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Abstract.

This paper presents the Spatially-Explicit Hydrologic Response (SEHR) model developed at the

Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation

of hydrological processes at the catchment scale. The key concept of the model is the formulation

of water transport by geomorphologic travel time distributions through gravity-driven transitions5

among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at

the sub-catchment scale and the resulting responses are convolved with the travel paths distribution

within the river network to obtain the hydrologic response at the catchment outlet. The model thus

breaks down the complexity of the hydrologic response into an explicit geomorphological combi-

nation of dominant spatial patterns of precipitation input and of hydrologic process controls. Non-10

stationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil

layer. We present here the basic model set-up for precipitation–runoff simulation and a detailed

discussion of its parameter estimation and of its performance for the Dischma river (Switzerland),

a snow-dominated catchment with a small glacier cover.

1 Introduction15

Hydrological processes result from natural processes that vary strongly in space, such as precipita-

tion, evaporation or infiltration into the subsoil (McDonnell et al., 2007; Beven, 2012). Accordingly,

most state-of-the art hydrologic response models have two fundamental components to describe the

arrival of water and transported substances at a control section: a component to simulate the tem-
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poral evolution of water storage (and possibly of energy or of solutes) and released fluxes in some20

hydrologically meaningful sub-units and a component to describe the transport of the fluxes between

the sub-units along the river network, (e.g. Hingray et al., 2010; Clark et al., 2008; Kunstmann and

Stadler, 2005). There are, however, many models without an explicit description of the water flow

within the landscape and the river network. This transport component is either completely omitted

as in lumped models (Perrin et al., 2003; Merz and Blöschl, 2004), assumed to be negligible at the25

spatio-temporal scale of interest (Viviroli et al., 2009; Schaefli et al., 2005), or assumed to fall out of

the sum of transport processes simulated between small spatial units, without further parameterizing

flow in channels (e.g. Tague and Band, 2001; Wigmosta et al., 1994; Liu and Todini, 1999).

Some models use an arbitrary (calibrated) discharge routing function to smooth the response

computed at the scale of a (sub-)catchment, e.g. with a triangular function as in the HBV model30

(Bergström, 1995) and derivations thereof (Wrede et al., 2013; Das et al., 2008). Finally, there exist

models that can be thought of as having an implicit routing component (Tague and Band, 2001) even

if they are applied in a completely lumped manner, i.e. a component that accounts statistically for

spatial differences of runoff generation, such as Hymod (Boyle, 2000; Moradkhani et al., 2005) or

the well-known Topmodel with its topographical wetness index (Beven and Kirkby, 1979) (which35

is, however, generally not applied in a lumped manner).

Most existing catchment-scale model applications show an explicit parameterization of channeled

flow only for the largest rivers in the analyzed system, for which typically a kinematic wave-based

routing is used, assuming that at the sub-catchment level, the effect of travel times in channels

are negligible at the considered spatio-temporal resolution. This might typically hold for hourly40

discharge simulation with sub-catchments of a few 10–100 km2 in reasonably steep environments

(e.g. Hingray et al., 2010). For an example including subcatchment routing parameterization see,

e.g., the work of Clark et al. (2008).

Traditionally, the range of aforementioned hydrological models is classified into (semi-)lumped

and (semi-)distributed (Reed et al., 2004; Beven, 2012), a classification which refers essentially to45

the parameterization of the temporal evolution of the water storage within the catchment. The terms

distributed or semi-distributed (e.g. Das et al., 2008) generally refer to grid-based models or sub-

catchment set-ups with different parameter sets for each spatial unit, whereas semi-lumped implies

some degree of spatial discretization but with a single parameter set and generally without flow

routing through the landscape (e.g. Schaefli et al., 2005). Although not directly related, it is often50

implied that distributed models are more physics-based.

We propose the term of a spatially-explicit hydrologic response (SEHR) model for any model

that explicitly parameterizes both, spatial patterns of water storage evolution as well as the effect

of geomorphology on the travel time of water having different spatial origins. We believe that the

term spatially-explicit is more generic than the often used terms semi-lumped, semi-distributed or55

distributed model, which refer to specific set-ups in terms of spatial variability of state variables and
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of parameters.

Hereafter, we describe a simple catchment-scale hydrologic model developed at the Laboratory

of Ecohydrology (ECHO) of the Ecole Polytechnique Fédérale de Lausanne, SEHR-ECHO, that ex-

plicitly accounts for the spatial variabilities in the runoff generation process and the heterogeneity60

of the flow-paths within the catchment. The model builds on the geomorphic theory of the hydro-

logic response (Rodriguez-Iturbe and Valdés, 1979; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo

et al., 2006) pursuing an accurate description of riverine hydraulic processes through the use of

the geomorphologic dispersion (Rinaldo et al., 1991), providing a general framework to formulate

spatially-explicit models (e.g. Nicótina et al., 2008; Tobin et al., 2013). In such an approach, nonlin-65

earities and nonstationarities of the hydrologic response (e.g. McDonnell et al., 2010; Botter et al.,

2011; Sivapalan et al., 2002; Hrachowitz et al., 2013) are embedded in the parameterization of the

soil moisture dynamics and the related dominant runoff generation processes at the source area scale.

