1	On linking an earth system model to the equilibrium carbon representation of an
2	economically optimizing land use model
3	Ben Bond-Lamberty ¹ *, Katherine Calvin ¹ , Andrew D. Jones ² , Jiafu Mao ³ , Pralit Patel ¹ ,
4	Xiaoying Shi ³ , Allison Thomson ¹ , Peter Thornton ³ , and Yuyu Zhou ¹
5	
6	¹ Joint Global Change Research Institute, Pacific Northwest National Laboratory, College
7	Park, MD, USA
8	² Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 74-0171, Berkeley, CA,
9	USA
10	³ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN,
11	USA
12	
13	* Corresponding author: <u>bondlamberty@pnnl.gov</u>
14	
15	Submitted to Geoscientific Model Development
16	January 26, 2014
17	Revised version submitted June 6, 2014
18	Final version submitted September 21, 2014
19	
20	Abstract
21	Human activities are significantly altering biogeochemical cycles at the global
22	scale, and the scope of these activities will change with both future climate and
23	socioeconomic decisions. This poses a significant challenge for earth system models

24 (ESMs), which can incorporate land-use change as prescribed inputs but do not actively 25 simulate the policy or economic forces that drive land use change. One option to address 26 this problem is to couple an ESM with an economically oriented integrated assessment 27 model, but this is challenging because of the radically different goals and underpinnings 28 of each type of model. This study describes the development and testing of a coupling 29 between the terrestrial carbon cycle of an ESM (CESM) and an integrated assessment 30 (GCAM) model, focusing on how CESM climate effects on the carbon cycle could be 31 shared with GCAM. We examine the best proxy variables to share between the models, 32 and quantify how carbon flux changes driven by climate, CO₂ fertilization, and land-use 33 changes (e.g. deforestation) can be distinguished from each other by GCAM. The net 34 primary production and heterotrophic respiration outputs of the Community Land Model 35 (CLM), the land component of CESM, were found to be the most robust proxy variables 36 by which to recalculate GCAM's assumptions of equilibrium ecosystem steady state 37 carbon. Carbon-cycle effects of land-use change are spatially limited relative to climate 38 effects, and thus we were able to distinguish these effects successfully in the model 39 coupling, passing only the latter to GCAM. This paper does not present results of a fully 40 coupled simulation but shows, using a series of offline CLM simulations and an 41 additional idealized Monte Carlo simulation, that our CESM-GCAM proxy variables 42 reflect the phenomena that we intend, and do not contain erroneous signals due to LUC. 43 By allowing climate effects from a full ESM to dynamically modulate the economic and 44 policy decisions of an integrated assessment model, this work will help link these models 45 in a robust and flexible framework capable of examining two-way interactions between 46 human and earth system processes.

1. Introduction

49	Human activities are significantly altering biogeochemical cycles at the global
50	scale, e.g. by appropriation of net primary production (Imhoff et al., 2004; Ito, 2011),
51	modification of natural fire dynamics (Pechony and Shindell, 2010), and fossil fuel
52	emissions raising atmospheric CO ₂ levels (Le Queré et al., 2009). In addition, land-use
53	change (LUC) exerts strong effects on the global carbon cycle (Bonan, 2008; Caspersen
54	et al., 2000; Arora and Boer, 2010; Laganière et al., 2009), as well as direct biophysical
55	effects on albedo and water vapor fluxes, that in turn have significant regional to global
56	consequences (Brovkin et al., 2013; Jones et al., 2013b). As a result, different policy
57	choices vis-à-vis LUC and carbon may result in greatly differences in the future carbon
58	cycle and global climate (Wise et al., 2009; Jones et al., 2013a), even though the direct
59	LUC fluxes will likely be far smaller than in the past (Brovkin et al., 2013).
60	This poses a significant challenge for global earth system models (ESMs), in
61	which fully coupled climate models are used to draw inferences about Earth's past and
62	future climate states and understand how changes to the radiative properties of Earth's
63	atmosphere interact with its climate, biogeochemistry, and carbon cycle (Brovkin et al.,
64	2013; Todd-Brown et al., 2014). Such models may incorporate LUC as prescribed inputs,
65	but do not simulate policy options or economic forces, a significant limitation given how
66	strongly humans can perturb the earth system (Hurtt et al., 2002; Randerson et al., 2009).
67	Conversely, integrated assessment models (IAMs) are used to examine the human
68	components of the Earth system, including greenhouse gas emission sources, and drivers
69	of land-use change. Their representation of the physical climate and earth system is

