely distributed over parameter space.  With the exception of the ice positive degree-day 12 

factor, where only values less than ~15 mm day-1 OC-1 satisfy the ice volume constraint, no 13 

pattern emerges from the distribution of the successful runs through parameter space.    McNeall 14 

et al. (2013) make a similar point using their own results.  Statistically, this inability to learn 15 

about the plausibility of various parameter combinations given observations is termed an 16 

"identifiability problem."   17 

1.2 Expected interactions among model input parameters 18 

The apparently-structureless distribution of successful runs through parameter space 19 

(Applegate et al., 2012, their Fig. 1) may stem from interactions among the parameters.  The 20 

parameters can be loosely grouped into those that control the ice sheet's surface mass balance 21 

(the ice and snow positive degree-day factors) and those that control ice movement (the ice flow 22 

enhancement factor, the basal sliding factor, and the geothermal heat flux).  Either group of 23 

parameters can cause mass loss from the ice sheet to be high or low, given fixed values of the 24 

parameters in the other group.  For example, a high ice positive degree-day factor should be 25 

associated with a low snow positive degree-day factor to produce the same amount of melt as 26 

a model run with more moderate values of both parameters.  This interaction is bounded, 27 

however, because the maximum snow positive degree-day factor is much lower than the 28 

maximum value for ice; also, at the peak of the ablation season, there is no snow left on the 29 

lower parts of the ice sheet, so the ice positive degree-day factor dominates over part of the 30 

year.  Similarly, the same ice velocities can be produced by either a high flow enhancement 31 
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factor and a low basal sliding factor, or the reverse.  Basal sliding can be a much faster process 1 

than ice flow, so this parameter interaction is also bounded.  However, basal sliding operates 2 

only where the bed is thawed, and the geothermal heat flux likely controls the fraction of the 3 

bed that is above the pressure melting point.   4 

The relatively small number of design points in the ensemble presented by Applegate et al. 5 

(2012) hinders mapping of the interactions among parameters over their five-dimensional 6 

space.  Coherent mapping requires many more design points, but performing these additional 7 

runs with the full ice sheet model is impractical because of the model's high computational cost.  8 

This problem suggests a need for a computationally efficient emulator to fill the gaps in 9 

parameter space between the existing model runs.   10 

 11 

2 Methods 12 

As described above, our goals are 1) to present a method for quantifying the agreement between 13 

ice sheet model output and observations that incorporates spatial information, 2) to characterize 14 

the interactions among input parameters, and 3) to produce illustrative projections of sea level 15 

rise from the Greenland Ice Sheet based on synthetic data.  In this section, we provide an outline 16 

of our methods for achieving these goals; fuller descriptions appear in Chang et al. (2013) and 17 

in the Supporting Information.   18 

We accomplish goal #1 through constructing a statistical model that results in a likelihood 19 

function. This statistical model compares ice sheet model output and observations to evaluate 20 

the plausibility of a vector of model input parameter values θ while accounting for systematic 21 

discrepancies between the model output and the observations.  The likelihood function for the 22 

ice thickness observations, denoted by Z, is based on the additive model 23 

Z=Y(θ)+δ+ε,           (1) 24 

where Y(θ) is the ice thickness output from SICOPOLIS model at the vector of input parameter 25 

values θ, δ is the discrepancy between model output and observations caused by structural 26 

problems in the model, and ε is independently- and identically-distributed observational noise.  27 

To achieve goal #2, we perform a "leave-one-out" perfect model experiment with a Gaussian 28 
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process emulator, a computationally-cheap surrogate for the full ice sheet model.  As described 1 

above, the model output Y(θ) is available only at a relatively small number of points in 2 

parameter space, and therefore it is necessary to build an emulator that approximates the model 3 

output Y(θ) at any given θ.  4 

Direct emulation of the full two-dimensional ice thickness grid is prohibitively expensive, due 5 

to (i) the cost of performing operations on large covariance matrices (see the Supplementary 6 