The general model concept is introduced in Sect. 2 and implementation details discussed in Sect. 3.

For illustration purposes, the model is applied to an example case study from Switzerland (Sect. 4),70

for which we discuss the discharge simulation performance in Sect. 5, before summarizing the main

conclusions (Sect. 6).

2 Model description

The SEHR-ECHO model is composed of two main components (Fig. 1): (i) a precipitation–runoff

transformation module that computes surface and sub-surface water fluxes from the source areas (the75

basic subunits that describe the spatial structure of the model domain), and (ii) a routing module that

computes fluxes in the river network through to the control section (i.e. the outlet). In other terms,

the model is composed of a module for unchanneled state processes at the source area scale and one

for channeled state transport (Rinaldo et al., 2006).

The source areas are extracted from a digital elevation model (DEM) with the well-known Taudem80

algorithm (Tarboton, 1997) for subcatchment and river network delineation (see Sect. 4 for further

details). The scale of these source areas are selected such as to allow for sufficiently homogenous

hydro-meteorological conditions without losing too much geomorphologic complexity. Relevant

geomorphologic issues are discussed in (Rodriguez-Iturbe and Rinaldo, 1997).

2.1 Precipitation–runoff module at source area scale85

The precipitation–runoff module solves the mass balance equations at the source area scale. This

component is driven by precipitation, temperature and potential evaporation input time series, which

need to be properly provided at the source area scale. The choice of methods to interpolate the

observed input time series to this scale depends on the variable (precipitation, temperature), on the

application and on the simulation time step (e.g. Tobin et al., 2011), and the choice of the general90
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method is largely independent of the exact set-up of the hydrological model. In the remainder of this

section we describe the precipitation–runoff transformation for one source area assuming the input

variables are provided at the proper spatial and temporal scales.

The precipitation–runoff transformation module has the following key elements: interception and

re-evaporation of intercepted water, rainfall-/snowfall separation, evolution of water stored in the95

snowpack in solid form, evolution of the liquid water content of the snowpack, equivalent precipita-

tion (rain and meltwater)–runoff transformation. If a source area has partial glacier cover, the runoff

resulting from the glacier is computed separately (Fig. 1).

Interception Ic(t) is simulated using a constant interception capacity ρ:

Ic(t) = min[ρ, P (t)], (1)

where P (t) [L T−1] is the precipitation and ρ [L T−1] is the maximum interception during a time

step t (e.g. Fenicia et al., 2006). No separation between the aggregation state of precipitation (snow,100

rain) is made for ρ, a simplification which is not advisable for applications to catchments with

considerable forest cover (e.g. Gelfan et al., 2004).

Part of intercepted water is assumed to re-evaporate during the same time step, limited by potential

evaporation Epot(t) [L T−1]:

Ei(t) = min[Epot(t), Ic(t)], (2)

where Ei(t) [L T−1] is the evaporation flux from intercepted water. This evaporated water is as-

sumed to not be available for the precipitation–runoff generation process, i.e. total incoming precip-

itation is reduced to net precipitation Pn [L T−1]

Pn(t) = P (t)− Ei(t). (3)

Epot is reduced to potential transpiration Et,pot [L T−1] by the amount of Ei:

Et,pot(t) = Epot(t)− Ei(t). (4)

It is noteworthy that the above formulation assumes that interception is an instantaneous process,

which takes place at time scales smaller than the simulation time step (i.e. subhourly). Only the

evaporated water is subtracted from the incoming precipitation, which corresponds to a return of105

non-evaporated water as throughfall.

The estimation of the aggregation state of precipitation is based on a simple temperature threshold

Tr [◦C] (Schaefli et al., 2005) that splits net precipitation Pn into rainfall Pr(t) [L T−1] and snow-

fall Ps(t) [L T−1] depending on the mean temperature T (t) (for a smooth threshold approach see

Schaefli and Huss, 2011).110

The evolution of the water equivalent of the snowpack height hs [L] is computed as:

dhs

dt
= Ps(t)−Ms(t) + Fs(t)−Gs(t), hs > 0 (5)
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where Ms(t) [L T−1] is the snowmelt due to energy input from the atmosphere, Fs(t) [L T−1] is the

flux of refreezing water during periods of negative heat input andGs(t) [L T−1] is the snowmelt due

to ground heat flux (all in water equivalent). Gs is assumed to be constant in time, Gs = Gmax as

long as there is a snowpack:

Gs(t) =

Gmax if hs(t) > 0

0 if hs(t) = 0
(6)

The snowmelt Ms is modeled as linearly related to positive air temperature according to the

temperature-index or degree-day approach (Hock, 2003):

Ms(t) =

as (T (t)− Tm) if T (t) > Tm, hs(t) > 0

0 otherwise
(7)

where as is the degree-day factor for snow melt [L T−1 ◦C−1], Tm [◦C] is the threshold temperature

for melting that is set to 0 ◦C.

