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Abstract 16 

A semi-parametric PAR diffuse radiation model was developed using commonly measured 17 

climatic variables from 108 site-years of data from 17 AmeriFlux sites.  The model has a 18 

logistic form and improves upon previous efforts, using a larger data set and physically viable 19 

climate variables as predictors, including relative humidity, clearness index, surface albedo, 20 

and solar elevation angle.  Model performance was evaluated by comparison with a simple 21 

cubic polynomial model developed for the PAR spectral range. The logistic model 22 

outperformed the polynomial model with an improved coefficient of determination and slope 23 

relative to measured data (logistic: R
2
 = 0.76; slope=0.76; cubic: R

2
 = 0.73; slope=0.72), 24 

making this the most robust PAR-partitioning model for the US subcontinent currently 25 

available. 26 

1. Introduction 27 

Photosynthetically Active Radiation (PAR) is the 0.4-0.7µm spectral range that is absorbed by 28 

plants and drives the process of photosynthesis (McCree, 1972). PAR at the ground surface 29 

has two primary incoming streams, diffuse and direct; which are significantly affected by the 30 

amount of clouds and aerosols in the atmosphere. These two radiant components differ in the 31 

way they transfer energy through plant canopies thus affecting canopy photosynthesis 32 

processes differently than what would occur at the leaf scale (Misson et al., 2005). Increased 33 



diffuse PAR fraction (the ratio of diffuse or isotropic PAR to total PAR (diffuse + direct 1 

beam)) in the atmosphere has been correlated with higher light use efficiency and increased 2 

CO2 assimilation (e.g. Weiss and Norman., 1985, Gu. et al., 1999, 2002 and 2003, Knohl et 3 

al., 2008., Mercardo et al., 2009 and Still et al., 2009). Many of these studies utilize models of 4 

diffuse radiation (usually in the 0.15 to 4.0 µm shortwave range) to estimate the diffuse 5 

fraction rather than direct measurements.  6 

Diffuse PAR can be estimated from models that range in complexity from spectral 7 

parameterization schemes like SPCTRAL2 (Bird and Riodan, 1986) and SMARTS2 8 

(Gueymard, 1995) to simple linear regression models relating diffuse radiation fraction to 9 

extra terrestrial PAR (Hassika and Berbigier, 1998 and Tsubo and Walker., 2005). Jacovides 10 

et al. (2009) developed a third order polynomial model after applying 25 point moving 11 

average on clearness index (ktp) (the ratio of global irradiance to extraterrestrial irradiance) 12 

data collected over a three year period over Athens, Greece. Butt et al. (2010) used a proxy 13 

cloud fraction (ratio of calculated total solar irradiance at a surface to the measured) to 14 

estimate diffuse PAR fraction.  15 

Most diffuse fraction models are developed for global solar irradiation and very few models 16 

are developed from PAR data sets. The models developed for global solar radiation have been 17 

used in studies to convert the diffuse global solar irradiance to diffuse PAR fractions (e.g. Gu 18 

et al., 2002). Regression type models of diffuse shortwave radiation usually employ linear 19 

(e.g. Orgil and Hollands, 1977; Reindl et al., 1990), logistic (Boland et al., 2001; Ridley, 20 

2010) or higher order polynomial type (e.g. Erbs et al., 1982., Spitters et al., 1986; 21 

Chandrasekaran and Kumar 1994, Miguel et al., 2001; Oliveria et al., 2002;; and Jacovides et 22 

al., 2006) equations relating clearness index (ktp) to estimate diffuse fraction (kdp). Reindl et 23 

al. (1990) used multiple regression analysis and identified air temperature, dew point and sine 24 

of the solar elevation angle as important parameters determining the partitioning of total 25 

irradiance into diffuse and direct components. Solar elevation angle and clearness index were 26 

used as inputs in models developed by Maxwell (1987) and Skartveit and Olseth (1987). 27 

Other parameters used in modeling diffuse fraction include dew point temperature, albedo and 28 

hourly variability index (root mean square difference between clearness index of an hour in 29 

question with respect to its preceding and succeeding hour) e.g. Perez et al., (1992) and 30 

