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Abstract

A linear non-iterative algorithm is suggested for solving nonlinear isothermal steady-
state Morland–MacAyeal ice shelf equations. The idea of the algorithm is in replacing
the problem of solving the non-linear second order differential equations for veloci-
ties with a system of linear first order differential equations for stresses. The resulting5

system of linear equations can be solved numerically with direct methods which are
faster than iterative methods for solving corresponding non-linear equations. The sug-
gested algorithm is applicable if the boundary conditions for stresses can be specified.
The efficiency of the linear algorithm is demonstrated for one-dimensional and two-
dimensional ice shelf equations by comparing the linear algorithm and the traditional10

iterative algorithm on derived manufactured solutions. The linear algorithm is shown to
be as accurate as the traditional iterative algorithm but significantly faster. The method
may be valuable as the way to increase the efficiency of complex ice sheet models
a part of which requires solving the ice shelf model as well as to solve efficiently two-
dimensional ice-shelf equations.15

1 Introduction

Most large-scale ice sheet models based either on shallow-ice approximation or shal-
low shelf approximation of the ice momentum equation (Gagliardini and Zwinger, 2008;
Rutt et al., 2009; Larour et al., 2012; Winkelmann et al., 2011; Lipscomb et al., 2009).
Derivation of the ice shelf model, called Morland–MacAyeal (MM) ice shelf model, can20

be found, for example, in Morland (1987) or MacAyeal (1989). The isothermal Morland–
MacAyeal ice shelf model is a system of non-linear partial differential equations. Be-
cause of their non-linearity, the modelers use iterative methods to solve the equations
numerically. In this work, we present a linear non-iterative algorithm for the MM ice
shelf equations. The idea of the algorithm is to replace the problem of solving the25

non-linear second order differential equations for velocities with a system of linear first
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order differential equations for stresses. The system of linear differential equations can
be solved numerically with direct methods which are significantly faster than iterative
methods for non-linear equations. The assumption of availability of boundary condi-
tions for stresses – the assumption that they are known or can be supplied from other
sources – is a limitation of this model.5

To illustrate the algorithm, we present its application for solving one-dimensional and
two-dimensional ice-shelf models. The accuracy and the speed of the algorithm is ex-
amined on manufactured analytical solutions of the models. Following Bueler et al.
(2005, 2007) and Sargent and Fastook (2010), the analytical solutions are built by con-
structing a solution and then modifying the right hand side functions of the equations10

to satisfy the constructed solution.
The paper is organized as follows. In Sect. 2, we present the linear algorithm for

solving the one-dimensional (1-D) MM model and test its accuracy and efficiency on
a constructed manufactured solution. In Sect. 3, we present the linear algorithm for
solving the two-dimensional (2-D) MM model and test its accuracy and efficiency on15

a corresponding constructed solution. In both 1-D and 2-D cases, we compare the di-
rect method of solving the MM model with a traditional iterative method. In 2-D case,
we abstract the effect of the boundary conditions on the method efficiency by consider-
ing Dirichlet boundary conditions. In Sect. 3, we provide some concluding remarks. In
the appendices we give the formulas that can be used to calculate the right hand side20

functions of the 2-D equations that satisfy the manufactured solutions and the descrip-
tion of Fast Fourier Transformation method used to solve equations generated by the
2-D direct method. Finally, supplements to the manuscript contain Fortran 77 code to
solve 1-D and 2-D ice shelf equations with the linear and traditional iterative methods.
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2 Linear algorithm for solving one-dimensional steady-state ice shelf equation

2.1 One-dimensional steady-state ice shelf momentum equation

We consider the following one-dimensional steady-state flowline ice-shelf model with
Dirichlet boundary conditions at the upstream of the shelf and the Newman boundary
condition at the calving front of the shelf:5

∂
∂x̃

(
2µ̃h̃

∂ũ
∂x̃

)
= ρgh̃

∂s̃
∂x̃

, 0 ≤ x̃ ≤ L,

ũ = U , at x̃ = 0,

4µ̃h̃
∂ũ
∂x̃

=
ρgh̃2

2

(
1− ρ

ρw

)
, at x̃ = L,

(1)

where x̃ is x coordinate, ũ is velocity, h̃ is ice thickness, s̃ is ice surface, ρ, ρw, g, B are
ice and water density, the gravitational constant, and ice stiffness parameter, and µ̃ is
the effective viscosity defined as10

µ̃ = B
∣∣∣∣∂ũ∂x̃

∣∣∣∣ 1−n
n

. (2)

Following MacAyeal (1997), we non dimensionalize these equations using the fol-
lowing typical values: Z – the mean thickness of the ice-shelf, L – the length of the
ice-shelf, U – the typical velocity of the ice-shelf, and the following non-dimensional15

variables (variables without tilde):

s̃ = Zs, h̃ = Zh, x̃ = Lx, ũ = Uu, µ̃ = B
(
U
L

) 1−n
n

µ

The scale factors L, U and Z are chosen to satisfy the relationship:

2B
(
U
L

) 1
n

= ρgZ .
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Then, the nondimensional ice-shelf equation and boundary conditions are written as:

∂
∂x

(
µh

∂u
∂x

)
= h

∂s
∂x

, 0 ≤ x ≤ 1, (3)

u = 1, at x = 0, (4)

µh
∂u
∂x

=
1
4

(
1− ρ

ρw

)
h2, at x = 1. (5)

5

where the non-dimensional effective viscosity is µ =
∣∣∂u
∂x

∣∣ 1−n
n .

2.2 Linear algorithm

Equations (3)–(5) are non-linear equations and solved using iterative methods. To con-
struct a linear non-iterative algorithm, we introduce a new variable τ, which we call
a stress variable:10

τ = µh
∂u
∂x

= h
(
∂u
∂x

) 1
n

. (6)

Then Eqs. (3) and (5) in terms of the new variable τ are written as:

∂τ
∂x

= h
∂s
∂x

, 0 ≤ x ≤ 1,

τ =
1
4

(
1− ρ

ρw

)
h2, at x = 1.