Refreezing Fs is assumed to occur when T (t) < Tm and is linearly related to negative air temper-

ature with a freezing degree-day factor that is proportional to, but smaller than the melt degree-day

factor as (Kokkonen and Norton, 2006; Formetta et al., 2013):

Fs(t) =

afas (Tm − T (t)) if T (t) < Tm, hs(t) > 0

0 otherwise
(8)

where afε[0, 1] is the degree-day reduction factor for refreezing.

The snowpack is assumed to have a certain water retention capacity θ · hs [mm] and water is

released from the snowpack only if this retention capacity is exceeded. The balance equation for the

liquid water hw [L] content of the snowpack is written as:

dhw

dt
= Pr(t) +Ms(t)− Fs(t)−Mw(t), (9)

where the snowpack outflow Mw only occurs if the air temperature is above melting conditions and

if the water retention capacity θ is reached:

Mw(t) =

Pr(t) +Ms(t)− Fs(t) if hw = θhs

0 if hw < θhs

(10)

It is noteworthy that rainfall Pr only occurs if T > Tr, snowmeltMs only if T > Tm and refreezing

Fs only if T < Tm. It generally holds that Tr > Tm = 0 ◦C translating the well known fact that115

snowfall can occur at temperatures above the melt temperature (for an analysis of observed snowfall

at the Davos station, see Rohrer et al., 1994). The general case of Eq. (10) holds for all values of the

threshold parameters or for fuzzy transitions between rain- and snowfall.
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The water fluxes Pr, Gs and Mw are summed up to produce the equivalent precipitation Peq that

enters the equivalent-precipitation–runoff transformation:

Peq(t) =

Pr(t) if hs = 0

Gs(t) +Mw(t) if hs > 0
(11)

The partitioning of equivalent precipitation into surface runoff, fast and slow subsurface runoff

and transpiration resulting from water infiltration and percolation in the subsoil is performed via

a minimalist description of the soil moisture dynamics at the source area scale (Laio et al., 2001;

Rodriguez-Iturbe and Porporato, 2004; Rodriguez-Iturbe et al., 1999):

ηZr
ds(t)

dt
= Fi(t)− Et(t)− L(t), 0 ≤ s ≤ 1 (12)

where η [–] is the soil porosity, Zr [L] is the depth of the soil layer that is active during water

redistribution processes, s [–] is the relative soil moisture in the active layer, Fi [L T−1] is the120

infiltration rate, Et [L T−1] is the rate of transpiration of water from the root zone and L [L T−1] is

the water flux (called leakage here) mobilized from the root zone as subsurface flow.

It is noteworthy that this soil moisture dynamics equation, if forced with Poisson infiltration, can

be solved exactly for a number of cases and forms the basis of substantial analytic work on the

probabilistic properties of stream flow (Botter et al., 2007b,a; Botter, 2010).125

The leakage L is parameterized as a non-linear function of the soil moisture as:

L(t) = Ksats(t)
c, (13)

where Ksat [L T−1] is the saturated hydraulic conductivity and c the Clapp–Hornberger exponent

(Clapp and Hornberger, 1978).

The transpiration rate is a linear function of relative soil moisture between the wilting point, sw [–]

(i.e. the moisture content below which the plants cannot further extract water from the soil) and the

upper limit of water stress, sm [–], at which it is assumed to reach the limit imposed by the potential

transpiration rate (e.g Porporato et al., 2004):

Et(t) = min
[
Et,pot

s− sw

sm − sw
, Et,pot

]
. (14)

The infiltrated water corresponds to the equivalent precipitation from which direct surface runoff

is subtracted:

Fi(t) = Peq(t)−Rhort(t)−Rdun(t), (15)

where Rhort [L T−1] is surface runoff occurring if the infiltration capacity is exceeded and Rdun

[L T−1] is surface runoff occurring if the source area is saturated. These two mechanisms of surface

runoff, inspired from Hortonian and Dunne overland flow (e.g. Dingman, 2002), enable the model130

to simulate different time scales of reaction to a precipitation or melt water input.
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Rhort is parameterized with a constant maximum infiltration capacity φ [L T−1]:

Rhort(t) =

max[Peq(t)− φ, 0] if s(t) < 1

0 if s(t) = 1
(16)

where φ is supposed to be constant in time. If the soil is saturated, s(t) = 1, Rdun occurs

Rdun(t) =

Peq(t) if s(t) = 1

0 if s(t) < 1
(17)

The water mobilized from the active layer L is transformed to subsurface runoff at the source area

outlet through two linear reservoirs that simulate a fast and a slow subsurface flux, Rfast [L T−1] and

Rslow [L T−1] (similar to the e.g. the formulation in the HBV model Bergström, 1995). The part of

L feeding the slow subsurface flux, Lslow, is assumed to be a constant flux Lmax limited by L:

Lslow(t) = min[L(t), Lmax]. (18)

The linear reservoir equations for the fast and slow subsurface runoff thus read as:

dSfast

dt
= L(t)− Lslow(t)−Rfast(t), (19)

dSslow

dt
= Lslow(t)−Rslow(t). (20)

where Sfast [L] and Sslow [L] are the water storage in the fast and the slow reservoirs. Rfast [L T−1]

and Rslow [L T−1] are the fast and slow reservoir outflows, which are supposed to linearly depend

on the storage, i.e. Rfast = kfastSfast and Rslow = kslowSslow where k−1
fast [T] and k−1

slow [T] are the mean

residence times.135

Note that s is a relative soil moisture, whereas Sslow and Sfast have length units.