Skartveit et al., (1998). The BRL model (Ridley et al., 2010) uses hourly clearness index, 31 

apparent solar time, solar elevation angle, daily clearness index and a persistence index 32 



similar to the variability index to calculate the diffuse fraction. Muneer and Munawwar (2006) 1 

used sunshine fraction, cloud fraction and air mass along with clearness index in predicting 2 

the diffuse fraction of global irradiance.  3 

   4 

The objective of our study is to develop a simple semi-parametric diffuse PAR model 5 

applicable for the US, employing the AmeriFlux (Hargrove, et al., 2003) data set of above-6 

canopy observations that have high spatio-temporal resolution.  Development of such a model 7 

will aid future investigations of the effect of diffuse radiation on photosynthesis and light-use 8 

efficiency in response to climate. Although diffuse radiation is not regularly measured at all 9 

AmeriFlux sites, multiple year records from 17 sites are available for model development. The 10 

model presented here is developed with a dataset that is larger and more temporally and 11 

spatially diverse than any previous efforts, making it the most robust and broadly applicable 12 

diffuse PAR model developed to date. The model development is based on the BRL model as 13 

the logistic relationship used in this shortwave diffuse radiation model can be adopted for 14 

PAR diffuse fraction but with more pertinent drivers. The model is primarily intended for 15 

aiding researchers in understanding ecosystem response in terms of carbon and energy 16 

exchange in relation to the diffuse PAR fraction with data recorded at the site. 17 

2. Methodology and Data analysis 18 

The dataset used for model development and testing consists of multiple year records of PAR 19 

and diffuse fraction obtained from the AmeriFlux network. A detailed description of the sites 20 

utilized in this study is presented in Table 1. The sites selected consist of forested ecosystems, 21 

grasslands, shrublands and croplands covering a wide latitude range (35-70°N). The 22 

geographical location of the sites is presented in Figure 1 in the form of a map. Sites which 23 

are close to one other may appear as single points on the map due to resolution of the map. 24 

The diffuse fraction data are mostly obtained using the BF3 sensor (Delta-T devices, 25 

Cambridge, UK) or a version of it. The BF3 sensor uses an array of photodiodes with a 26 

shading pattern that provides shade to some of the photodiodes while others remain exposed.  27 

This instrument has a resolution of 1 μmol m
-2

 s
-1

 and an accuracy of 15%. The data from BF3 28 

sunshine recorders have been used in other studies relating cloud fraction to diffuse fraction 29 

(Butt et al., 2001).  30 

 31 



For our study, data collected when solar elevation angles were <10° were removed to avoid 1 

cosine response issues. Although the data set contained records in hourly and half hourly 2 

formats, we averaged data to obtain hourly values for consistency. The hourly radiation values 3 

were checked against the quality controls proposed by the European Commission Daylight. 4 

This quality control eliminates data points based on the following criteria: Rd>1.1; RS, RS 5 

>1.2RE; Rd>0.8RE; RS< 5 Wm
-2

 and Rb>RE, where Rd is the total diffuse radiation RS is the 6 

total incoming solar irradiance, RE is the extra terrestrial irradiance and Rb is the direct normal 7 

irradiance.   8 

Data points were eliminated when hourly rainfall values were greater than 5 mm, relative 9 

humidity values were 100%, or when dew point exceeded air temperature, as under these 10 

conditions, the measurement accuracy might be affected by water droplets formed on the 11 

sensor. Outliers were removed visually after the initial quality check so as to remove bad data 12 

which could occur due to electronic noise or instrument malfunction that could produce 13 

physically impossible values. After implementing the quality control check, the dataset 14 

consisted of 293725 hourly records from 108 site years. 15 

Extraterrestrial PAR (REP) was calculated with solar elevation angle at a location according to 16 