simplistic, however, with little spatial resolution or process fidelity compared to an ESM
(Meinshausen et al., 2011a; Meinshausen et al., 2011b). These two modeling
paradigms—ESMs with no economic or energy system modeling, and IAMs with only
basic representations of natural processes—developed largely independently of each
other, and their interactions have historically been limited.

75 ESMs and IAMs increasingly need each other's capabilities, however (van 76 Vuuren et al., 2012; Houghton, 2013). One solution is to couple an ESM to an IAM, 77 letting each model specialize in its specific domain while passing information on the 78 natural and human systems, respectively, between them. This would provide a two-way 79 coupling within a single integrated system, whereby economic decisions in the IAM 80 translate directly into trace gas fluxes and land use changes in the ESM, and changes in 81 the ESM climate feed back onto crop yields, heating and cooling demands, energy 82 production, etc. in the IAM. Successfully linking such complex, large models would 83 permit integrated and unprecedented analyses of the interactions between economic 84 change, climate policy, and the physical earth system, with fully coupled feedbacks 85 between the economic and physical-science components (van Vuuren et al., 2012). 86 This paper describes the development and testing of a mechanism linking the 87 terrestrial carbon components of an ESM (CESM, the Community Earth System Model) 88 with an IAM (the Global Change Assessment Model, GCAM) (Figure 1). The goals of 89 the current study were to develop and test a robust but tractable coupling allowing 90 GCAM LUC projections to respond to changes in the CESM climate and biogeochemical

91 cycles. We focus here on the terrestrial aspect of the CESM-to-GCAM coupling, but this

- 92 is only one component of a larger effort to create a more general integrated Earth System
 93 Model (iESM) (Jones et al., 2013a) as described above.
- 94

95 2. Materials and Methods

96 2.1. Model descriptions

97 Both CESM's Community Land Model (CLM) and GCAM have been extensively 98 described, and here we note only their most relevant aspects (Gent et al., 2011). The 99 terrestrial model in the CESM system, CLM simulates the cycling and land-atmosphere 100 exchange of energy, water, carbon, and trace gases. CLM version 4, used in this study, 101 resulted from merging the biophysical framework of CLM v3.5 (Oleson et al., 2008) with 102 the carbon and nitrogen dynamics of the biogeochemistry model Biome-BGC (Thornton 103 et al., 2002; Running and Hunt, 1993). The model incorporates biogeophysics, surface 104 hydrology, biogeochemistry, and dynamic vegetation components (Bonan et al., 2002), 105 whose dynamics have been extensively tested (Shi et al., 2011; Oleson et al., 2008; 106 Lawrence et al., 2008; Mao et al., 2012a; Mao et al., 2012b). Model vegetation is based 107 on plant functional types (PFTs) occupying dynamic fractions of each grid cell (typically 108 0.25-2° resolution), with each PFT (1 bare ground, 8 tree, 3 shrub, 3 grass, 1 crop) 109 characterized by distinct physiological parameters (Oleson et al., 2010). The model's C 110 and N cycles are closely coupled and include canopy photosynthesis, plant growth and 111 mortality, photosynthate allocation, and subsurface C and N cycling (Thornton et al., 112 2007); at any point in time, CLM tracks a wide suite of above- and belowground C pools 113 resulting from the integrated effects of these and other (Kloster et al., 2010) processes.