2.2 Discharge simulation from glacierized subcatchments

If a source area has a partial glacier coverage, ice is assumed to start melting if hs = 0 (Schaefli

et al., 2005):

Mi =

ai (T (t)− Tm) if T (t) > Tm, hs(t) = 0

0 otherwise
(21)

where ai [L T−1 ◦C−1] is the degree-day factor for ice melt. This melt is routed to the subcatchment

outlet through a linear reservoir with coefficient kice. The routing to the catchment outlet follows the

general procedure (see hereafter) but the flux is weighted according to the fraction of source area140

that is glacier covered. No glacier surface dynamics are modelled (e.g Huss et al., 2010), the glacier

cover is assumed to be constant (but it can of course be updated for different simulation periods).
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2.3 Discharge simulation at catchment outlet

The transport of the runoff components through the river network uses a linear approach, assum-

ing that most relevant nonlinear processes are captured through the source area-scale precipitation–145

runoff transformation. This assumption only holds for systems where flow velocity can be assumed

to be relatively constant in time (independent of discharge) and space. The total discharge at the

catchment outlet is obtained by convolution of each of the fluxes R (surface runoffs Rhort, Rdun,

subsurface runoffs Rfast, Rslow and ice melt runoff Rice) from all source areas with a travel time

distribution fγ(t) along its flow path γ to the catchment outlet (Fig. 2).150

The probability density functions of travel times, fγ(t) (assumed statistically independent) are

obtained from the travel time distributions in all channels Cj → Ck → CΩ composing them (Gupta

et al., 1980; Rinaldo et al., 1991):

fγ(t) = fCj
(t) ∗ fCk

(t) ∗ · · · ∗ fΩ(t) (22)

where ∗ is the convolution operator and Ω is the outlet. For the example illustrated in Fig. 2, the

travel path from the source area A1 to the outlet is made up of two collecting channels C1 and C3.

The travel time distributions within channeled states Cj are obtained assuming longitudinal 1-D

dispersion, which is a reasonable assumption for open channel flow in low order rivers (Rinaldo

et al., 1991):

fCj (t) =
1

4(πD`t3)(1/2)
`jexp

{
−
[

(`j − νt)2

4D`t

]}
, (23)

where D` [L2 T−1] is the hydrodynamic dispersion coefficient, `j [L] is the channel length and ν

[L T−1] is the average velocity.

The simulated discharge at the catchment outlet becomes

Q = Qfast +Qslow +Qhort +Qdun +Qice, (24)

where each of the discharge components Qxyz equals

Qxyz =

n∑
γ=1

[Rxyz,γ(t) ∗ fγ(t)] . (25)

3 Model implementation155

The model requires temperature, precipitation and potential evaporation time series for each sub-

catchment and, for model calibration, at least one concomitant discharge time series observed at

the catchment outlet. The numerical implementation uses a fixed time step and a 4th order Runge–

Kutta scheme to compute the soil moisture evolution. The other stores (fast and slow subsurface flux

stores, solid and liquid snow stores) are solved with explicit time-stepping, which is justified given160

that these stores have only one outflux, linearly dependent on the storage.
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The provided code (see Supplement) is developed in Matlab R2010b. The parameterization of

each of the presented hydrological processes can easily be modified. The basic model structure

(passing of variables and parameters among functions) has been designed for an easy combination

with the now widely used optimization algorithms developed by Vrugt et al. (2003, 2009). For165

the example presented in this paper, the model is, however, calibrated with simple Monte Carlo

generation within a priori parameter ranges (details in Sect. 4).

3.1 Identification of model parameter patterns

The physical parameters of SEHR-ECHO, which describe the physiographic catchment character-

istics and can be extracted from topographic data, are listed in Table 1. The model parameters that170

require calibration or a relevant method of a priori estimation are summarized in Table 2 (along

with a range of a priori values). Depending on the application, all these parameters might be made

variable in space, especially the ones for which there are known spatial patterns.

It is, in particular, recommended to relate the mean residence time k−1
fast of subcatchment-scale

subsurface fluxes to the source area Aγ as:

1

kfast,γ
∼ Aξγ , (26)

where the scaling coefficient ξ can be set to values of around 1/3 (Alexander, 1972; Pilgrim et al.,

1982). In practical terms, such a scaling for kfast is obtained by calibrating a generic reservoir

coefficient kcal such that
1

kfast,γ
=

1

kcal

(
Aγ
〈Aγ〉

)ξ
, (27)

where 〈Aγ〉 is the mean subcatchment area. The coefficient kslow is then related to kfast through the

calibration of a multiplication parameter mk such that

1

kslow,γ
= mk

1

kfast,γ
. (28)

It might be tempting to derive the spatial variability of the active soil depth from soil production

theory (Heimsath et al., 1997). Such an approach might e.g. assume that the soil depth of a source175

area is proportional to the mean topographic curvature in topographically convex areas. Another idea

could be to identify topographically concave areas that can be assumed to be saturated at all times.