                                   sin)365/360cos(033.01 dCEP tRR                                         (1) 17 

where, RC is the solar constant (2776.4 μmol m
-2

 s
-1

., Spitters et al., 1986); sin β is the sine of 18 

the solar elevation angle and td is the day number since 1st January.  19 

3. Model development 20 

The model developed here is similar in structure to the multi-predictor logistic model (BRL) 21 

developed by Ridley et al. (2010) for global solar irradiance, except we use additional 22 

predictors that directly affect the diffuse fraction and we also use a considerably larger data 23 

set. The predictors in the BRL model include daily clearness index (Kt), sine of the solar 24 

elevation angle (sin β), persistence index (ψ) and apparent solar time (AST). 25 
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1
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The logistical form of the model has been identified as more robust than previously published 27 

piecewise linear or other non-linear forms (Boland et al., 2001; 2008). The goal of our work is 28 

to develop a model that is constrained by more commonly measured micrometeorological 29 

variables, rather than estimated variables like persistence index. The important factors 30 



considered in this study are PAR clearness index (ktp), relative humidity (RH), albedo (α) and 1 

sine of solar elevation angle (sin β). Clearness index is widely used in one predictor models 2 

for PAR partitioning (Jacovides et al., 2009) as it is directly related to cloud fraction. Relative 3 

humidity is positively related with cloud cover (Walcek, 1994) and a greater diffuse fraction is 4 

often associated with higher humidity values. The effect of relative humidity on the 5 

relationship between ktp and kdp observed in our data set is presented in Figure 1a. The data are 6 

binned into linearly space bins of relative humidity classes and they indicate increased diffuse 7 

PAR fractions associated with higher relative humidity classes. Increased surface albedo 8 

resulting from changes in canopy reflectance or presence of snow can alter the diffuse fraction 9 

estimates. Skartveit et al. (1998) proposed a correction for clearness index estimation to 10 

account for the multiple reflections occurring between the surface and instrument dome when 11 

albedo is over 0.15. However in this study we consider albedo as a contributing factor to 12 

diffuse fraction as multiple reflections between the surface and clouds can enhance the diffuse 13 

fraction available for photosynthesis (Campbell and Norman, 2008; Knohl and Baldocchi, 14 

2008; and Winton, 2005).  Albedo of most vegetated surfaces can reach up to 0.25 and can 15 

vary widely as a function of leaf area index, disturbance history and snow cover. The effect of 16 

surface albedo on the relationship between ktp and kdp is presented in Figure 2b. The diffuse 17 

PAR fraction in general shows an increasing trend with increased albedo, but the trend shows 18 

some variations, probably due to the confounding effects of other factors. Increased albedo 19 

can result in increased diffuse fraction for the same clearness index compared to lower albedo 20 

values. The PAR diffuse fraction model developed in this study takes the logistic form 21 

zdp
e

k



1

1

                    22 

, where z is given as 23 

                             in  RHk tp sedcbaz                                                               (3) 24 

and a, b, c, d and e are fitted empirical coefficients determined in our analysis.  The empirical 25 

coefficients were obtained by fitting the model to the data set.  The relationship presented in 26 

equation 3 tends to underestimate diffuse fraction under clear sky conditions (Figure 3a).  As 27 

a correction, a second logistic fit is applied to the data for ktp>0.78. The values of the 28 

coefficients for the logistic model along with their 95% confidence intervals are presented in 29 

Table 2. The model performance is compared with a one predictor model developed by 30 



Jacovides et al. (2009). This model was selected for comparison as it was developed using 1 

data in the PAR spectral range and used a simple predictor (ktp) that could be estimated for a 2 

large data set from multiple locations. This cubic polynomial model which relates diffuse 3 

PAR fraction as a function of smoothed PAR clearness index (moving average window size of 4 

25) takes the following form after fitting to this data set: 5 

                            
32

8088.36676.52699.18637.0 tptptpdp kkkk                                      (4) 6 

The original cubic polynomial model had prescribed limits within which the model operated 7 

and constant values were assigned to kdp values for ktp values above and below a particular 8 

range. The modified cubic polynomial model presented in equation 4 is valid for 9 

0.13<ktp<0.865, whereas for ktp ≤ 0.125, kdp = 0.9399 and ktp ≥ 0.862, kdp = 0.18675. These 10 

set points were chosen to provide a smooth transition from the inflection points in the model 11 

output.  The model coefficients were estimated using a robust nonlinear regression method in 12 