Information and Chang et al., 2013, for details) and (ii) the need to model spatial processes that 7 

contain many zeros, which poses non-trivial computational and inferential challenges. To 8 

mitigate these problems, we take the mean of each row in the ice thickness grid, thereby 9 

obtaining a 264-element vector of zonally-averaged ice thicknesses for each ice sheet model 10 

run.  We then apply principal component analysis to these mean ice thickness vectors.  The 11 

magnitudes of the first 10 principal components suffice to recover the mean ice thickness 12 

vectors. Because the principal components are uncorrelated, we can construct a separate 13 

emulator for the magnitude of each principal component. Our emulator consists of all these 14 

independent Gaussian processes. Although our emulator operates in the principal component 15 

space, we can reconstruct the ice thickness profile that corresponds to the emulated principal 16 

components (see the Supporting Information for details). Note that our likelihood formulation 17 

automatically penalizes the components with lower explained variation.   18 

Next, we train the emulator on all but one of the model runs. We refer to the output (specifically, 19 

the zonal mean ice thickness profile and the ice volume change projection) from this left-out 20 

model run as our "assumed truth."  We examined the robustness of our methods by successively 21 

leaving out each model run in turn and repeating our analysis; see the Supplementary 22 

Information.   23 

Before using the mean ice thickness profile from our assumed-true model run in our perfect 24 

model experiment, we contaminate it with spatially-correlated errors.  These errors reflect the 25 

discrepancies that we would expect to see between model output and data in a "real" calibration 26 

experiment, due to missing or parameterized processes in the model.  In particular, we use 27 

spatially-correlated errors with a moderate magnitude (standard deviation of 50 m) and a large-28 

scale spatial trend to represent a situation in which (i) the ice sheet model has reasonable skill 29 

in reproducing the observed spatial pattern of modern ice thickness, and (ii) the discrepancy 30 

pattern is notably different from patterns generated by the ice sheet model and is therefore 31 
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statistically identifiable (see the Supplementary Information for more details). Note that any 1 

probabilistic calibration method, including our approach, can be uninformative if condition (i) 2 

is violated, or subject to serious bias if condition (ii) is violated. 3 

We then use Markov chain Monte Carlo (MCMC) to estimate the joint posterior probability 4 

distribution over the five-dimensional input parameter space.  MCMC is a well-established 5 

(Hastings, 1970), but complex, statistical technique; Brooks et al. (2011) provide a book-length 6 

treatment.  Briefly, the Metropolis-Hastings algorithm used in MCMC constructs a sequence of 7 

parameter combinations, each of which is chosen randomly from the region of parameter space 8 

surrounding the last point.  Candidate parameter combinations are accepted if the posterior 9 

probability of the new point is greater than at the previous one, or with a certain probability 10 

determined by the Metropolis-Hastings acceptance ratio otherwise.  If the candidate point is 11 

rejected, another candidate point is chosen at random according to a proposal distribution.  12 

Consistent with McNeall et al. (2013), we match the emulator estimates to assumed-true model 13 

output instead of observed ice thickness values (Bamber et al., 2001, 2013) because a perfect 14 

model experiment is more suitable to achieve our main objectives, studying and demonstrating 15 

the performance of our probabilistic calibration method.  The candidate points that are retained 16 

by the MCMC algorithm approximate the posterior probability distribution of the input 17 

parameter space. The candidate points from this algorithm therefore reflect various 18 

characteristics of the posterior distribution, including the marginal distributions of each of the 19 

parameters separately and their joint distributions.  Hence, we can use MCMC to summarize 20 

what we have learned about the parameters from the model and observations while accounting 21 

for various uncertainties and prior information.   22 

Finally, to achieve goal #3, we use a separate Gaussian process emulator to interpolate between 23 

the ice volume change projections from all the model runs in the original ensemble (Applegate 24 

et al., 2012), except the assumed-true realization.  When applied to the sample of the model 25 

input parameters that we obtained from Markov chain Monte Carlo, this emulator yields a 26 

sample of ice volume changes, and thus sea level rise contributions, between 2005 and 2100.  27 