For applications similar to the one presented here, different model tests showed, however, that the

effect of spatially variable soil depth on simulated discharge can be compensated by the other model

parameters (Nicótina et al., 2011); this approach is therefore not further pursued here.180

The saturated hydraulic conductivity can easily be distributed in space according to observed

land use and soil types; an example is discussed in Sect. 4 for the present case study. Imposing

additional spatial parameter patterns related to directly observable physiographic characteristics is

readily possible, but beyond the scopes of the present work.
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4 Case study185

The Dischmabach catchment, located in the south-east of Switzerland near Davos (Fig. 3), has a size

of 43.3 km2 at the Kriegsmatten gauging station, for which long discharge time series are available

from the Swiss Federal Office for the Environement. Its elevation ranges from 1668 m a.s.l. up

to 3146 m a.s.l. (mean altitude 2372 m a.s.l.) with around 2.1 % of the catchment area covered by

glaciers. The annual mean temperature at mean elevation is around −0.5 ◦C. The discharge regime190

shows a strong seasonal pattern due to accumulation and melting of snow. The relatively steep

hillslopes are covered with pasture (38 %) and forest (10 %); around 16 % of the catchment are bare

soil, rock outcrops cover 24 % (Verbunt et al., 2003). The geology is crystalline composed of gneiss

and amphibolites, overlain by shallow soils (Verbunt et al., 2003). The nearby meteorological station

of Weissfluhjoch (2690 m a.s.l.) records around 1450 mm year−1 of precipitation (period 1981–195

1999), which is relatively low compared to other Alpine locations at the same altitude. The discharge

over the same period was around 1350 mm year−1. The mean evaporation in this catchment is

around 300 mm year−1 for the period 1973–1992 (Menzel et al., 1999). Part of the discharge is due

to net glacier ice melt.

The subcatchments as well as the river network characteristics required to run the model (network200

topology, river reach lengths) are identified with TauDEM Version 5 (Tarboton, 1997), a hydrologic

terrain analysis tool which is freely available under the terms of the GNU General Public License

version 2 at http://hydrology.usu.edu/taudem/taudem5/. The 23 subcatchments as well as the river

network are shown (Fig. 3).

The temperature time series for each subcatchment is obtained through a linear interpolation of the205

temperature observed at the Davos weather station (1594 m a.s.l.) to the mean subcatchment altitude,

using the average temperature lapse rate between this and the Weissfluhjoch station (which equals

−0.50 ◦C/100 m). The precipitation for each subcatchment is the one recorded at Weissfluhjoch.

The potential evaporation is evaluated with the Priestley–Taylor method (Maidment, 1993; Priestley

and Taylor, 1972) using the Weissfluhjoch meteorological data.210

Given the important heterogeneity of land use in this catchment, we distribute the saturated hy-

draulic conductivity according to land use types, which are available from the Swiss land use data-

base at a resolution of 100 m (Swiss Federal Office for Statistics, 2001). We assign each relevant

land use class j a surface runoff coefficient rj (see Supplementa, Table 1). Based on the distribution

of rj within each subcatchment γ, we compute the following scaling parameter

%γ =

∑
j rjfj

rD
, (29)

where γ identifies a given subcatchment, fj is the relative frequency of occurrence of the land use

class j within the subcatchment and rD is the surface runoff coefficient of the dominant land use

class.
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For each subcatchment, the saturated hydraulic conductivity is then obtained as

Ksat,γ = %γKsat, (30)

where Ksat is obtained through calibration.

Impervious subcatchment areas are accounted for by setting the soil depth of the corresponding215

portions to 0 (in total 1.2 km2).

4.1 Model calibration

For the purpose of this paper, the model is calibrated on daily and hourly discharge with simple

Monte Carlo simulation: we draw a high number of random parameter sets in the a priori parameter

ranges and retain the best simulations with respect to the well-known Nash–Sutcliffe performance

criterion (Nash and Sutcliffe, 1970), which evaluates how much better the simulated discharge Qs

fits the observed discharge Qo than the simplest possible model, the mean of the observed discharge

over the entire period Qo:

N(Qs) = 1−
∑nt

i=1(Qo(ti)−Qs(ti))
2∑nt

i=1(Qo(ti)−Qo)2
, (31)

where N is the Nash–Sutcliffe efficiency, NSE, and ti the ith time step, i = 1, . . . , nt. In addition,

we analyze the NSE-log value computed on log-transformed discharges (NL) and the relative bias

between the simulated and the observed mean discharge.220

For hydrological regimes with a strong annual discharge cycle, the above NSE value is not very

meaningful since any model that reproduces the annual cycle more or less will have a high NSE

value (Schaefli and Gupta, 2007). We therefore compute the benchmark NSE value, N(Qb) for

a benchmark model which corresponds to the average of all observed discharges on a given time

step k of the year y (either a Julian day or an hour of a Julian day) (Schaefli and Gupta, 2007):

Qb(k) =

Y∑
y=1

Qo(ky), (32)

where ky is the kth time step of year y and Y the total number of years. For the observed discharge

of the Dischmabach, N(Qb) equals 0.74 at the daily time step and 0.73 at the hourly time step. For

NL(Qb) the values of the benchmark is 0.87 for the daily and the hourly time step.