114	The GCAM model, by contrast, is an economic model driven by assumptions
115	about population size and labor productivity that determine potential gross domestic
116	product in each of 14 regions; these regions are further divided by GCAM's agriculture
117	and land-use submodel into 18 agro-ecological zones or AEZs (Monfreda et al., 2009).
118	GCAM originated as the energy-economic MiniCAM model (Edmonds and Reilly,
119	1983), and currently integrates energy, agriculture, forestry, and land markets with a
120	simple terrestrial carbon cycle (Thomson et al., 2010; Wise et al., 2009). The model
121	operates on a 5-year timestep, computing simultaneous market-clearing prices for all
122	energy, agriculture, and land markets (Kim et al., 2006). The model is typically used to
123	explore the effects of policy scenarios-for example, carbon pricing, emissions
124	constraints, or capped limits on total radiative forcing (Calvin et al., 2009). Economic
125	land use decisions are based on the relative inherent profitability of using land for
126	competing purposes. GCAM does not use land use allocation constraints, but its
127	calibration based on historical data means that history is reflected in future land
128	allocation decisions (Wise and Calvin, 2010; Wise et al., 2014).
129	GCAM's terrestrial carbon model is fundamentally concerned with calculating
130	LUC CO ₂ emissions resulting from the model's economic decisions. It does this by
131	determining the C stocks changes with every land use change, and allocating those as C
132	fluxes over time. Specifically, each land use (i.e., the model's various crops, forest types,
133	etc., in each AEZ of each political region) has above- (vegetation) and belowground
134	(soil) steady-state C densities associated with it, values currently based on Houghton
135	(1999). These values vary by AEZ and political region and do not change during the
136	model run; i.e., land is assumed to be in C equilibrium with the atmosphere in the

137	absence of LUC. When a particular land-use category contracts in area, all the lost
138	aboveground C (i.e. the land-use's C density multiplied by the change in area) is emitted
139	instantaneously, while its belowground C is emitted in an exponential decay pattern.
140	When a land-use category expands, the resulting C uptake depends on the length of time
141	it takes for the vegetation to mature (from 1 yr for crops to 30-100 yr for forests),
142	following a Bertalanffy-Richards growth function. Carbon emission and sequestration
143	thus result only from changes in land use, with emission from shrinking land-use
144	categories set against uptake from growing ones. The model computes these fluxes across
145	time but, importantly, does not track current C stocks in the manner of CLM or most land
146	surface models. Further details on the agriculture, land use, and carbon cycle assumptions
147	and algorithms of GCAM may be found in its online documentation
148	(http://wiki.umd.edu/gcam) and several publications (Wise et al., 2014; Wise and Calvin,
149	2010).
150	In the iESM architecture a third model, the Global Land Model or GLM
151	(http://eos-webster.sr.unh.edu/data_guides/glm_dg.jsp), currently downscales GCAM's
152	land use decisions (made on agro-ecological zones at the regional level) onto CLM's
153	global grid (Figure 1). This step uses algorithms and assumptions described by Di
154	Vittorio et al. (2014) and Lawrence et al. (2012), and is not detailed further here, as this
155	study focuses only on the coupling from CLM to GCAM.
156	
157	2.2. Issues in linking the CLM and GCAM carbon cycles

158 The fundamental conceptual, as opposed to technical, problem in linking the159 CLM and GCAM carbon cycle models is that the former tracks time-varying C pools and

