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Abstract 20 

Human activities are significantly altering biogeochemical cycles at the global 21 

scale, and the scope of these activities will change with both future climate and 22 

socioeconomic decisions. This poses a significant challenge for earth system models 23 
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(ESMs), which can incorporate land-use change as prescribed inputs but do not actively 24 

simulate the policy or economic forces that drive land use change. One option to address 25 

this problem is to couple an ESM with an economically oriented integrated assessment 26 

model, but this is challenging because of the radically different goals and underpinnings 27 

of each type of model. This study describes the development and testing of a coupling 28 

between the terrestrial carbon cycle of an ESM (CESM) and an integrated assessment 29 

(GCAM) model, focusing on how CESM climate effects on the carbon cycle could be 30 

shared with GCAM. We examine the best proxy variables to share between the models, 31 

and quantify how carbon flux changes driven by climate, CO2 fertilization, and land-use 32 

changes (e.g. deforestation) can be distinguished from each other by GCAM. The net 33 

primary production and heterotrophic respiration outputs of the Community Land Model 34 

(CLM), the land component of CESM, were found to be the most robust proxy variables 35 

by which to recalculate GCAM’s assumptions of equilibrium ecosystem steady state 36 

carbon. Carbon-cycle effects of land-use change are spatially limited relative to climate 37 

effects, and thus we were able to distinguish these effects successfully in the model 38 

coupling, passing only the latter to GCAM. This paper does not present results of a fully 39 

coupled simulation but shows, using a series of offline CLM simulations and an 40 

additional idealized Monte Carlo simulation, that our CESM-GCAM proxy variables 41 

reflect the phenomena that we intend, and do not contain erroneous signals due to LUC. 42 

By allowing climate effects from a full ESM to dynamically modulate the economic and 43 

policy decisions of an integrated assessment model, this work will help link these models 44 

in a robust and flexible framework capable of examining two-way interactions between 45 

human and earth system processes. 46 
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 47 

1. Introduction 48 

 Human activities are significantly altering biogeochemical cycles at the global 49 

scale, e.g. by appropriation of net primary production (Imhoff et al., 2004; Ito, 2011), 50 

modification of natural fire dynamics (Pechony and Shindell, 2010), and fossil fuel 51 

emissions raising atmospheric CO2 levels (Le Queré et al., 2009). In addition, land-use 52 

change (LUC) exerts strong effects on the global carbon cycle (Bonan, 2008; Caspersen 53 

et al., 2000; Arora and Boer, 2010; Laganière et al., 2009), as well as direct biophysical 54 

effects on albedo and water vapor fluxes, that in turn have significant regional to global 55 

consequences (Brovkin et al., 2013; Jones et al., 2013b). As a result, different policy 56 

choices vis-à-vis LUC and carbon may result in greatly differences in the future carbon 57 

cycle and global climate (Wise et al., 2009; Jones et al., 2013a), even though the direct 58 

LUC fluxes will likely be far smaller than in the past (Brovkin et al., 2013). 59 

 This poses a significant challenge for global earth system models (ESMs), in 60 

which fully coupled climate models are used to draw inferences about Earth’s past and 61 

future climate states and understand how changes to the radiative properties of Earth’s 62 

atmosphere interact with its climate, biogeochemistry, and carbon cycle (Brovkin et al., 63 

2013; Todd-Brown et al., 2014). Such models may incorporate LUC as prescribed inputs, 64 

but do not simulate policy options or economic forces, a significant limitation given how 65 

strongly humans can perturb the earth system (Hurtt et al., 2002; Randerson et al., 2009). 66 

Conversely, integrated assessment models (IAMs) are used to examine the human 67 

components of the Earth system, including greenhouse gas emission sources, and drivers 68 

of land-use change. Their representation of the physical climate and earth system is 69 
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simplistic, however, with little spatial resolution or process fidelity compared to an ESM 70 

(Meinshausen et al., 2011a; Meinshausen et al., 2011b). These two modeling 71 

paradigms—ESMs with no economic or energy system modeling, and IAMs with only 72 

basic representations of natural processes—developed largely independently of each 73 

other, and their interactions have historically been limited. 74 

ESMs and IAMs increasingly need each other’s capabilities, however (van 75 

Vuuren et al., 2012; Houghton, 2013). One solution is to couple an ESM to an IAM, 76 

letting each model specialize in its specific domain while passing information on the 77 

natural and human systems, respectively, between them. This would provide a two-way 78 

coupling within a single integrated system, whereby economic decisions in the IAM 79 

translate directly into trace gas fluxes and land use changes in the ESM, and changes in 80 

the ESM climate feed back onto crop yields, heating and cooling demands, energy 81 

production, etc. in the IAM. Successfully linking such complex, large models would 82 

permit integrated and unprecedented analyses of the interactions between economic 83 

change, climate policy, and the physical earth system, with fully coupled feedbacks 84 

between the economic and physical-science components (van Vuuren et al., 2012). 85 