(7)

15

Variable τ can be found by solving linear Eq. (7). After τ is found, velocity u can be
found solving the linear Eq. (6) with the boundary condition at the upstream (4):

∂u
∂x

=
( τ
h

)n
, 0 ≤ x ≤ 1,

u = 1, at x = 0.
(8)
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Thus, instead of solving a non-linear Eq. (3), this algorithm consists of solving two
linear first order differential Eqs. (7) and (8).

2.3 Manufactured solution

To check the applicability and the efficiency of the method, we generate a manufactured5

analytical solution of Eqs. (3)–(5) with modified right-hand side:

∂
∂x

(
µh

∂u
∂x

)
= h

∂s
∂x

+ f1(x), 0 ≤ x ≤ 1, (9)

u = 1, at x = 0, (10)

µh
∂u
∂x

=
1
4

(
1− ρ

ρw

)
h2 + f2(x), at x = 1. (11)

10

where functions f1(x) and f2(x) are defined by substituting the desired solution into
Eqs. (9) and (11).

The modified equations for new variable τ, corresponding to Eqs. (9)–(11), are

∂τ
∂x

= h
∂s
∂x

+ f1, 0 ≤ x ≤ 1,

τ =
1
4

(
1− ρ

ρw

)
h2 + f2, at x = 1.

(12)

15

To generate a particular solution, assume a flow with a linear sloping surface with
a mean slope α and a sinusoidal bed with frequency ω:

s(x) = −δx · tan(α), b(x) = s(x)−1+ab sin2(ωx). (13)

These surface and bed generate thinning ice thickness:20

h(x) = s(x)−b(x) = 1−ab sin2(ωx). (14)
1834
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To satisfy the mass conservation equation, we construct ice velocity for a given ice
thickness and a bed profile as follows:

u(x) =
cx

h(x)
. (15)

5

When the parameter cx = 1, constructed velocity function (15) satisfies boundary con-
dition (10).

For calculation of the right-hand side functions in Eqs. (9) and (11), we need velocity
and ice thickness derivatives:

∂h
∂x

= −abωsin(2ωx),
∂2h
∂x2

= −2abω
2 cos(2ωx),

∂u
∂x

= −cx

∂h
∂x

h2
,

∂2u
∂x2

=
cx

h2

[
2
h

(
∂h
∂x

)2

− ∂2h
∂x2

]
.

10

Then the right-hand sides of the modified Eqs. (9)–(11) are calculated as follows:

f1 = µ

[
h
n
∂2u
∂x2

+
∂h
∂x

∂u
∂x

]
−h

∂s
∂x

, f2 = µh
∂u
∂x

− 1
4

(
1− ρ

ρw

)
h2. (16)

2.4 Solving one-dimensional ice-shelf equation with linear algorithm15

We used the finite difference method to solve the ice-shelf equations with the new
algorithm. All variables and parameters are one-dimensional arrays. We use an even
staggered grid with step ∆x. Velocity u and ice-thickness h are defined at the nodes of
the grid and new variable τ is defined at the centroids of the grid as shown in Fig. 1 (left
grid). To define the boundary condition at the right-hand side of the grid for τ, assume20

that the last value of τ is defined at the node x = 1.

1835
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To calculate τ, we approximate Eq. (7) with the second order scheme as follows:

τN =
1
4

(
1− ρ

ρw

)
(hN )2 + (f2)N ,

τN − τN−1

(∆x)/2
=
(

3
4
hN +

1
4
hN−1

)
5sN −6sN−1 + sN−2

4∆x
+
(

3
4

(f1)N +
1
4

(f1)N−1

)
,

τi − τi−1

∆x
= hi

si+1 − si−1

2∆x
+ f1i i = N −1,N −2, . . . ,2.

(17)

After finding τ, velocity u is found by approximating Eq. (8):

u1 = 1, (18)5

ui+1 −ui

∆x
=

 τi
hi+1+hi

2

n

i = 1,2, . . . ,N −1.

2.5 Solving one-dimensional ice-shelf equation with traditional iterative method

To compare the new algorithm with the traditional iterative algorithm, we approximated
Eqs. (9)–(11) with traditional three-point finite difference scheme:10

1
∆x

[
µ(ui+1/2)hi+1/2

ui+1 −ui

∆x
−µ(ui−1/2)hi−1/2

ui −ui−1

∆x

]
= hi

si+1 − si−1

2∆x
+ f1i , i = 2,3, . . . ,N −1,

u1 = 1, (19)

µ(uN−1/2)hN−1/2

uN −uN−1

∆x
=

1
4

(
1− ρ

ρw

)
h2
N−1/2

+ (f2)N−1/2.
15
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Equation (19) is solved iteratively using values of uk at the previous iterations k to
estimate values of µ(u) at iteration k +1:

1
∆x

[
µ
(
uk
i+1/2

)
hi+1/2

uk+1
i+1 −uk+1

i

∆x
−µ
(
uk
i−1/2

)
hi−1/2

uk+1
i −uk+1

i−1

∆x

]
= hi

si+1 − si−1

2∆x
+ f1i , i = 2,3, . . . ,N −1,

uk+1
1 = 1, (20)5

µ
(
uk
N−1/2

)
hN−1/2

uk+1
N −uk+1

N−1

∆x
=

1
4

(
1− ρ

ρw

)
h2
N−1/2

+ (f2)N−1/2.

At each iteration, Eq. (20) is solved using a direct method for solving a system with
a three-diagonal matrix.

We stopped iterations when the error, calculated as ‖ek+1‖2
L2

=10

1
N

∑
i=1,N

(
uk+1
i −uk

i

)2
, started increasing.