We then use kernel density estimation to compute the probability density of the projected sea 28 

level rise contributions.  It should be noted that these projections are based on synthetic data 29 

(not real observations), and do not represent "real" projections of Greenland Ice Sheet mass loss 30 

over this century.   31 

 32 
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3 Results 1 

Besides helping to diagnose interactions among ice sheet model parameters, our perfect model 2 

experiment allows us to test our overall procedure.  We carry out several checks.   3 

1) If the trained emulator is given the parameter settings from the left-out model realization, it 4 

should produce a close approximation to the actual output from that realization.   5 

2) The maximum of the multidimensional posterior probability function from our Markov chain 6 

Monte Carlo analysis should lie close to the parameter settings from the left-out model 7 

realization.   8 

3) The mode of the probability density function of ice loss projections should be close to the 9 

ice loss projection from the assumed-true model realization.   10 

As detailed below, our methods pass all three of these checks.   11 

Aggregating the ice thicknesses to their zonal means allows easy visual comparison of different 12 

emulator-estimated ice thickness vectors to the assumed-true model realization (black curve, 13 

Fig. 1).  The emulator, as trained on 99 of the model realizations from the Applegate et al. (2012) 14 

ensemble, successfully recovers the ice thicknesses from the left-out model realization (Fig. 2) 15 

when given the parameter combination for that left-out model realization as input.  Differences 16 

between the assumed-true and emulated zonally-averaged ice thickness vectors are minor. Thus, 17 

our methods pass check #1, above.   18 

 Similarly, the conditional posterior density functions (Fig. 3) have maxima near the assumed-19 

true parameter values. Parameter combinations yielding zonally-averaged ice thickness curves 20 

that lie close to the assumed-true model realization (e.g., the red curve in Fig. 1) are more likely 21 

(more probable based on the posterior distribution) than those with curves that lie farther from 22 

the assumed-true values (blue and green curves in Fig. 1).   We do not expect that the modes of 23 

the marginal posterior density functions (Fig. 4b) will fall exactly at the assumed-true parameter 24 

values, because summing over one or more dimensions often moves the marginal mode away 25 

from the maximum of the multidimensional probability density function.  In any case, the 26 

maximum posterior probability is close to the assumed-true parameter combination.  Thus, our 27 

methods pass check #2, above.  Some of the two-dimensional marginal probability density 28 

functions (Fig. 4b) show multiple modes and bands of high probability extending across the 29 

two-dimensional fields; we discuss the significance of these features below.   30 
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For comparison, we also produced scatterplots of parameter combinations as projected onto 1 

two-dimensional slices through the five-dimensional parameter space (Fig. 4a), following 2 

Applegate et al. (2012, their Fig. 1).  As in Applegate et al. (2012), the "successful" design 3 

points show no clustering around the assumed-true parameter values, except for the ice PDD 4 

factor.   5 

Our method also successfully recovers the ice volume loss produced by the assumed-true model 6 

realization (Fig. 5; see also Figs. S3, S4), reflected by the close correspondence between the 7 

mode of the probability density function produced by our methods and the vertical black line.  8 

Thus, our methods pass check #3, listed above.  As previously noted, these projections are based 9 

on synthetic data; they are not "real" projections of Greenland Ice Sheet mass loss.  For 10 

comparison, we also applied the windowing approach used by Applegate et al. (2012) to the 11 

model runs and the synthetic observation.  The 95% probable interval produced by our methods 12 

is much smaller than that estimated by computing the 2.5th and the 97.5th percentiles of the 13 

volume change values selected by the 10% volume filter used in Applegate et al. (2012). This 14 

reflects the utility of spatial information and our probabilistic calibration approach in reducing 15 

projection uncertainties comparing to the windowing approach in Applegate et al. (2012).   16 