160	fluxes, while the latter bases its economic optimization on long-term (equilibrium) C
161	pools for large regions, and only computes LUC fluxes. Replacing GCAM's entire
162	internal carbon cycle (and its reliance on equilibrium C) may be possible in the long term,
163	but would require a fundamental rewriting of this complex model's agriculture and land-
164	use code. In this study a looser coupling between CLM and GCAM was deemed more
165	tractable, while also sufficient for the experiments described here. Such an approach
166	transmits relative changes between the models while allowing baseline data, against
167	which the models have been calibrated and tested, to differ.
168	Such a 'loose' coupling means that when a CLM grid cell's carbon cycle changes,
169	we need to (i) have a suitable proxy by which to change the values of GCAM's steady-
170	state carbon assumptions, and (ii) distinguish LUC effects on carbon fluxes from climate
171	and other (CO ₂ , N deposition, etc.) effects, because only the latter should affect GCAM's
172	assumptions of equilibrium C stocks. For example, if the land carbon pool size of a grid
173	cell with forested fraction simulated by CLM changes from one time step to the next
174	because of harvest, this should not affect GCAM's economic optimization-the forest
175	will regrow to the same equilibrium state. If the same forest's carbon pool rises because
176	of CO ₂ fertilization, however, this information (i.e., there is more C sequestration
177	potential available for this land use type) needs to be propagated to GCAM's assumptions
178	about long-term pool potentials. Distinguishing these sources is thus critical (Gasser and
179	Ciais, 2013).
180	

181 2.3. Identifying the best proxy variables to link CLM to GCAM

182 Given the decision to adjust GCAM's equilibrium C assumptions based on 183 relative changes in the CLM carbon cycle, one possible proxy variable to pass between 184 the models was CLM's time-varying carbon pools, based on the assumption that short-185 term pool changes will translate to longer-term (i.e. equilibrium, as needed by GCAM) 186 storage changes. These data may be more vulnerable to LUC effects than carbon flux 187 data, however, as fluxes typically recover much faster from disturbance than do the 188 slower pools (Amiro et al., 2010; Goetz et al., 2012). Short-term changes in C fluxes can 189 be analytically related to steady-state C pools in models, even in the presence of 190 ecosystem disturbances (Hurtt et al., 2010). This needed to be tested and demonstrated 191 for CLM, however.

192 We tested potential proxy variables in two ways. First, we ran a series of single 193 forcing factor experiments in CLM, looking at how changes in each factor affected CLM 194 carbon stocks and fluxes (specifically, gross primary production, net primary production 195 or NPP, heterotrophic respiration or HR, soil organic matter, vegetation carbon, and total 196 ecosystem carbon). The three forcing factors tested were atmospheric CO₂, as alleviating 197 the CO_2 constraints on leaf-level photosynthesis may cascade up to ecosystem carbon 198 storage (Gedalof and Berg, 2010; Lenton and Huntingford, 2003); nitrogen deposition, a 199 potentially strong constraint on the current and future global carbon cycle (Galloway et 200 al., 2005; Norby et al., 2010); and LUC, which affects both immediate and long-term 201 land-atmosphere interactions (Caspersen et al., 2000; Pongratz et al., 2009). A 'good' 202 proxy variable would be strongly affected by the first two, CO_2 and N, but not by LUC 203 (as only the former two will affect equilibrium C; see above), and would accurately 204 reflect climate-driven changes to equilibrium C stocks in CLM.

205	In simulation S1 (the control), we used 1901-1920 climate drivers for the entire
206	period 1850-2010, and kept atmospheric CO ₂ concentration, nitrogen deposition, and
207	land cover constant at their 1850 values. In transient 1850-2010 simulations S2-S4, we
208	used the same looped 1902-1920 climate, and varied one of the three factors in each
209	while holding the other two factors constant (Table 1). The time varying factors were
210	based on transient datasets constructed to mimic as closely as possible the historical
211	record over the period 1850-2010, as described by Shi et al. (2013). The effect of each
212	individual factor was then calculated by subtracting S1 from simulations S2, S3 and S4.
213	The CRUNCEP data used to drive these uncoupled simulations is a combination of the
214	CRU TS.2.1 0.5° monthly 1901-2002 climatology (Mitchell and Jones, 2005) and the
215	2.5° NCEP2 reanalysis data beginning in 1948 and available in near real time (Kanamitsu
216	et al., 2002; Mao et al., 2012b).
217	Second, we examined how well NPP in particular was related to equilibrium C
218	stocks in CLM only (i.e. before any coupling to GCAM). This involved two offline
219	experiments (Table 1) with a repeating 5-year climate drawn either from the beginning
220	(2005-2009, simulation E1) or end (2090-2094, simulation E2) of an RCP4.5 coupled
221	simulation (Taylor et al., 2012). We quantified how well (i) NPP in the first 5 years of
222	simulation E1 predicted total vegetation C in the final 5 years, and (ii) the change in NPP