MATLAB (Mathworks, Inc). The fit of data to the adjusted logistic model and the cubic 13 

model for the data set is presented in Figure 3b and Figure 3c. The percentage differences 14 

between measured diffuse fraction kdp and modeled diffuse fraction kdpm is plotted in Figure 4 15 

as a function of each of the predictor variables in unequally spaced bins with an equal number 16 

of data points.  17 

 18 

The model fits were assessed by randomly selecting one third of the data as an evaluation data 19 

set for statistical analysis. The comparison between measured and modeled diffuse PAR for 20 

the logistic and cubical model for the evaluation data set is provided in Figure 5. The 21 

performance of both models was further compared by using a bootstrap regression between 22 

the measured and modeled diffuse fractions with a data re-sampling of 10000 times to account 23 

for the errors in measuring the independent variable (measured diffuse fraction) from the 24 

evaluation data set. The results of the bootstrap regression comparison for the two models are 25 

presented in Table 3. The root mean square error percentage (RMSE %) (Jacovides, 2006) of 26 

the model fits to the evaluation data set is also presented in Table 3.  The influence of 27 

seasonality on the logistic model accuracy was examined by plotting the RMSE (%) and R
2
 of 28 

the regression between measured and modeled values as a function of the various months 29 

(Figure 6) for the entire data set. Since seasonality can influence the model fit, the logistic 30 

model was fit to the entire data set, by classifying the data into the four different seasons. The 31 



seasons were classified as summer (June 20 to September 21), fall (September 22 to 1 

December 20), winter (December 21 to March 19) and spring (March 20 to June 19). This 2 

enabled the development of seasonal model empirical coefficients, which are presented in 3 

Table 4.  The model fit for the different sites is also presented by plotting the RMSE (%) and 4 

R
2
 of the regression between the measured and modeled values for the various sites (Figure 5 

7). The sites are arranged on the x-axis on an increasing latitudinal gradient and the figure 6 

illustrates the model fit across the sites.   7 

3. Discussion 8 

The multi-parameter logistic model predicts different diffuse fractions for the same clearness 9 

index for different combinations of albedo, solar elevation angle and relative humidity. The 10 

percentage difference between measured and modeled diffuse fraction generally indicate an 11 

underestimation by the model. The largest differences are associated with clearness index 12 

values around 0.67, albedo values of 0.24, moderate relative humidity (between 50-60%) and 13 

solar elevation angles of 46˚ (Figure 3). The logistic model thus produces the largest errors 14 

under moderately clear sky conditions, during the late morning and afternoon periods and 15 

when the atmosphere has moderate humidity. The PAR clearness index values close to 0.67 16 

represents a clear sky condition above which the diffuse PAR fraction stays constant with 17 

increasing total PAR. The inability of the model to accurately capture this behavior results in 18 

large errors around this clearness index threshold. Further higher PAR clearness index values 19 

indicate low diffuse PAR fraction levels, which along with the above mentioned PAR 20 

clearness index threshold can lead to uncertainties in the measurement of the diffuse PAR 21 

fraction by the sensor. Albedo value of 0.24 produced the large errors as this is in the range of 22 

most vegetated surfaces and hence other confounding factors contributes to model errors 23 

around this albedo range. The cubic polynomial model evaluated in this study produces the 24 

largest errors during periods of high solar elevation angle, in contrast to the original model, 25 

which exhibited maximum error during the early morning/late evening hours (Jacovides et al., 26 

2010). The cubic polynomial model percentage errors showed a similar behavior in relation 27 

with clearness index and albedo as the logistic model, but produced the largest errors under 28 

low humidity in contrast with the logistic model. The regression analysis indicates better 29 

performance of the logistic model over the cubic model, with a higher slope, lower intercept, 30 

and a larger coefficient of determination (R
2
) (Table 3 and Figure 5). The RMSE (%) values 31 



also indicate a comparatively lower error for the logistic model (30.59 %) compared to the 1 

cubic polynomial model (32.68 %).  The errors in the developed model could be attributed to 2 

other confounding factors such as seasonal effects, changes in atmospheric turbidity caused by 3 

air pollution or aerosol loading, and location differences. The fact that a combined data set 4 

from different locations was used in this study can lead to minimization of the dependence of 5 

the kdp–ktp correlation on local conditions (Jacovides et al., 2006). The model coefficients 6 

developed over the various seasons are similar in nature and the fit of the seasonal models to 7 

the data indicate similar R
2
 and RMSE (%) values. This indicates the robustness of the logistic 8 

model developed in this study as only a marginal improvement was obtained for certain 9 

seasons by determining seasonal coefficients. The largest RMSE (%) values and the lowest R
2