2.6 Comparing the direct and iterative algorithms for one-dimensional ice-shelf
problem

We test the performance of the direct and iterative algorithms using the constructed
manufactured solution with the following ice constants: ice density ρ = 910kgm−1,15

gravitational constant g = 9.81ms−2, exponent in Glen’s flow law n = 3 and the follow-
ing parameters: the scale parameter δ = L

Z = 80000
1000 , basal bumps frequency ω = π/2,

the surface incline angle α = 0.1◦, the velocity parameter cx = 1, and the amplitude of
the bed undulation ab = 0.5.

Six sets of uniform grids with 100, 1000, 10000, 100000, 1000000, and 1000000020

nodes were used. The ice bed and surface profiles, analytical solutions (velocity and

1837
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stress) and solutions calculated by iterative and direct methods for the grid with 100
nodes are shown in Fig. 2.

Table 1 and Fig. 3 show time it took for the methods to solve the equation, the number
of iterations for the iterative method, the error in calculation of velocity (u) and stress (τ),
and the rate of convergence. The error measure is the L2 norm of the solution absolute5

error. The convergence rates are calculated between consecutive pairs of grids as

log10

(
ei−1
ei

)
, where ei−1,ei are the errors on a series of uniformly refined grids.

The rates of convergence are about 2 for the velocity and about 0.83 for the stress.
The error of the iterative method stops declining after the number of grid nodes reaches
1000000. We believe that it is due accumulation of rounding errors. For the grids with10

number of nodes up to 10000, the accuracy of calculations of both velocity and stress is
about the same for the traditional iterative method and newly proposed linear method.
For more refined grids, the accuracy of the iterative method declines while the direct
method continues to converge with the same rate as before. The linear method is about
hundred (100) times faster than the iterative method.15

3 Non-iterative linear algorithm for solving two-dimensional Morland–MacAyeal
ice shelf equations

3.1 Two-dimensional Morland–MacAyeal ice shelf equations

The steady-state MM diagnostic equations (the x̃- and ỹ-components) in terms of
depth-averaged horizontal velocities are written as follows:20

∂
∂x̃

(
2µ̃h̃

(
2
∂ũ
∂x̃

+
∂ṽ
∂ỹ

))
+

∂
∂ỹ

(
µ̃h̃
(
∂ũ
∂ỹ

+
∂ṽ
∂x̃

))
= ρgh̃

∂s̃
∂x̃

+ ˜fbx,

∂
∂ỹ

(
2µ̃h̃

(
2
∂ṽ
∂ỹ

+
∂ũ
∂x̃

))
+

∂
∂x̃

(
µ̃h̃
(
∂ũ
∂ỹ

+
∂ṽ
∂x̃

))
= ρgh̃

∂s̃
∂ỹ

+ ˜fby , (21)

1838

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1829/2014/gmdd-7-1829-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1829/2014/gmdd-7-1829-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1829–1864, 2014

A linear algorithm for
solving ice shelf

equations

A. Sargent and
J. L. Fastook

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where ˜fbx and ˜fby are terms approximating the basal drag in the case of the ice stream
flow, and µ̃ is the depth-averaged effective viscosity:

µ̃ =
B
2

[(
∂ũ
∂x̃

)2

+
(
∂ṽ
∂ỹ

)2

+
1
4

(
∂ũ
∂ỹ

+
∂ṽ
∂x̃

)2

+
∂ũ
∂x̃

∂ṽ
∂ỹ

] 1−n
2n

. (22)

Two types of boundary conditions can be specified along the edge of the do-5

main, Dirichlet and Neumann. Dirichlet boundary conditions, specification of the depth-
averaged velocity, are applied at zero slip coast-lines or where ice streams flow into the
ice shelf or at stagnant ice-shelf boundaries. Neumann boundary conditions are speci-
fied at the seaward, iceberg-caving front. The depth-integrated balance of forces at the
ice front is formulated as a balance of the depth-integrated force transmitted across10

the ice front due to internal stresses and the integral of the hydrostatic pressure in the
seawater beyond the ice front over the face of the ice front.

In the cases when the ice front extends along the ỹ- and x̃-axes, that is, when n =
nx̃ and n = nỹ consequently, these boundary conditions can be written as (MacAyeal,
1997):15

n = nx̃ : 2µ̃h̃
(

2
∂ũ
∂x̃

+
∂ṽ
∂ỹ

)
=

ρgh̃2

2

(
1− ρ

ρw

)
,

n = nỹ : 2µ̃h̃
(
∂ũ
∂x̃

+2
∂ṽ
∂ỹ

)
=

ρgh̃2

2

(
1− ρ

ρw

)
.

(23)

To non-dimensionalize variables, we choose the following typical values: Z – the
mean thickness of the ice-sheet, L – the length of ice-sheet, U – a typical velocity in the
horizontal direction, and introduce the following non-dimensional variables (variables20

without tilde):

s̃ = Zs, b̃ = Zb, x̃ = Lx, ỹ = Ly , ũ = Uu, ṽ = Uv , µ̃ =
B
2

(
U
L

) 1−n
n

µ
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and require that scale factors L, U and Z satisfy the relationship:

B
2

(
U
L

) 1
n

= ρgZ .