Given the insignificant role of Horton direct runoff in this environment, this runoff mechanism is

deactivated here (assuming infinite infiltration capacity). For all other processes, the a priori param-225

eter ranges are obtained based on existing literature (see Table 2). The upper limit of the percolation

flux feeding the slow subsurface flux, Lmax, is chosen equal to the mean daily precipitation. The

upper limit of the average root zone depth is fixed to 1.5 m, which is a conservative estimate given

the type of vegetation present. The generic fast subsurface residence time, kcal, Eq. (27), is assumed

to be of the order of magnitude of days and the slow subsurface residence to be substantially longer230

(maximum scaling factor mk = 50).
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A similar scaling approach is also used to ensure that the degree-day factor for ice ai is higher

than the one for snow as and that the retention capacity sm is higher than the wilting point sw.

5 Results

For the Dischma catchment, a total of 12 model parameters have to be calibrated, seven for the wa-235

ter input-runoff transform and five for the glacier-and snowmelt simulation. Here, these calibration

parameters have been estimated through simple Monte Carlo simulation to illustrate the main fea-

tures of the SEHR-ECHO model. Figure 4 shows the discharge simulation along with the simulated

series of evapotranspiration and observed meteorological time series at the catchment outlet for the

best NSE parameter set obtained with 35 000 parameter sets sampled uniformly within the prior240

distributions of Table 2. With a NSE value of 0.82 during calibration, this parameter set performs

better than the benchmark model (Sect. 4). It furthermore gives reasonable estimates for evapo-

transpiration, which indicates that the observed precipitation time series is an acceptable proxy for

catchment-scale area-average precipitation input.

The splitting between the three hillslope scale runoff generation processes corresponds to the245

expected pattern: Fig. 5 illustrates that the slow subsurface component contributes essentially to base

flow and that the direct surface runoff is activated only occasionally. It is noteworthy, however, that

this pattern results partially from the imposed subsurface residence time scaling. (The corresponding

subcatchment scale state variables are given in Fig. 1 of the Supplement along with an example of

the simulated snowpack evolution, Fig. 2.)250

This parameter set comes along with a number of sets that lead to equally good discharge simula-

tions for the reference performance criteria for the calibration period. The plots of NSE vs. NSE-log

and of NSE vs. the relative bias (Fig. 6) illustrate that these performance criteria can be well opti-

mized simultaneously, which is not always the case for hydrological models. Such models typically

show a strong tradeoff between NSE and NSE-log because the same set of processes cannot repro-255

duce high flows and recessions. This problem is reduced in the analyzed hydrologic regime where

low flows are dominated by the long winter recession, relatively simple to simulate (see also the log

discharge plot in Fig. 4).

A notable aspect of this SEHR-Echo application is that a large number of the best performing

parameter sets at the daily time step perform equally well during the calibration period (1981–1992)260

and the validation period (1993–2000) and at the hourly time step (Fig. 6). This is also illustrated in

Fig. 7 that shows the ensemble of discharge simulations obtained for the 100 best daily parameter

sets (see Fig. 8) applied at the daily and the hourly simulation time step. The corresponding predic-

tion limits span the observed discharge equally well at both time steps. The simulation bias increases

however at the hourly time step (Table 3): this is most likely due to the assumption of a constant265

within-day relation between air temperature and snowmelt and refreezing and ice melt; the related
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parameters might require a specific calibration to the hourly time step or a more appropriate formu-

lation for the hourly time step (Tobin et al., 2013).

As comparable assessment of model performance at different time scales without re-calibration is

rarely reported in the literature. For an example, see the work of sch.270

The above evidence, time-scale independence and splitting between the runoff generation pro-

cesses, are important hints that the model works well for the right reasons: the parameters play the

role they have been designed for, rather than trying to mimic omitted runoff generation processes or

to compensate for the lack of spatial differentiation of travel times, which might typically occur for

lumped models.275

This conclusion is also supported by the good identifiability of some of the model key parameters,

illustrated by the relatively peaky distributions in Fig. 8, which shows histograms of the best 100

parameter sets (in terms of NSE) at the daily time step. Albeit not providing a formal assessment of

model and parameter uncertainty, this simple analysis illustrates that the model has a relatively well

defined range of optimal parameters, which might be further refined for real-world applications and280

specific questions (e.g. extreme event analysis). It is noteworthy, however, that a flat distribution

of the best performing parameter sets for a given specific parameter (e.g. here the wilting point)

does not point towards model insensitivity with respect to this parameter, since its relation to other

parameters might simply not be visible in the marginal distribution (Bardossy, 2007).