 10 

values were observed for the summer months. The model performance stays constant 11 

throughout the year except for the period from September to December when the RMSE (%) 12 

decrease and the R
2
 value increases. The largest RMSE (%) values were observed during the 13 

summer months, as in Jacovides et al. (2006) (Figure 6).  The model fit done over the 14 

individual sites indicate larger errors (higher RMSE (%)) values as latitude increases. The 15 

upper latitude experience lower solar elevation angles which does impact the model accuracy. 16 

The lowest R
2
 for the model fit was observed for sites in the middle of the country. 17 

4. Concluding remarks 18 

A logistic diffuse radiation model was developed using a large hourly radiation dataset 19 

obtained from the AmeriFlux network. The model performance was evaluated against a cubic 20 

polynomial model and its strengths and weaknesses were assessed. The goal was to develop a 21 

diffuse PAR model that employs commonly measured climatic/weather variables as predictors 22 

and is applicable for sites in the contiguous United States.  The logistic model improves upon 23 

other PAR diffuse fraction models as it was developed using a large data set comprising of 24 

multi-year records from multiple sites. Future work includes application of this model to 25 

estimate diffuse radiation effects and contributions to annual net ecosystem exchange over 26 

various biomes represented by the AmeriFlux data.  27 

 28 
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Table 1: Site location and ecosystem type information. 1 

 2 

Sl. No Site Code Site Name Vegetation Latitude Longitude % Data 

1 USFuf Flagstaff Unmanaged Forest Evergreen needle Forest 35.09 -111.76 5.36 

2 USFmf Flagstaff Managed Forest Evergreen needle Forest 35.14 -111.73 5.61 

3 USFwf Flagstaff Wildfire Grasslands 35.45 -111.77 5.92 

4 USVar Vaira Ranch Grasslands 38.41 -120.95 10.62 

5 USMMS Morgan Monroe State Forest Deciduous Broadleaf Forest 39.32 -86.41 7.24 

6 USNe1 Mead Irrigated Croplands 41.17 -96.48 13.52 

7 USNe2 Mead Irrigation Rotation Croplands 41.17 -96.47 13.04 

8 USNe3 Mead Rainfed Croplands 41.18 -96.44 13.51 

9 USBar Bartlett Experimental Forest Deciduous Broadleaf Forest 44.07 -71.29 7.75 

10 USMe2 Metolius Intermediate Pine Evergreen needle Forest 44.45 -121.56 6.55 

11 USKut KUOM Turf Grass Field Grasslands 45.00 -93.19 1.54 

12 USHo1 Howland Forest Main Evergreen needle Forest 45.20 -68.74 2.38 

13 USHo3 Howland Forest East Evergreen needle Forest 45.21 -68.73 2.38 

14 USHo2 Howland Forest West Evergreen needle Forest 45.21 -68.75 2.38 

15 USUmd UMBS Disturbance Deciduous Broadleaf Forest 45.56 -84.70 0.48 

16 USWCr Willow Creek Deciduous Broadleaf Forest 45.81 -90.08 0.36 

17 USAn1 Anaktuvuk River Severe Burn Open Shrub lands 68.99 -150.28 1.36 

 3 

 4 

 5 
 6 
 7 
 8 



Table 2: Logistic model coefficients for clearness index classes. The value given in the 1 

brackets is 95% confidence interval 2 

 3 

Coefficients ktp(≤0.78) ktp(>0.78) 

a          2.0196 (2.001,2.038) 1.2438 (1.161,1.327) 

b -5.6485 (-5.671,-5.626) -2.3335 (-2.400,-2.247) 

c 1.3469 (1.331,1.363) 0.7046 (0.600,0.729) 

d 0.7309 (0.704,0.758) 0.4107 (0.383,0.439) 

e 0.3045 (0.288,0.321) -1.9484 (-1.975,-1.923) 