Then the nondimensional momentum equation is written as:

∂
∂x

(
2µh

(
2
∂u
∂x

+
∂v
∂y

))
+

∂
∂y

(
µh
(
∂u
∂y

+
∂v
∂x

))
= h

∂s
∂x

+ fbx, (24)

∂
∂y

(
2µh

(
2
∂v
∂y

+
∂u
∂x

))
+

∂
∂x

(
µh
(
∂u
∂y

+
∂v
∂x

))
= h

∂s
∂y

+ fby ,5

where fbx and fby are non-dimensional terms approximating the basal drag in the case
of the ice stream flow, and the non-dimensional depth-averaged effective viscosity µ is:

µ =

[(
∂u
∂x

)2

+
(
∂v
∂y

)2

+
1
4

(
∂u
∂y

+
∂v
∂x

)2

+
∂u
∂x

∂v
∂y

] 1−n
2n

. (25)
10

Newman boundary conditions in non-dimensional variables become:

n = nx :µh
(

2
∂u
∂x

+
∂v
∂y

)
=

1
4

(
1− ρ

ρw

)
h2,

n = ny :µh
(
∂u
∂x

+2
∂v
∂y

)
=

1
4

(
1− ρ

ρw

)
h2.

(26)

3.2 Linear algorithm

Non-linear Eq. (24) is solved using iterative methods. To construct a non-iterative algo-15

rithm, we introduce new variables (we will call them stresses):

τx = 2µh
∂u
∂x

, (27)
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τy = µh
(
∂u
∂y

+
∂v
∂x

)
. (28)

In terms of the new variables Morland–MacAyeal diagnostic Eqs. (24), after using
incompressibility condition ∂u

∂x + ∂v
∂y = 0, are:

∂τx
∂x

+
∂τy
∂y

= h
∂zs
∂x

+ fbx, (29)5

∂τy
∂x

−
∂τx
∂y

= h
∂zs
∂y

+ fby , (30)

And the Newmann boundary conditions along the iceberg-calving front are:

n = nx : τx =
1
8

(
1− ρ

ρw

)
h2,

n = ny : τx = −1
8

(
1− ρ

ρw

)
h2.

(31)

10

Since Eqs. (29)–(30) is a system of equations with two variables τx and τy , in addition
to boundary conditions (31) for τx, we have to specify boundary conditions for variable
τy as well. The linear algorithm requires additional boundary conditions for stresses.

Variables τx and τy can be found by solving linear Eqs. (29)–(30) with boundary
conditions (31) and some additional boundary conditions for τy . After τx and τy are15

found, velocity u and v can be found from linear Eqs. (27)–(28) which can be re-written
as

2h

[(
∂u
∂x

)2

+
1
4

(
∂u
∂y

+
∂v
∂x

)2
] 1−n

2n ∂u
∂x

= τx, (32)

h

[(
∂u
∂x

)2

+
1
4

(
∂u
∂y

+
∂v
∂x

)2
] 1−n

2n (∂u
∂y

+
∂v
∂x

)
= τy . (33)
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In the equations above we used the incompressibility condition ∂u
∂x +

∂v
∂y = 0 in the effec-

tive viscosity expression.
After simplifying Eqs. (32) and (33) by dividing them by 2h and h respectively and

taking power of 2n
1−n , we receive the following equations for velocities:5 [(

∂u
∂x

)2

+
1
4

(
∂u
∂y

+
∂v
∂x

)2
](

∂u
∂x

) 2n
1−n

=
(
τx
2h

) 2n
1−n

, (34)[(
∂u
∂x

)2

+
1
4

(
∂u
∂y

+
∂v
∂x

)2
](

∂u
∂y

+
∂v
∂x

) 2n
1−n

=
(τy
h

) 2n
1−n

. (35)

with boundary condition at the frozen bed:

u = U , v = V . (36)10

To simplify Eqs. (34) and (35), we introduce new variables:

α =
(
∂u
∂x

)2

, (37)

β =
(
∂u
∂y

+
∂v
∂x

)2

. (38)
15

Then, Eqs. (34) and (35) in terms of the variables α and β are written as:[
α+

1
4
β
]
α

n
1−n =

(
τx
2h

) 2n
1−n

, (39)[
α+

1
4
β
]
β

n
1−n =

(τy
h

) 2n
1−n

. (40)
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By dividing Eq. (39) by Eq. (40), we get that(
α
β

) n
1−n

=
(

τx
2τy

) 2n
1−n

, (41)

or

α = β
(

τx
2τy

)2

. (42)5

Substituting expression for α from Eq. (42) to (40), we get an equation[(
τx
2τy

)2

+
1
4

]
β

1
1−n =

(τy
h

) 2n
1−n

. (43)

From Eqs. (43) and (42), we get expressions for β and α:10

β =

(
τy
h

)2n

[(
τx
2τy

)2
+ 1

4

]1−n
, (44)

α =

(
τy
h

)2n( τx
2τy

)2

[(
τx
2τy

)2
+ 1

4

]1−n
. (45)

Finally, using Eqs. (37) and (38), we get equations for velocities u and v :

∂u
∂x

=
√
α =

(
τy
h

)n τx
2τy[(

τx
2τy

)2
+ 1

4

] 1−n
2

=
τx
2h

[(
τx
2h

)2

+
( τy

2h

)2
] n−1

2

, (46)15
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∂u
∂y

+
∂v
∂x

=
√
β =

(
τy
h

)n
[(

τx
2τy

)2
+ 1

4

] 1−n
2

=
τy
h

[(
τx
2h

)2

+
( τy

2h

)2
] n−1

2

. (47)

Thus, instead of solving non-linear Eq. (24), this algorithm consists of solving two
systems of first order linear differential equations: Eqs. (29) and (30) for stresses and
Eqs. (46) and (47) for velocities.5

3.3 Manufactured solution

To generate a manufactured solution, assume a flow with linearly sloping down in x
direction ice surface and symmetric in y direction bed and velocity functions:

u(x,y) = U0 cos(wxx)sin(wyy),

v(x,y) = −U0
wx

wy
sin(wxx)cos(wyy),

h(x,y) = k1 cos2(wxx)cos2(wyy)+k2,

s(x,y) = −δ tan(α)x, b(x,y) = s(x,y)−h(x,y),

(48)

10

where

wx =
π
3

, wy = π, k1 = 1, k2 = 1, δ =
L
Z

= 200, α = 0.1, (49)

U0 = 1, L = 200000 [m], Z = 1000 [m], U = 500
[m

a

]
.