This paper describes the development and testing of a mechanism linking the 86 

terrestrial carbon components of an ESM (CESM, the Community Earth System Model) 87 

with an IAM (the Global Change Assessment Model, GCAM) (Figure 1). The goals of 88 

the current study were to develop and test a robust but tractable coupling allowing 89 

GCAM LUC projections to respond to changes in the CESM climate and biogeochemical 90 

cycles. We focus here on the terrestrial aspect of the CESM-to-GCAM coupling, but this 91 
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is only one component of a larger effort to create a more general integrated Earth System 92 

Model (iESM) (Jones et al., 2013a) as described above. 93 

 94 

2. Materials and Methods 95 

2.1. Model descriptions 96 

Both CESM’s Community Land Model (CLM) and GCAM have been extensively 97 

described, and here we note only their most relevant aspects (Gent et al., 2011). The 98 

terrestrial model in the CESM system, CLM simulates the cycling and land-atmosphere 99 

exchange of energy, water, carbon, and trace gases. CLM version 4, used in this study, 100 

resulted from merging the biophysical framework of CLM v3.5 (Oleson et al., 2008) with 101 

the carbon and nitrogen dynamics of the biogeochemistry model Biome-BGC (Thornton 102 

et al., 2002; Running and Hunt, 1993). The model incorporates biogeophysics, surface 103 

hydrology, biogeochemistry, and dynamic vegetation components (Bonan et al., 2002), 104 

whose dynamics have been extensively tested (Shi et al., 2011; Oleson et al., 2008; 105 

Lawrence et al., 2008; Mao et al., 2012a; Mao et al., 2012b). Model vegetation is based 106 

on plant functional types (PFTs) occupying dynamic fractions of each grid cell (typically 107 

0.25-2° resolution), with each PFT (1 bare ground, 8 tree, 3 shrub, 3 grass, 1 crop) 108 

characterized by distinct physiological parameters (Oleson et al., 2010). The model’s C 109 

and N cycles are closely coupled and include canopy photosynthesis, plant growth and 110 

mortality, photosynthate allocation, and subsurface C and N cycling (Thornton et al., 111 

2007); at any point in time, CLM tracks a wide suite of above- and belowground C pools 112 

resulting from the integrated effects of these and other (Kloster et al., 2010) processes. 113 
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The GCAM model, by contrast, is an economic model driven by assumptions 114 

about population size and labor productivity that determine potential gross domestic 115 

product in each of 14 regions; these regions are further divided by GCAM’s agriculture 116 

and land-use submodel into 18 agro-ecological zones or AEZs (Monfreda et al., 2009). 117 

GCAM originated as the energy-economic MiniCAM model (Edmonds and Reilly, 118 

1983), and currently integrates energy, agriculture, forestry, and land markets with a 119 

simple terrestrial carbon cycle (Thomson et al., 2010; Wise et al., 2009). The model 120 

operates on a 5-year timestep, computing simultaneous market-clearing prices for all 121 

energy, agriculture, and land markets (Kim et al., 2006). The model is typically used to 122 

explore the effects of policy scenarios–for example, carbon pricing, emissions 123 

constraints, or capped limits on total radiative forcing (Calvin et al., 2009). Economic 124 

land use decisions are based on the relative inherent profitability of using land for 125 

competing purposes. GCAM does not use land use allocation constraints, but its 126 

calibration based on historical data means that history is reflected in future land 127 

allocation decisions (Wise and Calvin, 2010; Wise et al., 2014). 128 

GCAM’s terrestrial carbon model is fundamentally concerned with calculating 129 

LUC CO2 emissions resulting from the model’s economic decisions. It does this by 130 

determining the C stocks changes with every land use change, and allocating those as C 131 

fluxes over time. Specifically, each land use (i.e., the model’s various crops, forest types, 132 

etc., in each AEZ of each political region) has above- (vegetation) and belowground 133 

(soil) steady-state C densities associated with it, values currently based on Houghton 134 