 4 

 5 

Table 3: Model performance comparison using regression analysis. The values given in 6 

the brackets are the standard error of the estimates obtained by resampling evaluaton 7 

data 10000 times. The root mean square error estimate from the measured and modeled 8 

values is also presented. 9 

 10 

Model statistics Logistic model Cubic model 

Slope 0.76 (±6.0x10-6) 0.73 (±7.0x10-6) 

Intercept 0.12 (±4.0x10-6) 0.13 (±4.0x10-6) 

R2 0.76 (±8.0x10-6) 0.72 (±9.0x10-6) 

RMSE (%) 30.59 32.68 
 11 
 12 
 13 
 14 
 15 
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 17 
 18 
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 23 
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 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
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Table 4: Logistic model coefficients for clearness index classes for the various seasons. The value given in the brackets is 95% 1 

confidence interval. The R
2
 and the RMSE obtained by comparing the model output to the observed data is also provided. 2 

 3 

 4 

Model 

Params 

Summer Fall Winter Spring 

ktp(≤0.78) ktp(>0.78) ktp(≤0.78) ktp(>0.78) ktp(≤0.78) ktp(>0.78) ktp(≤0.78) ktp(>0.78) 

a 
2.377 

(2.336,2.418) 

1.991 

(1.769,2.214) 

2.087 

(2.044,2.130) 

1.472 

(1.338,1.606) 

1.944 

(1.906,1.981) 

0.912 

(0.765,1.060) 

2.352 

(2.314,2.389) 

2.177 

(2.010,2.343) 

b 
-5.427 

(-5.467 -5.387) 

-2.834 

(-3.061,-2.607) 

-5.668 

(-5.716,-5.619) 

-2.315 

(-2.450,-2.180) 

-5.463 

(-5.506,5.420) 

-2.188 

(-2.339,-2.038) 

-6.143 

(-6.188,-6.098) 

-3.145 

(-3.323,-2.968) 

c 
1.420 

(1.390,1.449) 

1.113 

(1.060,1.165) 

1.248 

(1.211,1.285) 

0.277 

(0.232,0.322) 

1.479 

(1.443,1.515) 

0.931 

(0.886,0.977) 

1.216 

(1.186,1.247) 

0.466 

(0.420,0.512) 

d 
-2.200 

(-2.304,-2.097) 

-2.083 

(-2.285,-1.882) 

0.347 

(0.283,0.412) 

0.656 

(0.591,0.721) 

1.141 

(1.104,1.178) 

0.497 

(0.461,0.533) 

-0.717 

(-0.808,-0.627) 

0.753 

(0.641,0.866) 

e 
0.032 

(0.002,0.061) 

-2.086 

(-2.141,-2.032) 

0.464 

(0.410,0.518) 

-2.535 

(-2.594,-2.475) 

0.063 

(0.022,0.104) 

-1.867 

(-1.924,-1.811) 

0.796 

(0.765,0.828) 

-2.045 

(-2.086,-2.005) 

R
2
 0.75 0.77 0.75 0.77 

RMSE 

(%) 
31.98 30.85 29.66 29.61 
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 1 
Figure 1: Location of sites presented on the USA map. Many sites which are closer 2 

together can appear as a single point on the map. 3 

 4 

 5 

 6 

 7 
Figure 2: Relative humidity and albedo effects on ktp-kdp relationship 8 
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 10 

 11 



 1 
Figure 3: Model fit for the proposed multi-parameter logistic model (a and b) and cubic 2 

model (c). Panel (a) represents the initial fit to the logistic form and panel (b) indicates 3 

the modification to the initial logistic fit with a second logistic fit 4 

 5 



 1 
Figure 4: Percentage differences between measured and modeled diffuse radiation as a 2 

function of predictor variables 3 

 4 
 5 

Figure 5: Comparison between measured and modeled diffused PAR a) logistic model b) 6 

cubic polynomial model. The regression statistics presented are for the bootstrap 7 

regression between the measure and modeled variables. All units are in μmol m
-2

 s
-1 

8 



 1 

 2 
Figure 6: Model performance in terms of RMSE (%) and R

2
 over various months of the 3 

year 4 

 5 
Figure 7: Model performance in terms of RMSE (%) and R

2
 over the various sites. The 6 

sites are arranged on the x axis following an increasing latitudinal gradient from left to 7 

right. 8 