Functions u(x,y), v(x,y) and h(x,y) chosen as (48) to satisfy the incompressibility15

conditions and the conservation of mass for the steady-state flow:

∂u
∂x

+
∂v
∂y

= 0,
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u
∂h
∂x

+ v
∂h
∂y

= 0.

Figure 4 presents the surface, bed, and ice thickness of the generated solution,
Fig. 5 presents the x- and y-component of velocity, and Fig. 6 presents τx = 2µh∂u

∂x

and τy = µh
(
∂u
∂y +

∂v
∂x

)
components of the manufactured solution defined by Eq. (48).5

Calculation of the right-hand side functions in Morland–MacAyeal equations for the
manufactured analytical solutions are given in Appendix A.

3.4 Solving two-dimensional ice-shelf equations with linear algorithm

To implement the linear algorithm, we use the finite difference method. On the rectan-
gular domain an uniform grid with steps ∆x and ∆y is constructed. Velocities u and10

v , ice-thickness h, ice surface s and ice bed b are defined at the nodes of the grid,
while ice-stress variables τx and τy are defined at the centers of the cells of the grid as
shown in Fig. 1 (right).

First we used the 1st order scheme for the system of linear first order differential
Eqs. (29) and (30). This scheme was unstable – the roundoff error grew fast. The chal-15

lenge in developing numerical schemes for solving systems of hyperbolic partial dif-
ferential equations resides in approximating smooth solution regions with high spatial
accuracy while capturing discontinuities as sharply as possible without any oscillations.
In the last couple of decades important advances have been made in this area with the
introduction of finite-volume high-resolution upwind methods. However, in this paper,20

we decided to replace solving a system of hyperbolic differential equations with solving
the Poisson equation with linear coefficients. Thus, we replace the problem of solving
Eqs. (29) and (30) with a problem of solving two Poisson equations for τx and τy gen-
erated from (29) and (30). To generate an equation for τx, we differentiate Eq. (29) by
x and Eq. (30) by y , and subtract the second equation from the first one. To generate25

an equation for τy , we differentiate Eq. (29) by y and Eq. (30) by x, and add these
two equations. The result will be the following two Poisson equations with constant

1845
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coefficients:

∂2τx
∂x2

+
∂2τx
∂y2

=
∂
∂x

(
h
∂s
∂x

+ fbx

)
− ∂
∂y

(
h
∂s
∂y

+ fby

)
, (50)

∂2τy
∂x2

+
∂τy
∂y2

=
∂
∂y

(
h
∂s
∂x

+ fbx

)
+

∂
∂x

(
h
∂s
∂y

+ fby

)
. (51)

Finding an unique solution of Poisson equation requires more than two sets of bound-5

ary conditions. Therefore, we assume that the values of τx and τy are defined along
the whole border of the domain:

τx(0,y) = τlx(y), τx(1,y) = τrx(y), for 0 ≤ y ≤ 1,

τy (0,y) = τly (y), τy (1,y) = τry (y), for 0 ≤ y ≤ 1,

τx(x,o) = τbx(x), τx(x,1) = τtx(x), for 0 ≤ x ≤ 1,10

τy (x,o) = τby (x), τy (x,1) = τty (x), for 0 ≤ x ≤ 1.

Equations (50) and (51) can be approximated with the second order scheme as
follows:

∇2τxi ,j = νyδx

[
hδ̄xs+ f bx

]
i ,j

− νxδy

[
hδ̄ys+ f by

]
i ,j

, (52)15

∇2τyi ,j = νyδy

[
hδ̄xs+ f bx

]
i ,j

+ νxδx

[
hδ̄ys+ f by

]
i ,j

, (53)

where, following (Tannehill et al., 1997), we used the central-difference operators ∇2,
δ, δ̄ and an averaging operator ν defined as:

∇2fi ,j =
fi+1,j −2fi ,j + fi−1,j

(∆x)2
+
fi ,j+1 −2fi ,j + fi ,j−1

(∆y)2
,20
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δxfi ,j =
fi+1/2,j − fi−1/2,j

∆x
, δ̄xfi ,j =

fi+1,j − fi−1,j

2∆x
,

νxfi ,j =
fi+1/2,j + fi−1/2,j

2
, νy fi ,j =

fi ,j+1/2 + fi ,j−1/2

2
.

Equations (50) and (51) can be approximated with the second order scheme as
follows:5

τxi+1,j −2τxi ,j + τxi−1,j

(∆x)2
+
τxi ,j+1 −2τxi ,j + τxi ,j−1

(∆y)2
= (54)

1
∆x

[
hi+1,j+1/2

si+2,j+1/2 − si+1,j+1/2

2∆x
−hi ,j+1/2

si+1,j+1/2 − si−1,j+1/2

2∆x
+ f bx

i+1,j+1/2
− f bx

i ,j+1/2

]
− 1
∆y

[
hi+1/2,j+1

si+1/2,j+2 − si+1/2,j

2∆y
−hi ,j+1/2

si+1/2,j+1 − si+1/2,j−1

2∆y
+ f by

i+1/2,j+1
− f by

i+1/2,j

]
,

τyi+1,j −2τyi ,j + τyi−1,j

(∆x)2
+
τyi ,j+1 −2τyi ,j + τyi ,j−1

(∆y)2
= (55)

1
∆y

[
hi+1/2,j+1

si+1,j+1 − si ,j+1

∆x
−hi+1/2,j

si+1,j − si ,j
∆x

+ f bx
i+1/2,j+1

− f bx
i+1/2,j

]
,10

+
1
∆x

[
hi+1,j+1/2

si+1,j+1 − si+1,j

∆y
−hi ,j+1/2

si ,j+1 − si ,j
∆y

+ f by
i+1,j+1/2

− f by
i ,j+1/2

]
.