(1999). These values vary by AEZ and political region and do not change during the 135 

model run; i.e., land is assumed to be in C equilibrium with the atmosphere in the 136 



 7 

absence of LUC. When a particular land-use category contracts in area, all the lost 137 

aboveground C (i.e. the land-use’s C density multiplied by the change in area) is emitted 138 

instantaneously, while its belowground C is emitted in an exponential decay pattern. 139 

When a land-use category expands, the resulting C uptake depends on the length of time 140 

it takes for the vegetation to mature (from 1 yr for crops to 30-100 yr for forests), 141 

following a Bertalanffy-Richards growth function. Carbon emission and sequestration 142 

thus result only from changes in land use, with emission from shrinking land-use 143 

categories set against uptake from growing ones. The model computes these fluxes across 144 

time but, importantly, does not track current C stocks in the manner of CLM or most land 145 

surface models. Further details on the agriculture, land use, and carbon cycle assumptions 146 

and algorithms of GCAM may be found in its online documentation 147 

(http://wiki.umd.edu/gcam) and several publications (Wise et al., 2014; Wise and Calvin, 148 

2010). 149 

In the iESM architecture a third model, the Global Land Model or GLM 150 

(http://eos-webster.sr.unh.edu/data_guides/glm_dg.jsp), currently downscales GCAM’s 151 

land use decisions (made on agro-ecological zones at the regional level) onto CLM’s 152 

global grid (Figure 1). This step uses algorithms and assumptions described by Di 153 

Vittorio et al. (2014) and Lawrence et al. (2012), and is not detailed further here, as this 154 

study focuses only on the coupling from CLM to GCAM. 155 

 156 

2.2. Issues in linking the CLM and GCAM carbon cycles 157 

 The fundamental conceptual, as opposed to technical, problem in linking the 158 

CLM and GCAM carbon cycle models is that the former tracks time-varying C pools and 159 
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fluxes, while the latter bases its economic optimization on long-term (equilibrium) C 160 

pools for large regions, and only computes LUC fluxes. Replacing GCAM’s entire 161 

internal carbon cycle (and its reliance on equilibrium C) may be possible in the long term, 162 

but would require a fundamental rewriting of this complex model’s agriculture and land-163 

use code. In this study a looser coupling between CLM and GCAM was deemed more 164 

tractable, while also sufficient for the experiments described here. Such an approach 165 

transmits relative changes between the models while allowing baseline data, against 166 

which the models have been calibrated and tested, to differ.  167 

Such a ‘loose’ coupling means that when a CLM grid cell’s carbon cycle changes, 168 

we need to (i) have a suitable proxy by which to change the values of GCAM’s steady-169 

state carbon assumptions, and (ii) distinguish LUC effects on carbon fluxes from climate 170 

and other (CO2, N deposition, etc.) effects, because only the latter should affect GCAM’s 171 

assumptions of equilibrium C stocks. For example, if the land carbon pool size of a grid 172 

cell with forested fraction simulated by CLM changes from one time step to the next 173 

because of harvest, this should not affect GCAM’s economic optimization—the forest 174 

will regrow to the same equilibrium state. If the same forest’s carbon pool rises because 175 

of CO2 fertilization, however, this information (i.e., there is more C sequestration 176 

potential available for this land use type) needs to be propagated to GCAM’s assumptions 177 

about long-term pool potentials. Distinguishing these sources is thus critical (Gasser and 178 

Ciais, 2013).  179 

 180 

2.3. Identifying the best proxy variables to link CLM to GCAM 181 
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 Given the decision to adjust GCAM’s equilibrium C assumptions based on 182 

relative changes in the CLM carbon cycle, one possible proxy variable to pass between 183 

the models was CLM’s time-varying carbon pools, based on the assumption that short-184 

term pool changes will translate to longer-term (i.e. equilibrium, as needed by GCAM) 185 

storage changes. These data may be more vulnerable to LUC effects than carbon flux 186 

data, however, as fluxes typically recover much faster from disturbance than do the 187 

slower pools (Amiro et al., 2010; Goetz et al., 2012). Short-term changes in C fluxes can 188 

be analytically related to steady-state C pools in models, even in the presence of 189 

ecosystem disturbances (Hurtt et al., 2010). This needed to be tested and demonstrated 190 

for CLM, however. 191 

We tested potential proxy variables in two ways. First, we ran a series of single 192 

forcing factor experiments in CLM, looking at how changes in each factor affected CLM 193 