The prior density for the ice volume loss was constructed by assuming that all 99 design points 17 

used to train our emulator are equally likely.  Interestingly, a uniform prior for the input 18 

parameters results in a skewed and multimodal prior distribution for the volume loss, indicating 19 

that the function that maps input parameters to projected ice volume changes is highly non-20 

linear and not smooth.  These characteristics also cause a small offset between the assumed-21 

true projection and the mode of the posterior density.  The marginal plots for the volume loss 22 

projection surfaces are shown in Figure S1 in the supporting material.  23 

 24 

4 Discussion 25 

As explained above, our goals for this work were to identify an objective function for matching 26 

ice sheet models to spatially-distributed data (especially ice thicknesses), map interactions 27 

among model input parameters, and develop methods for projecting future ice sheet mass loss, 28 

with well-characterized uncertainties.  We demonstrated that our emulator reproduces a vector 29 

of zonally-averaged ice thicknesses from a given model run when trained on other members 30 

from the same ensemble (Fig. 2).  We further showed that the emulator can recover the 31 

appropriate parameter combinations for an assumed-true model realization in a perfect model 32 
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experiment (Figs. 3, 4b).  Finally, we produced illustrative projections of Greenland Ice Sheet 1 

mass loss, based on synthetic data (Fig. 5; see also Figs. S3, S4).  As noted above, our 2 

projections are for illustration only, and do not represent "real" projections of future Greenland 3 

Ice Sheet mass loss.    4 

The utility of our approach becomes clear in comparing the marginal posterior probability 5 

density functions (Fig. 4a) and projections (red probability density functions and boxplots in 6 

Figs. 5, S3, and S4) to results from simpler methods (Fig. 4b; blue boxplots in Figs. 5, S3, and 7 

S4; Applegate et al., 2012).  In Figure 4b, there are distinct modes in the marginal densities, 8 

indicating regions of parameter space that are more consistent with the assumed truth.  These 9 

modes are absent in the simpler graphic (Fig. 4a).  Similarly, the 95% probable interval of sea 10 

level rise contributions is narrower using our methods than if a simple windowing approach is 11 

applied (Fig. 5; see also Figs. S3, S4).  Our results also show the importance of including the 12 

discrepancy term (δ in Eqn. 1) for recovering the appropriate parameter settings in our perfect 13 

model experiments (Fig. S2).  If we leave this discrepancy term out, the marginal posterior 14 

density functions for each parameter clearly miss the true values.   15 

The parameter interactions identified in this experiment are generally consistent with intuition 16 

(see Section 1.2 for descriptions of anticipated parameter interactions).  Figure 4 shows inclined 17 

bands of high marginal posterior probability in the ice positive degree-day vs. snow positive 18 

degree-day, geothermal heat flux vs. ice flow factor, and basal sliding factor vs. flow factor 19 

panels.  As expected, there are tradeoffs among each of these parameter pairs; for example, a 20 

low ice positive degree-day factor must be combined with a high snow positive degree-day 21 

factor to produce a reasonable match to the assumed truth.  Somewhat surprisingly, the tradeoff 22 

between the geothermal heat flux and the ice flow factor is much stronger than that between the 23 

geothermal heat flux and the basal sliding factor.  The geothermal heat flux affects both ice 24 

deformation (which is temperature-sensitive) and basal sliding (which operates only where 25 

there is liquid water at the ice-bed interface).  We hypothesize that the geothermal heat flux has 26 

a stronger effect on ice flow than basal sliding because ice deformation happens over a much 27 

larger fraction of the ice sheet's basal area than does sliding.   28 

Multiple modes appear in the two-dimensional marginal density plots (Fig. 4), implying that 29 

standard methods for tuning of ice sheet models may converge to "non-optimal" parameter 30 

combinations.  Ice sheet models are commonly tuned by manually adjusting one parameter at a 31 

time until the simulated modern ice sheet resembles the real one (e.g., Greve et al., 2011).  This 32 
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procedure is an informal variant of so-called gradient descent methods, which search for 1 

optimal matches between models and data by moving down a continuous surface defined by 2 

the model's input parameters, the objective function, and the data.  If the surface has multiple 3 