Equations (54) and (55) are Poisson equations with sparse block tridiagonal ma-
trix with constant coefficients. There are many methods, such as cyclic reduction,
Direct block factorization, Buneman, or fast Fourier transformation method, to opti-15

mally solve this linear system. In this work, we use Fast Fourier Transformation (FFT)
method (Swarztrauber and Sweet, 1996). FFT method is accurate to roundoff errors,
could be used with Dirichlet or Newmann boundary conditions, however, it can be used
only on rectangular domains. Description of the FFT method is given in Appendix B.
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After finding τxi ,j and τyi ,j , velocity u and v can be found by solving the system of linear
first order differential Eqs. (46) and (47) as:
ui+1,j −ui ,j

∆x
= 0.5

(
F x
i ,j + F x

i ,j−1

)
, (56)

vi+1,j−vi ,j
∆x

+0.5
[
δ̄yui ,j + δ̄yui+1,j

]
=0.5

(
F y
i ,j+F y

i ,j−1

)
, (57)

5

where F x and F y in Eqs. (56) and (57) are the approximations of the right-hand side
functions in Eqs. (46) and (47). In the following calculations, we assumed that Dirichlet
boundary conditions are specified at the left and bottom boundaries:

u1,j = uex, ui ,1 = uex, (58)

v1,j = vex, vi ,1 = vex. (59)10

3.5 Solving two-dimensional ice-shelf equations with traditional iterative
method

To compare the new algorithm with the traditional iterative algorithm, we approximated
Eq. (24) with traditional five-point finite difference equations of the form A(x)x = b. To15

solve these non-linear equations, we used Gauss–Zeidel iterative method.
The Gauss–Zeidel method for solving the system A(x)x = b can be expressed as

Lx(k+1) +Dx(k+1) +Ux(k) = b,or

x(k+1) = (L+D)−1
(
−Ux(k) +b

)
,

20

where D, L, and U represent the diagonal, lower-triangular, and upper-triangular parts
of A, respectively.

As a stopping criteria, we use

‖r (k)‖∞ ≤ ε‖b‖∞,

where r (k) is the vector of residuals r (k) = Ax(k) −b and the norm ‖b‖∞ = max
1≤i≤N

|bi |.25
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3.6 Comparing the direct and iterative algorithms for two- dimensional ice-shelf
problem

We tested the performance of the direct and iterative algorithms on the manufactured
analytical solution on the sets of grids with 100×100, 200×200, and 400×400 nodes.
The differences between the approximate solutions and analytical solutions were mea-5

sured using L2-norm: ‖u‖2
L2

= 1
Nx×Ny

∑(
ui ,j −uexact

i ,j

)2
.

Table 2 shows time it took for the method to solve the problem or to converge to
the required accuracy, number of iterations for the iterative method, and the errors in
calculation of the components of velocity (u and v) and stress (τx and τy ).

As the table shows, for all three grids both the direct method and the traditional non-10

linear iterative method produce about the same accuracy results. The convergence

rates, calculated between consecutive pairs of grids as log4

(
ei−1
ei

)
, where ei−1,ei are

the errors on a series of uniformly refined grids, are about 0.60−0.68 for both direct
and iterative methods. However, the direct method is more than thousand times faster
than the iterative method.15

4 Conclusions

In this work, we offer a linear non-iterative algorithm for solving ice-shelf equations. The
applicability of the algorithm is demonstrated for one-dimensional and two-dimensional
ice shelf equations through comparison of outputs to the manufactured analytical solu-
tions of the equations. The efficiency of the linear algorithm is demonstrated by com-20

paring the linear algorithm with the traditional non-linear iterative algorithm for derived
manufactured solutions. The linear algorithm is shown to be as accurate as the tradi-
tional iterative algorithm but significantly faster. The assumption of availability of bound-
ary conditions for stresses, the assumption that they are known or can be supplied from
other sources, is a limitation of the method. The method may be valuable as the way25
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to increase the efficiency of complex ice sheet models a part of which requires solving
the ice shelf models as well as to solve efficiently two-dimensional ice-shelf equations.

Appendix A

Calculation of the right-hand side functions of 2-D Morland–Mac- Ayeal equa-
tions corresponding to the manufactured analytical solution5

For calculation of the right-hand side functions in MM equations, we need the deriva-
tives of velocity and ice thickness:

∂u
∂x

= −U0wx sin(wxx)sin(wyy),
∂2u
∂x2

= −w2
xu, (A1)

∂u
∂y

= U0wy cos(wxx)cos(wyy),
∂2u
∂y2

= −w2
yu,

∂2u
∂x∂y

= −U0wxwy sin(wxx)cos(wyy),10

∂v
∂x

= −U0
w2
x

wy
cos(wxx)cos(wyy),

∂2v
∂x2

= −w2
xv ,

∂v
∂y

= U0wx sin(wxx)sin(wyy),
∂2v
∂y2

= −w2
y v ,

∂2v
∂x∂y

= U0w
2
x cos(wxx)sin(wyy),

∂zs
∂x

= −δ tan(α),
∂zs
∂y

= 0,

∂h
∂x

= −k1wx sin(2wxx)cos2(wyy),
∂h
∂y

= −k1wy cos2(wxx)sin(2wyy),15
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∂2h
∂x2

= −2k1w
2
x cos(2wxx)cos2(wyy),

∂2h
∂y2

= −2k1w
2
y cos2(wxx)cos(2wyy),

∂2h
∂x∂y

= k1wxwy sin(2wxx)sin(2wyy).