carbon stocks and fluxes (specifically, gross primary production, net primary production 194 

or NPP, heterotrophic respiration or HR, soil organic matter, vegetation carbon, and total 195 

ecosystem carbon). The three forcing factors tested were atmospheric CO2, as alleviating 196 

the CO2 constraints on leaf-level photosynthesis may cascade up to ecosystem carbon 197 

storage (Gedalof and Berg, 2010; Lenton and Huntingford, 2003); nitrogen deposition, a 198 

potentially strong constraint on the current and future global carbon cycle (Galloway et 199 

al., 2005; Norby et al., 2010); and LUC, which affects both immediate and long-term 200 

land-atmosphere interactions (Caspersen et al., 2000; Pongratz et al., 2009). A ‘good’ 201 

proxy variable would be strongly affected by the first two, CO2 and N, but not by LUC 202 

(as only the former two will affect equilibrium C; see above), and would accurately 203 

reflect climate-driven changes to equilibrium C stocks in CLM. 204 
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In simulation S1 (the control), we used 1901-1920 climate drivers for the entire 205 

period 1850-2010, and kept atmospheric CO2 concentration, nitrogen deposition, and 206 

land cover constant at their 1850 values. In transient 1850-2010 simulations S2-S4, we 207 

used the same looped 1902-1920 climate, and varied one of the three factors in each 208 

while holding the other two factors constant (Table 1). The time varying factors were 209 

based on transient datasets constructed to mimic as closely as possible the historical 210 

record over the period 1850-2010, as described by Shi et al. (2013). The effect of each 211 

individual factor was then calculated by subtracting S1 from simulations S2, S3 and S4. 212 

The CRUNCEP data used to drive these uncoupled simulations is a combination of the 213 

CRU TS.2.1 0.5° monthly 1901-2002 climatology (Mitchell and Jones, 2005) and the 214 

2.5° NCEP2 reanalysis data beginning in 1948 and available in near real time (Kanamitsu 215 

et al., 2002; Mao et al., 2012b).  216 

Second, we examined how well NPP in particular was related to equilibrium C 217 

stocks in CLM only (i.e. before any coupling to GCAM). This involved two offline 218 

experiments (Table 1) with a repeating 5-year climate drawn either from the beginning 219 

(2005-2009, simulation E1) or end (2090-2094, simulation E2) of an RCP4.5 coupled 220 

simulation (Taylor et al., 2012). We quantified how well (i) NPP in the first 5 years of 221 

simulation E1 predicted total vegetation C in the final 5 years, and (ii) the change in NPP 222 

resulting from an altered climate state (E2 minus E1) predicted the relative change in C 223 

pools over the final years of the two simulations.  224 

Taken together, these experiments tested how well NPP could be used to predict 225 

equilibrium C under both constant and changing climate. The state of the terrestrial 226 

carbon system at the beginning of these simulations reflected the disturbance and climate 227 
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histories of the 20th century, with various different non-equilibrium C states across 228 

different grid cells and PFTs. Land cover was fixed at 2000 values, and we ran the E1 229 

and E2 simulations for 150 model years with no additional LUC in order to allow the 230 

carbon stocks to approach their equilibrium state. It is important to note that we did not 231 

disable the fire algorithms in CLM. Fire significantly influences model stocks and fluxes 232 

(Li et al., 2014), and thus rather than converging to a single steady-state carbon stock, 233 

PFTs influenced by fire converged to a quasi-equilibrium characterized by periodic 234 

carbon losses due to fire followed by periods of recovery. 235 

 236 

2.4. Distinguishing climate from land-use signals 237 

As noted above, it is important to distinguish carbon cycle changes caused by 238 

LUC, versus those caused by climate change. For the CLM to GCAM coupling, even a 239 

perfect proxy variable will be subject to climate and land-use changes during a CESM 240 

run, both before the run starts (i.e., during spinup or initialization phases) as well as 241 

during a model run. For example, a cell in which a new PFT is established immediately 242 

prior to an iESM run would have very low C stocks and NPP in the first timestep; as its 243 

vegetation regrows, the cell would appear, to GCAM, to be undergoing enormous 244 

productivity increases. Conversely, significant expansion of a PFT (e.g., agriculture 245 

reverting to forest) during the iESM run might appear to have drastically lowered 246 

productivity, leading GCAM to redirect land away from that PFT. Both of these cases 247 

cause problems for GCAM because productivity drives decision-making in the model, 248 

which bases its land-use decisions based on the relative inherent profitability of using 249 
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land for competing purposes (Wise and Calvin, 2010). As a result apparent changes in 250 

productivity produce changes in profit (as measured in U.S. dollars) and thus land use. 251 