The question arises in as far the geomorphology-based set-up and the routing scheme influence285

the results. The model simulations are insensitive to hydrodynamic dispersion since its effect is over-

ruled by advection. Given the relatively short distances in this catchment (the longest travel paths

from a subcatchment to the outlet is 11 km), the velocity of in-stream discharge routing has only

a minor effect at the daily time scale and a notable influence of the velocity on the simulated dis-

charge would be obtained only with unrealistically low velocities (e.g. Yochum et al., 2012) (Fig. 9).290

For the hourly time step, any variation of flow velocity affects the discharge simulation and including

this parameter in the calibration process might be a possible option, keeping in mind, however, that

it might interact namely with the recession coefficients.

5.1 Comparison of the subcatchment set-up to elevation bands

Comparable precipitation–runoff models often either use a grid-based spatial discretization (e.g.295

Huss et al., 2008) or an elevation band approach (e.g. Schaefli et al., 2005; Stahl et al., 2008) to

account for temperature gradients as the strongest spatially-variable driver. Such an approach can

be assumed to yield a more reliable representation of the snow accumulation and melt processes

but it necessarily leads to a description of the equivalent precipitation–runoff transformation that

cannot properly account for the spatial origin of flow. We compared the performance of a model300

set-up where the catchment is subdivided into 10 elevation bands (Fig. 3) to the subcatchment based

set-up. A look on the model performance in terms of NSE and NSE-log for both set-ups (Fig. 10,
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top left) demonstrates that the elevation band approach marginally outperforms the subcatchment

approach for the calibration period at the daily time step. If the best 100 of these parameter sets (in

terms of NSE efficiency) are applied to the hourly time step (Fig. 10, top row, center column), the305

elevation band set-up does a noticeably better job. This higher performance however disappears for

the validation period (Fig. 10, top right), which is a strong hint of overfitting during the calibration

period, where the calibration parameters might compensate for the lack of a proper accounting for

the spatial origin of flows.

This hypothesis is supported by the fact that if we use subcatchments divided into elevation bands,310

we obtain a consistent improvement of the discharge simulation performance at the hourly time step

for the calibration and the validation period (Fig. 10, bottom row).

6 Conclusions

This paper presents a precipitation–runoff model that computes spatially-explicit water fluxes at the

ecosystem level and that can, thus, be used as a simulation tool for ecohydrologic applications requir-315

ing distributed discharge information. The model formulates the hydrologic response of a catchment

as a convolution of the subcatchment-scale hydrologic flow processes with the river network, where

the kernels account for the spatial arrangements of the subcatchments linked by the river network.

The hydrologic response accommodates directly any direct information on observable physiographic

catchment characteristics such as in-stream flow paths lengths or subcatchment area as a proxy for320

subsurface residence time scaling. Remaining model parameters are calibrated on observed dis-

charge. This spatially-explicit parameterization confers the model transferability across time-scales,

as has been demonstrated in this paper based on a cryosphere-dominated catchment from the Swiss

Alps where, due to the steep topography, travel times in unchanneled areas are dominating in-stream

travel times. The main focus of this paper was on discharge simulation. Including appropriate for-325

mulations of subcatchment-scale mass transformation processes, the general modelling framework

can be extended to transport processes.

7 Code availability

A fully annotated Matlab version of the model is available on http://www.mathworks.ch/matlabcentral/

fileexchange/, together with example data and a corresponding model set-up file to illustrate the330

model use. The model code is thus readily useable within the Matlab coding environment or with

compatible open source software.
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Table 1. Model parameters describing the physiographic catchment characteristics. The units are given in

generic terms (L: length, T: time).

Symbol Unit Meaning

Aγ L2 Source area size

n – Number of source areas

`γ L Path length

Hγ L a.s.l. Mean source area elevation

Table 2. Model parameters that have to be calibrated or estimated otherwise with indication of a priori values,

a reference value for parameters that are not calibrated here and key references for further details. A total of 12

parameters are calibrated here. The maximum value of the reservoir coefficient is the numerical time step.
Symbol Unit Min. Max. Ref. value Meaning Source

ρ mm 0 3 – Interception threshold (Gerrits et al., 2010)

Tr
◦C 0 6 1 Rain temperature threshold (Tobin et al., 2012)

as mm ◦C−1 d−1 1 6 – Degree-day fact. snow (Schaefli et al., 2005)

ai mm ◦C−1 d−1 4 12 – Degree-day fact. ice (Schaefli et al., 2005)

af – 0 1 0.2 Degree-day freezing fact. (Kokkonen and Norton, 2006)

θ – 0 0.1 0.05 Snow retention capacity (Dingman, 2002)

Gmax mmd−1 0 2 – Max. groundheat melt (Pomeroy et al., 1998; Dingman, 2002)

η – 0.3 0.55 0.4 Soil porosity (Dingman, 2002)