Calculation of the right-hand-side functions requires calculation of the derivatives of the
effective viscosity:5

∂µ
∂x

= µ
1−n
2n

∂2u
∂x2

(
2∂u
∂x + ∂v

∂y

)
+ ∂2v

∂x∂y

(
2∂v
∂y +

∂u
∂x

)
+ 1

2

(
∂2u
∂x∂y +

∂2v
∂x2

)(
∂u
∂y +

∂v
∂x

)
(∂u
∂x

)2
+
(
∂v
∂y

)2
+ 1

4

(
∂u
∂y +

∂v
∂x

)2
+ ∂u

∂x
∂v
∂y

,

∂µ
∂y

= µ
1−n
2n

∂2v
∂y2

(
2∂v
∂y +

∂u
∂x

)
+ ∂2u

∂x∂y

(
2∂u
∂x + ∂v

∂y

)
+ 1

2

(
∂2v
∂x∂y +

∂2u
∂y2

)(
∂u
∂y +

∂v
∂x

)
(∂u
∂x

)2
+
(
∂v
∂y

)2
+ 1

4

(
∂u
∂y +

∂v
∂x

)2
+ ∂u

∂x
∂v
∂y

.

(A2)

Finally, substituting the constructed solutions into Morland–MacAyeal equations gen-
erates the following right-hand-side functions:

fbx = 2
(
h
∂µ
∂x

+µ
∂h
∂x

)(
2
∂u
∂x

+
∂v
∂y

)
+2µh

(
2
∂2u
∂x2

+
∂2v
∂x∂y

)

+
(
h
∂µ
∂y

+µ
∂h
∂y

)(
∂u
∂y

+
∂v
∂x

)
+µh

(
∂2u
∂y2

+
∂2v
∂x∂y

)
−h

∂s
∂x

,

fby = 2
(
h
∂µ
∂y

+µ
∂h
∂y

)(
2
∂v
∂y

+
∂u
∂x

)
+2µh

(
2
∂2v
∂y2

+
∂2u
∂x∂y

)

+
(
h
∂µ
∂x

+µ
∂h
∂x

)(
∂u
∂y

+
∂v
∂x

)
+µh

(
∂2u
∂x∂y

+
∂2v
∂x2

)
−h

∂s
∂y

.

(A3)10
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Appendix B

Fast Fourier Transformation Method for solving Poisson equation with constant
coefficients

B1 Two dimensional Poisson equation

Let’s consider the Dirichlet problem for Poisson equation:5

∆U = Uxx +Uyy = −f (x,y) in G = {(x,y) : x ∈ [0, l1] ,y ∈ [0, l2]} ,

U(0,y) = µ1(y), U(l1,y) = µ2(y),

U(x,0) = µ3(x), U(x, l2) = µ4(x).

(B1)

In a regular grid with steps ∆x and ∆y , Eq. (B1) can be approximated with
a scheme (B2) with zero boundary conditions. The right-hand side functions of the
equations have been rearranged to nullify the boundary conditions.10

Vi−1,j −2Vi ,j + Vi+1,j

(∆x)2
+
Vi ,j−1 −2Vi ,j + Vi ,j+1

(∆y)2
= −Fi ,j , i = 1, . . . ,Nx −1, j = 1, . . . ,Ny −1,

V0,j = 0, VNx ,j = 0, j = 1, . . . ,Ny −1, (B2)

Vi ,0 = 0, Vi ,Ny
= 0, i = 1, . . . ,Nx −1.
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B2 Solving One-Dimensional Poisson Equation with Fast Fourier
Transformation

First let’s consider the following one-dimensional eigenvalues problem of Poisson’s
equation:

V (j −1)−2V (j )+ V (j +1)

(∆y)2
+ λV (j ) = 0, j = 1, . . . ,Ny −1,

V (0) = 0, V (Ny ) = 0,

(B3)5

where V (j ) = V (yj ).
This problem has a full set of orthogonal eigenvectors and eigenvalues:

V (j )=Vk(j )=

√
2
l

sin
πkyj
l

, λk=
4

(∆y)2
sin2 πk∆y

2l
, k=1, . . . ,Ny −1, l=Ny∆y . (B4)

10

The eigenvectors form a complete orthogonal set with respect to the following scalar

product and norm: (p,q) =
∑Ny−1

j=1 pjqj∆y , normp =
√

(p,q) =
(∑Ny−1

j=1 p2
j∆y
)1/2

.

B3 Fast Furier Transformation

For every value of i , functions Vi ,j and Fi ,j can be considered as one-dimensional func-
tions depending only on j . Then, they can be written as15

Vi ,j =
Ny−1∑
k=1

ck(i )µk(j ), Fi ,j =
Ny−1∑
k=1

fk(i )µk(j ), (B5)

where Fourier coefficients fk(i ) are calculated as

fk(i ) = (f ,µk) =
Ny−1∑
j=1

Fi ,jµk(j ), i = 1, . . . ,Nx −1, (B6)
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and ck(i ) are unknown coefficients we are trying to find.
Substituting Eq. (B5) into Eq. (B2) and using independence of functions µk(j ) and

relationship

µk(j )ȳy ,j = −λkµk(j ),5

we get the following Ny−1 set of three-diagonal equations for ck(i ) for k = 1, . . . ,Ny−1:

ck(i −1)−2ck(i )+ck(i +1)

(∆y)2
− λck(i )+ fk(i ) = 0, i = 1, . . . ,Nx −1,

ck(0) = 0, ck(Nx) = 0.

(B7)

This set of equations can be solved with method of solving equations with three-
diagonal matrix.10

Thus, the fast Fourier transformation algorithm consists of the following steps:

1. Calculate Fourier coefficients fk(i ) of the right-hand side function Fi ,j using for-
mulas (B6). This takes O

(
Ny log2Ny

)
operations. Total calculation of all Nx sums

requires O
(
NxNy log2Ny

)
operations.

2. To find coefficients ck(i ), solve Ny systems of equations (B7) with three-diagonal15

matrices. This requires O
(
NxNy

)
operations.