Thus in both cases, we need to exclude cells with anomalously large C changes, 252 

driven by LUC, from the final numeric scalars (i.e., the proxy variables signaling how 253 

much GCAM should adjust its assumptions of equilibrium C) computation. They will 254 

bias the computation of the scalars, and lead GCAM into a possible feedback loop: if the 255 

model sees highly anomalous values, it may allocate more land to those PFTs, resulting 256 

in higher profits and further land use change in the region with the anomaly. (A negative 257 

feedback is also possible; both cases occur because the changed productivity alters the 258 

relative profitability of the different land uses, and profit maximization is the 259 

fundamental decision-making criterion in GCAM.) 260 

To distinguish the effect of LUC (as opposed to climate effects) on primary CO2 261 

fluxes and land carbon pools, we assumed that climate change will have a broad spatial 262 

distribution, either global or regional, while LUC will affect relatively small groups of 263 

cells in any particular timestep; this obviously may not hold in particular regions and 264 

points in time (Arora and Boer, 2010), but should be broadly true across the millions of 265 

data points (~105 grid cells x PFT combinations) being output by CLM. Thus a statistical 266 

outlier test, comparing how much any particular cell’s carbon cycle has changed relative 267 

to the start of the run, should be able to exclude cells whose inferred change in long-term 268 

carbon density fall significantly outside of the norm. To do so we used a method based on 269 

median absolute deviation (Davies and Gather, 1993), a robust (insensitive to outliers) 270 

measure of central tendency. The scalars were then mapped from CLM’s PFTs and grid 271 
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cells to GCAM’s land-cover types and AEZ regions, weighted by PFT area, land area in 272 

each grid cell, and cell area in the AEZ. 273 

This technique depends on the overall population mean not being overly 274 

perturbed, and thus will not work in extreme scenarios of mass deforestation (e.g., Bonan 275 

et al., 1992). An important question is how soon, under increasing amounts of LUC, bias 276 

(i.e., LUC effects masquerading as climate change to GCAM) will be introduced into the 277 

iESM model system. We used a Monte Carlo simulation (M1 in Table 1), written in the 278 

statistical package R 2.15.1 (R Development Core Team, 2012), to examine how robust 279 

this outlier exclusion method would be to different levels of LUC, and what if any bias it 280 

might introduce to the GCAM carbon density values. For this exercise, 10,000 cells (with 281 

normalized, unitless data) were simulated in which a constant +10% climate-change 282 

effect on equilibrium C was presumed to be occurring (Jain and Yang, 2005). A LUC 283 

effect, ranging from -500% to +500% and affecting from 5% to 95% of the cells, was 284 

then additionally applied. The outlier exclusion test defined above was then calculated on 285 

the cells, and a putative signal calculated on the remaining cells. This inferred climate 286 

change was then compared to the original known climate signal to estimate how much 287 

error (i.e., the difference between the two signals) would be introduced into iESM under 288 

such circumstances. 289 

 290 

3. Results and Discussion 291 

3.1. Single-forcing tests: identifying the best proxy variables 292 

Clear differences emerged between the potential proxy variables tested in CLM in 293 

response to three different forcing factors (Figure 2). Most notably, carbon stocks were 294 
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much more sensitive to LUC than were carbon fluxes. This result matches both theory 295 

(Odum, 1969) and a wide variety of field studies (Amiro et al., 2010; Goetz et al., 2012): 296 

stocks are by their nature integrative and accumulate relatively slowly compared to C 297 

flux changes. In contrast, the C flux variables were highly sensitive to climate effects, but 298 

exhibited low sensitivity to LUC. 299 

A second, related problem arising from the use of carbon stocks as proxy 300 

variables can be seen in Figure 3. In this case a test coupling between CLM and GCAM, 301 

using carbon stocks to pass climate-change information, produced sharp and unrealistic 302 

changes from the GCAM RCP4.5 control run. (This occurred even when running the 303 

outlier-exclusion protocol described above.) Global LUC emissions climbed throughout 304 

the 21st century in a departure from the RCP4.5 control, because a few CLM grid cells, 305 

located in GCAM’s “Middle East” region, were subject to LUC at the end of CLM’s 306 

transient simulation phase. As a result, their C stocks (and GCAM’s estimation of their 307 

long-term potential C) increased rapidly in the early years of the model run, leading 308 