"peaks" (i.e. regions of parameter space that are more plausible, given observations, than their 4 

surroundings), gradient descent methods can converge to a point which produces a better match 5 

to the data than any adjacent point, but is nevertheless far from the "best" parameter 6 

combination.  This problem may partly explain the wide variation in projections of sea level 7 

rise from the ice sheets, as made with state-of-the-art ice sheet models (Bindschadler et al., 8 

2013; cf. Shannon et al., 2013; Edwards et al., 2014a): even if the models had similar structures 9 

and reproduced the modern ice sheet topography and ice thicknesses equally well, we would 10 

still expect their future projections to diverge because of differences in input parameter choice.   11 

Our leave-one-out cross-validation shows that the results presented here are consistent across 12 

all possible 100 synthetic truths. The prediction interal for the ice volume changes in Fig 5 13 

achieves the nominal coverage when the synthetic truth yields a modern ice volume that is close 14 

to the observed modern ice volume (Fig. S5). The parameter interactions shown in Fig. 4 are 15 

also consistent across the majority of the synthetic truths (Fig. S6). 16 

4.1 Cautions and future directions 17 

In this paper, we specifically avoid giving "real" projections of future Greenland Ice Sheet 18 

volume change, for two reasons.  First, we match only a two-dimensional profile of zonally-19 

averaged ice thicknesses from an assumed-true model run, rather than the two-dimensional grid 20 

of observed ice thicknesses (Bamber et al., 2001, 2013; see also McNeall et al., 2013).  Second, 21 

the ensemble of ice sheet model runs (Applegate et al., 2012) that we use to calibrate our 22 

emulator has several important limitations, including the relative simplicity of the model used 23 

to generate the ensemble and the synthetic climate scenario used to drive the ensemble members 24 

into the future.  Most importantly, this ensemble's simulated modern ice sheets are generally 25 

too thick in the southern part of Greenland and too thin in the northern part of the island 26 

(Applegate et al., 2012, their Fig. 7); other studies that allow the ice sheet surface to evolve 27 

freely have noted similar difficulties in reproducing the modern ice sheet (e.g., Stone et al., 28 

2010; Greve et al., 2011; Nowicki et al., 2013, their Fig. 2; cf. Edwards et al., 2014a). The long-29 

term goal of this work is to compare ice sheet model runs to actual data, thereby resulting in 30 

probabilistic projections of future ice sheet mass loss.  To achieve this goal, we plan to expand 31 

our method to treat the full, two-dimensional ice thickness grid and take advantage of other 32 
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spatially-distributed data sets (e.g., surface velocities; Joughin et al. 2010), and to generate new 1 

ice sheet model ensembles that overcome the limitations explained above.  2 

 3 

5 Conclusions 4 

In this paper, we presented an approach for probabilistic calibration of ice sheet models using 5 

spatially-resolved ice thickness information.  Specifically, we constructed a probability model 6 

for assigning posterior probabilities to individual ice sheet model runs, and we used a Gaussian 7 

process emulator to interpolate between existing ice sheet model simulations.  We reduced the 8 

dimensionality of the emulation problem by reducing profiles of mean ice thicknesses to their 9 

principal components.  Finally, we showed how the posterior probabilities from the model 10 

calibration exercise can be used to make projections of future sea level rise from the ice sheets.  11 