3. After ck(i ) are found, find solution Ui ,j using formulas (B5). This also requires
O
(
NxNy log2Ny

)
operations.

Thus, the total cost of the method is O
(
NxNy log2Ny

)
. This method is a direct method

and faster than many other methods. However, the method cannot be used for prob-20

lems with Robin boundary conditions. The method can be easily parallelized.

Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/7/1829/2014/
gmdd-7-1829-2014-supplement.zip.
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Table 1. 1-dimensional benchmark experiments. Time and L2 errors in the velocity and stress.

Grid Method Time Iteration Velo. Conv. Pres. Conv.
error (u) rate (u) error (τ) rate (τ)

N = 100 Direct 3.10×10−5 2.12×10−4 – 6.45×10−4 –
Iterative 1.73×10−3 76 6.50×10−4 – 6.81×10−4 –

N = 1000 Direct 2.32×10−4 7.95×10−6 1.43 9.56×10−5 0.83
Iterative 1.09×10−2 68 8.56×10−6 1.88 9.56×10−5 0.85

N = 10000 Direct 1.31×10−3 8.65×10−8 1.96 1.40×10−5 0.83
Iterative 5.57×10−2 58 8.68×10−8 1.99 1.40×10−5 0.83

N = 100000 Direct 9.07×10−3 8.63×10−10 2.00 2.06×10−6 0.83
Iterative 4.70×10−1 50 6.49×10−9 1.13 2.06×10−6 0.83

N = 1000000 Direct 8.40×10−2 8.58×10−12 2.00 3.02×10−7 0.83
Iterative 3.89×10+0 41 4.77×10−7 −1.87 3.22×10−7 0.81

N = 10000000 Direct 8.62×10−1 2.67×10−13 1.51 4.44×10−8 0.83
Iterative 3.53×10+1 37 9.25×10−07 −0.29 1.66×10−6 −0.71
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Table 2. 2-dimensional benchmark experiments. Time and L2 errors in the velocity and stress.

Grid Method Time [c] Iteration Error (u) Error (v) Error (τx) Error (τy )

100×100 Linear 0.02 9.78×10−4 3.48×10−3 4.71×10−3 1.34×10−3

Iterative 53.91 33 937 3.50×10−3 2.37×10−3 3.50×10−3 2.37×10−3

200×200 Linear 0.12 3.78×10−4 1.49×10−3 2.05×10−3 5.25×10−4

Iterative 860.82 130 125 1.38×10−3 9.31×10−4 1.38×10−3 9.31×10−4

400×400 Linear 1.56 1.47×10−4 6.29×10−4 8.78×10−4 2.08×10−4

Iterative 18 190.834 498 737 5.46×10−4 3.69×10−4 5.46×10−4 3.69×10−4
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Fig. 1. Left: 1D Staggered grid. Velocity u and ice-thickness h are defined at the nodes of the grid and
stress variable τ is defined at the centroids of the grid. Right: 2-D grid. velocities u and v, ice-thickness
h, ice surface s and bed b are defined at the nodes of the grid, while ice-stress variables τx and τy are
defined at the centers of the cells of the grid.
figure

25

Fig. 1. Left: 1-D Staggered grid. Velocity u and ice-thickness h are defined at the nodes of the
grid and stress variable τ is defined at the centroids of the grid. Right: 2-D grid. velocities u and
v , ice-thickness h, ice surface s and bed b are defined at the nodes of the grid, while ice-stress
variables τx and τy are defined at the centers of the cells of the grid.
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Fig. 2. The ice surface and bed and analytical solutions and solutions calculated by iterative and direct
methods. Iterative and direct methods’ solutions coincide, therefore only one is visible. Left: the velocity
in km · a−1. Right: the stress in mJ . Grid with 100 nodes.
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Fig. 2. The ice surface and bed and analytical solutions and solutions calculated by iterative and
direct methods. Iterative and direct methods’ solutions coincide, therefore only one is visible.
Left: the velocity in kma−1. Right: the stress in mJ. Grid with 100 nodes.
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Fig. 3. The errors of the iterative and direct methods (L2 norm) and the time it took for the methods to
solve the problem of sizes 102, 103, 104, 105, 106, and 107. Time, errors, and problem size are shown
in log scale. The stresses and velocities are calculated with the same accuracy by both methods up to
problem size of 106 and 104 respectively. The further increase in the problem size decreases the accuracy
of the iterative method. The linear method is about hundred (100) times faster than the iterative method
for every grid size.
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Fig. 3. The errors of the iterative and direct methods (L2 norm) and the time it took for the
methods to solve the problem of sizes 102, 103, 104, 105, 106, and 107. Time, errors, and
problem size are shown in log scale. The stresses and velocities are calculated with the same
accuracy by both methods up to problem size of 106 and 104 respectively. The further increase
in the problem size decreases the accuracy of the iterative method. The linear method is about
hundred (100) times faster than the iterative method for every grid size.
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Fig. 4. Two-dimensional manufactured solution. Left: ice surface and bed, Right: ice thickness.
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Fig. 4. Two-dimensional manufactured solution. Left: ice surface and bed, Right: ice thickness.
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Fig. 5. Two-dimensional manufactured solution: velocity, Left: x− component, Right: y− component.
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Fig. 5. Two-dimensional manufactured solution: velocity, Left: x-component, Right: y-
component.
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Fig. 6. Two-dimensional manufactured solution: stresses, Left: τx = 2µh∂u
∂x , Right: τy = µh

(
∂u
∂y + ∂v

∂x

)
.
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Fig. 6. Two-dimensional manufactured solution: stresses, Left: τx = 2µh∂u
∂x , Right: τy =

µh
(

∂u
∂y +

∂v
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)
.

1864

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1829/2014/gmdd-7-1829-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1829/2014/gmdd-7-1829-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