GCAM to pour more resources into these cells (because these cells’ productivity 309 

appeared extraordinarily high, as described in the Methods). Increasing the area of newly 310 

planted bioenergy crops created an even stronger signal of rapidly increasing carbon 311 

stocks, exacerbating the original problem and causing GCAM to put even more resources 312 

into the region. By the end of the century, GCAM was mistakenly growing a huge 313 

percentage of the world’s bioenergy crops in the region, on a very small area of land 314 

(Figure 3). Conversely, the use of NPP and HR caused no such problems, because of 315 

their relatively fast recovery from LUC disturbance (cf. Figure 2). 316 
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The two primary fluxes determining carbon balance (net primary production and 317 

heterotrophic respiration, NPP and HR) were thus chosen as proxy variables linking 318 

CLM to GCAM, with CLM NPP changes used to scale GCAM’s assumptions of 319 

aboveground equilibrium C, while a combination of NPP and HR provided a relative 320 

scaling for GCAM’s belowground carbon, computed at 5-year coupling step as: 321 

𝐶! = 𝐶!!
𝑁𝑃𝑃
𝑁𝑃𝑃!

 (1) 

𝐶! = 𝐶!!
𝑁𝑃𝑃
𝑁𝑃𝑃!

+
𝐻𝑅!
𝐻𝑅 /2 (2) 

Here the ratio of NPP (at the current time step) to NPP at the beginning of the run (NPP0) 322 

determines how aboveground equilibrium C in GCAM (CA) will change relative to the 323 

beginning of the run (CA0). CLM’s NPP and HR together determine changes in GCAM 324 

equilibrium belowground carbon (CB); note that as NPP and HR get larger/smaller and 325 

smaller/larger compared to their starting values, GCAM’s equilibrium C rises/falls. 326 

 327 

3.2. Correlation between NPP and equilibrium pools in CLM 328 

Simulations E1 and E2 provided insight into the relationship between NPP and 329 

equilibrium C pools within CLM. NPP at the beginning of the E1 simulation was a good 330 

predictor of the equilibrium pools values at the end of the simulation (Figure 4), although 331 

the slope of this relationship varied for different PFTs. It was also apparent that this 332 

relationship breaks down at very low NPP values for some PFTs. This result is consistent 333 

with ecological theory and observations, as freshly disturbed ecosystems require a period 334 

of initial growth before NPP stabilizes. These very low NPP values were reliably 335 

excluded by the outlier exclusion method discussed above and tested below. 336 
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We also found that the change in NPP resulting from an altered pattern of climate 337 

(comparing simulations E1 and E2) was a relatively good predictor of the subsequent 338 

change in equilibrium C stocks. Table 2 shows the slopes of the linear relationships 339 

between the change in initial NPP (simulation E2 minus E1) and change in equilibrium C 340 

for each PFT in CLM. The initial (2005-2009) change in NPP was able to explain 19-341 

92% of the variance in the C pool change over the 21st century simulation with one 342 

exception (broadleaf evergreen shrubs, 6%). In general, NPP was a better predictor for 343 

relatively high-carbon forest ecosystems, as compared to grasses, shrubs, and crops. This 344 

is good, as high-C systems are particularly important for GCAM: changes in their land 345 

areas exert disproportionate effects on atmospheric CO2, which the model is frequently 346 

trying to minimize. 347 

To determine whether fire dynamics were responsible for some of the 348 

unexplained variance in equilibrium C pools, we performed the same analysis a second 349 

time, excluding PFT-gridcell combinations in which the cumulative carbon loss from fire 350 

over the 150 year E1 simulation exceeded 800 g C m-2. This led to moderate (generally 5-351 

10%) improvements in the R2 values in all PFTs except the two broadleaf evergreen 352 

PFTs, and moderate increases in the regression slopes, indicating that fire-influenced 353 

regions tend to have lower C values than others. This is consistent with both observations 354 

and CLM’s general fire characteristics (Li et al., 2014), and suggests that fire dynamics 355 

and fire regime changes in response to climate change are important to account for when 356 

constructing simple proxies that can predict changes in future terrestrial carbon stocks 357 

based on evolving climatic and ecological conditions.  358 

 359 
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3.3. Distinguishing the effects of LUC from climate 360 