Zr mm 50 1500 – Root zone depth

Lmax mmh−1 0 0.15 – Max. deep leakage see Sect. 3

c – 3.3 30 – Clapp–Hornberger exponent (Clapp and Hornberger, 1978)

Ksat mmh−1 0.01 500 – Saturated hydraul. conductivity (Dingman, 2002)

sw – 0.1 0.4 – Wilting point (Dingman, 2002)

sm – 0.4 0.6 – Plant stress point (Dingman, 2002)

kslow h−1 1/(365 · 24) 1 – Slow subsurface flux coeff. see Sect. 3

kfast h−1 1/(10 · 24) 1 – Fas subsurface flux coeff. see Sect. 3

kice h−1 1/(15 · 24) 1 – Icemelt reservoir coeff. (Schaefli et al., 2005)

φ mmh−1 1 ∞ ∞ Max. soil infiltration capacity. see Sect. 4

ν ms−1 0.1 2 0.5 Water flow velocity (Comiti et al., 2007; Yochum et al., 2012)
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Table 3. The calibrated parameter values corresponding to the parameter set with the best NSE value at the daily

time step for the calibration period. The performance criteria values of this set are: NSE(day, calib) = 0.82,

NSElog(day, calib) = 0.85, bias(day, calib) = −0.03, NSE(day, valid) = 0.76, NSElog(day, valid) = 0.86,

bias(day, valid) = 0.05, NSE(hour, valid) = 0.78, NSElog(hour, valid) = 0.87, bias(hour, valid) = −0.12.

Symbol Unit Value

as mm ◦C−1 d−1 2.14

ai mm ◦C−1 d−1 6.22

Gmax mmd−1 0.18

Zr mm 184.75

Lmax mmh−1 0.12

c – 5.87

Ksat mmh−1 231.96

sw – 0.27

sm – 0.77

k−1
slow d 146.87

k−1
fast d 6.5

k−1
ice d 22.3
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Fig. 1. Flow diagram of the precipitation-discharge computation. The grey boxes highlight the model output

time series.
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Fig. 2. Sketch of the flow paths from a catchment with five source areasAj and three channelsCj . The notation

C∗
j means that the injection into this channel is not concentrated at the upstream end but, in theory, randomized

and integrated over the channel length (Bras and Rodriguez-Iturbe, 1985). In practice, we take half of the

channel length.
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Fig. 3. Location of the Dischmabach catchment within Switzerland (source: SwissTopo, 2008, 2005) and the

23 subcatchments identified with TauDEM Version 5 (Tarboton, 1997). The 10 elevation bands set-up in the

right plot is used for comparison purposes in Sect. 5.1. The latitude and longitude are indicated in the Swiss

coordinate system (in km).
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Fig. 4. Observed and simulated hydro-meteorological time series of model state variables for the parameter set

of Table 3.
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Fig. 5. Time series of the streamflow components (direct surface flow, fast subsurface flow and slow (deep)

subsurface flow) corresponding to the parameter set of Table 3 and the discharge plot of Fig. 4.
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Fig. 6. NSE vs. NSE-log for all simulated parameter sets during model calibration with daily time step (period

1981–1994), values for 100 parameter sets with best NSE values, values for the same parameter sets simulated

over validation period (1993–2003) and values for the same parameter sets simulated at hourly time step over

the validation period. The lines indicate the benchmark values for daily and hourly (broken line) time steps.
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Fig. 7. Predictions resulting from the 100 best parameter sets obtained under NSE for a daily time step (of

the total 35 000 Monte Carlo simulations); top: simulation at the daily time step, bottom: simulation at the

hourly time step (same parameter sets). The 1st half of the plot shows that the prediction limits are reasonably

narrow, the reserved plotting order in the 2nd half shows that the observations are well spanned (79 % (daily)

respectively 75 % (hourly) of the observed time steps fall into the range spanned by the simulations).
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Fig. 8. Parameter distributions obtained for the best 100 parameter sets under NSE at a daily time step. The

y-axis shows the relative frequency of parameter values in each bin. sm, kslow respectively ai result from a mul-

tiplication of sw, kfast respectively as with the distribution of the corresponding calibrated scaling parameters.
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Fig. 9. Sensitivity of the discharge simulation with respect to the in-stream flow velocity plotted against the

reference simulation with parameters of Table 3 and velocity of 0.5ms−1; the sensitivity is expressed as the

relative difference to the reference simulation for each time step.
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Fig. 10. Comparison of model performance of the subcatchment-based model set-up (23 subcatchments) to

elevation band set-ups. Top row: comparison to 10 elevation bands (see Fig. 3), bottom row: comparison to

a combination of elevation bands and subcatchments (5 bands for each of the 23 subcatchments). Left column:

distribution of the Nash–Sutcliffe (NSE) efficiency computed at a daily time step for the calibration period

(shown are parameter sets with NSE > 0); center column: NSE distribution of the 100 sets with the highest

NSE values at the daily time step run at hourly time step for the calibration period; right column: same 100 sets

run at an hourly time step for the validation period. The same 35 000 parameter sets are run for all three model

set-ups.
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