In a perfect model experiment where the "true" parameter settings and future contributions of 12 

the ice sheet to sea level rise are known, our methods successfully recovered these values.  The 13 

posterior probability density function that resulted from this experiment shows tradeoffs among 14 

parameters and multiple modes.  The tradeoffs are consistent with physical expectations, 15 

whereas the multiple modes may indicate that commonly-applied methods for tuning ice sheet 16 

models can lead to calibration errors.   17 
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Figure 1.  Profiles of zonal mean ice thicknesses from four different evaluations of the ice sheet 3 

model SICOPOLIS (Greve, 1997; Greve et al., 2011).  The solid black curve represents model 4 

run #67 from Applegate et al. (2012), which we take to be the synthetic truth for our perfect 5 

model experiments.  The other curves represent examples of model runs used to construct the 6 

emulator: one run produces a zonal mean ice thickness curve similar to the synthetic 7 

observations (dashed red curve), another is generally too thick (dotted green curve), and a third 8 

is generally too thin (dot-dashed blue curve).  As expected, our probability model assigns a 9 

greater posterior probability to the model run represented by the red curve than to the model 10 

runs represented by the blue and green curves. All the other model runs that are not highlighted 11 

above are represented as grey curves. 12 

 13 

14 
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Figure 2.  Comparison of zonal mean ice thickness transects from the assumed-true model run 3 

(#67 from Applegate et al., 2012) and that generated by the trained emulator at the same 4 

parameter combination as used in the assumed-true model run.  In the top panel, the assumed-5 

true profile is shown by a solid black line, and the emulator output is shown by a dashed red 6 

curve with circles.  In the lower panel, each point stands for an individual latitude location.  The 7 

red circles in the top panel fall almost exactly on top of the black curve, and the points in the 8 

lower panel fall almost exactly on a 1:1 line connecting the lower left and upper right corners 9 

of the plot.  Thus, the emulator successfully recovers the ice thicknesses from an assumed-true 10 

model realization when trained on the other model runs from the same ensemble.   11 
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Figure 3.  Prior (dashed red curves) and posterior (solid black curves) probability density 3 

functions of each input parameter, assuming that all the other parameters are held fixed at their 4 

assumed-true values.  The vertical lines indicate the assumed-true values of the individual 5 

parameters.   6 
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Figure 4.  Comparison between an exploratory data analysis, following Applegate et al. (2012), 3 

and the results of our probabilistic calibration.  (a) Scatterplots of parameter settings used to 4 

train the emulator, as projected onto two-dimensional marginal spaces.  Red dots, parameter 5 

settings resulting in simulated modern ice volumes within 10% of the synthetic truth (model 6 

run #67 of Applegate et al. 2012); blue crosses, parameter settings that yield ice volumes more 7 

than 10% larger or smaller than the synthetic truth.  (b) Two-dimensional marginal posterior 8 

densities of all pairs of input parameters.  Several of the marginal posterior density maps show 9 

inclined bands of higher probability, indicating interactions among parameters; other panels 10 

show multiple modes, representing potential "traps" for tuning of ice sheet models using simpler 11 

methods.  See text for discussion.   12 
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Figure 5. Illustrative (not "real") ice volume change projections between 2005 and 2100, based 3 

on three different methods: i) the prior density of the input parameters (dashed green line); ii) 4 

parameter settings that pass the 10% ice volume filter used by Applegate et al. (2012) (solid 5 

blue line); and iii) the posterior density computed by our calibration approach (solid red line).  6 

The vertical line shows the ice volume change projection for the assumed-true parameter 7 

setting.  The horizontal lines and the parentheses on them represent the range and the 95% 8 

prediction intervals, respectively; the crosses indicate the median projection from each method. 9 

The width of the 95% projection interval from our methods is narrower than if simpler methods 10 

are applied (blue boxplot; Applegate et al., 2012).  Similar results are obtained if different model 11 

runs from the ensemble are left out (see Figs. S3 and S4).  See text for discussion.  m sle, meters 12 

of sea level equivalent.   13 
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