 The initial experiments thus established the best available variables to loosely 361 

couple CESM and GCAM. But how well could the coupling—specifically, statistically 362 

excluding CLM grid cells whose carbon fluxes were changing ‘too fast’—separate LUC 363 

and climate signals? The M1 experiment results (Figure 5) suggested that as long as 364 

fewer than ~25% of the simulation cells were disturbed, the error (between the known 365 

climate signal and that inferred by the outlier test) remained relatively small (<20%). 366 

Even when larger numbers of cells were perturbed, the LUC effect had to be quite large 367 

to exceed this level. Because the outlier test is applied to the global population, and not 368 

sub-regions, this implies that only under extreme scenarios will this mechanism start to 369 

introduce substantial error. (In test iESM runs attempting to reproduce RCP 4.5, 4-8% of 370 

the global grid cells were excluded–i.e., failed the outlier test–at each timestep.)  371 

 372 

3.4. Implications of the loose coupling between CLM and GCAM 373 

 For the initial construction of the iESM system, we chose a ‘loose’ coupling 374 

between the ESM and IAM, in which GCAM’s equilibrium C assumptions of various 375 

ecosystems tracked the relative changes in CLM’s short-term C fluxes, after exclusion of 376 

LUC effects. This has the advantage of not requiring a fundamental rewriting of GCAM, 377 

as the mathematical formulae and economic principles underlying its land-use decisions 378 

are based on equilibrium C (Wise and Calvin, 2010). In addition, it guarantees that if 379 

climate change affects the carbon cycle, GCAM’s equilibrium assumptions will change 380 

correspondingly for the same vegetation type and spatial location, feeding back into 381 

economic and land-use decisions that propagate back to CLM (Di Vittorio et al., 2014). 382 
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This is a powerful improvement over the fixed assumptions of both IAMs and 383 

ESMs in these areas, sidestepping the lack of process fidelity and spatial resolution (for 384 

the IAM) and addressing the lack of human agency (for the ESM). The loose coupling 385 

does have disadvantages, however, requiring the statistical identification of outlier grid 386 

cells and inevitable mismatches between the models’ definitions of PFTs, C pools, and 387 

time steps (Di Vittorio et al., 2014). In addition, the outlier-exclusion step will break 388 

down under extreme LUC scenarios, scenarios that while unrealistic can be a useful 389 

research tool (Bonan, 2008; Nobre et al., 1991; Thomson et al., 2010). This is a particular 390 

concern given that the current mechanism was only tested under the relatively moderate 391 

RCP 4.5. For these reasons, we anticipate that the long-term solution is a full 392 

incorporation of an IAM into an ESM, with a unified C cycle. 393 

 394 

4. Conclusions 395 

Here we have implemented and tested a coupling mechanism between the carbon 396 

cycles of an earth system model (CLM) and an integrated assessment (GCAM) model. 397 

CLM’s net primary production and heterotrophic respiration outputs were found to be the 398 

most robust proxy variables by which to manipulate GCAM’s assumptions of long-term 399 

ecosystem steady state carbon, with short-term forest NPP shifts strongly correlated with 400 

long-term biomass changes in particular. By assuming the carbon cycle effects of land-401 

use change are short-term and spatially limited relative to widely distributed climate 402 

effects, we were able to distinguish these effects successfully in the model coupling, 403 

passing only the latter to GCAM. Increasingly extreme LUC scenarios will eventually 404 

break down this mechanism, however.  405 
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This work is only one step to a full coupling of an ESM and IAM; the second is 406 

described by Di Vittorio et al. (Di Vittorio et al., 2014), and consists of land-use and 407 

land-cover harmonization steps that allow CLM to achieve higher afforestation and wood 408 

harvest rates than possible in the CMIP5 process. By allowing climate effects on the 409 

CLM carbon cycle to modulate, in real time, the economic and policy decisions of an 410 

integrated assessment model, it provides a foundation for further development of the 411 

iESM project linking these models in a robust and flexible framework. Such a framework 412 

will, in turn, facilitate future modeling of the two-way interactions between human and 413 

earth system processes. 414 
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Table 1. Summary of simulations performed. 653 

Name Type Purpose 

S1 Uncoupled CLM, 1850-2010, 

constant (1901-1920) climate 

Control for S2, S3, S4 

S2 S1 + changing CO2  Single-factor experiments quantifying how 

CO2, N deposition, and LUC affect 

potential proxy variables 

S3 S1 + changing N deposition  

S4 S1 + changing LUC  

E1 Uncoupled CLM, constant 

(2005-2009) climate 

Equilibrium biomass simulations 

quantifying how initial NPP predicts final 

vegetation C 

E2 Uncoupled CLM, constant 

(2090-2094) climate 

Equilibrium biomass simulation 

quantifying how climate-driven changes in 

NPP predict changes in vegetation C 

M1 Idealized Monte Carlo Assess error that could be introduced to 

climate effects scalars by increasing 

amount of LUC. 
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Table 2. Slope (yr), adjusted R2 value, and number of grid cells for the relationship 656 

between change in NPP in response to a climate change signal and resulting change in 657 

equilibrium biomass (simulations E1 and E2 in Table 1). Excluding PFTs whose 658 

cumulative carbon loss from fires exceeds 8 Mg C ha-1 over 150 years generally 659 

improved the R2 values and increased the slopes (data not shown).  660 

PFT Name Slope R2 Count 

1 needleleaf_evergreen_temperate_tree 20.4 0.52 3500 

2 needleleaf_evergreen_boreal_tree 20.5 0.68 5136 

3 needleleaf_deciduous_boreal_tree 24.9 0.92 1643 

4 broadleaf_evergreen_tropical_tree 18.0 0.35 2609 

5 broadleaf_evergreen_temperate_tree 20.9 0.40 1702 

6 broadleaf_deciduous_tropical_tree 25.2 0.56 3909 

7 broadleaf_deciduous_temperate_tree 21.9 0.49 3966 

8 broadleaf_deciduous_boreal_tree 23.6 0.64 5311 

 All trees 21.5 0.51 27776 

9 broadleaf_evergreen_shrub 1.9 0.06 299 

10 broadleaf_deciduous_temperate_shrub 5.8 0.45 3336 

11 broadleaf_deciduous_boreal_shrub 6.5 0.60 5979 

 All shrubs 6.0 0.50 9614 

12 c3_arctic_grass 1.8 0.30 6417 

13 c3_non-arctic_grass 2.4 0.38 8061 

14 c4_grass 1.1 0.19 5436 

 All grasses 1.6 0.28 19914 
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15 crop 1.7 0.19 9142 
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  662 
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Figure 1. High-level overview of the iESM (integrated earth system model) system; a 663 

more detailed schematic is presented by Di Vittorio et al (2014). Oval boxes represent 664 

models, and arrows show data flows. This paper focuses on the information flow between 665 

CLM (part of CESM) and GCAM, in bold. 666 
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Figure 2. Response of Community Land Model outputs to changes in atmospheric CO2 669 

(simulation S2), nitrogen deposition (NDEP, simulation S3), and land-use/land cover 670 

change (LULLC, simulation S4; cf. Table 1). Outputs shown are all relative to an 1850 671 

baseline, as described in the text, and include fire emissions (Fire), terrestrial gross 672 

primary production (GPP), heterotrophic respiration (HR), net primary production (NPP), 673 

carbon in soil organic matter (SOMC), total ecosystem carbon (TotC), and total 674 

vegetation carbon (VegC). 675 
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Figure 3. GCAM model output (energy derived from bioenergy by region of the world) 678 

in three model runs, the RCP4.5 control, a coupled CLM-GCAM run using carbon stocks 679 

as a coupling mechanism, and a run using the final coupling described in the text. In the 680 

second case the model diverged sharply and unrealistically from the RCP4.5 control, 681 

because the vulnerability of C stock data to disturbance effects triggered a feedback loop 682 

in GCAM. The final run, incorporating the coupling and outlier-exclusion mechanisms 683 

described in the text, showed no such divergence. Data are from model year 2065, when 684 

the second run was stopped.  685 
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Figure 4. Relationship between net primary production (NPP, 2005-2009) to biomass 688 

(2090-2094) in CLM for crops, grasses, shrubs, and trees; cf. Table 2. Lines show best-689 

fit linear regressions. Results are from the E1 and E2 simulations in Table 1. 690 

 691 

  692 
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Figure 5. Monte Carlo simulation M1 (cf. Table 1) examining if an outlier test can 693 

distinguish between artificial climate and land use change (LUC) signals. Contour lines 694 

(every 20%) show error between the inferred climate change signal and the known signal 695 

as increasing numbers of cells (y axis) are perturbed by LUC with increasing effect (x 696 

axis). The effect (i.e., intensity) is shown as the ratio of perturbed cells’ equilibrium C to 697 

that of unperturbed cells: a doubling (e.g. transitioning from crop to young forest) is an 698 

effect of 2.0, a halving as 0.5, etc. 699 
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