resulting from an altered climate state (E2 minus E1) predicted the relative change in C

224 pools over the final years of the two simulations.

Taken together, these experiments tested how well NPP could be used to predict equilibrium C under both constant and changing climate. The state of the terrestrial carbon system at the beginning of these simulations reflected the disturbance and climate

228	histories of the 20 th century, with various different non-equilibrium C states across
229	different grid cells and PFTs. Land cover was fixed at 2000 values, and we ran the E1
230	and E2 simulations for 150 model years with no additional LUC in order to allow the
231	carbon stocks to approach their equilibrium state. It is important to note that we did not
232	disable the fire algorithms in CLM. Fire significantly influences model stocks and fluxes
233	(Li et al., 2014), and thus rather than converging to a single steady-state carbon stock,
234	PFTs influenced by fire converged to a quasi-equilibrium characterized by periodic
235	carbon losses due to fire followed by periods of recovery.
226	

1.00

. . . .

a . .

• .1

236

1 • .

220

cu ooth

237 2.4. Distinguishing climate from land-use signals

238 As noted above, it is important to distinguish carbon cycle changes caused by 239 LUC, versus those caused by climate change. For the CLM to GCAM coupling, even a 240 perfect proxy variable will be subject to climate and land-use changes during a CESM 241 run, both before the run starts (i.e., during spinup or initialization phases) as well as 242 during a model run. For example, a cell in which a new PFT is established immediately 243 prior to an iESM run would have very low C stocks and NPP in the first timestep; as its 244 vegetation regrows, the cell would appear, to GCAM, to be undergoing enormous 245 productivity increases. Conversely, significant expansion of a PFT (e.g., agriculture 246 reverting to forest) during the iESM run might appear to have drastically lowered 247 productivity, leading GCAM to redirect land away from that PFT. Both of these cases 248 cause problems for GCAM because productivity drives decision-making in the model, 249 which bases its land-use decisions based on the relative inherent profitability of using

land for competing purposes (Wise and Calvin, 2010). As a result apparent changes in
productivity produce changes in profit (as measured in U.S. dollars) and thus land use.

252 Thus in both cases, we need to exclude cells with anomalously large C changes, 253 driven by LUC, from the final numeric scalars (i.e., the proxy variables signaling how 254 much GCAM should adjust its assumptions of equilibrium C) computation. They will 255 bias the computation of the scalars, and lead GCAM into a possible feedback loop: if the 256 model sees highly anomalous values, it may allocate more land to those PFTs, resulting 257 in higher profits and further land use change in the region with the anomaly. (A negative 258 feedback is also possible; both cases occur because the changed productivity alters the 259 relative profitability of the different land uses, and profit maximization is the 260 fundamental decision-making criterion in GCAM.)

261 To distinguish the effect of LUC (as opposed to climate effects) on primary CO2 262 fluxes and land carbon pools, we assumed that climate change will have a broad spatial 263 distribution, either global or regional, while LUC will affect relatively small groups of 264 cells in any particular timestep; this obviously may not hold in particular regions and 265 points in time (Arora and Boer, 2010), but should be broadly true across the millions of data points ($\sim 10^5$ grid cells x PFT combinations) being output by CLM. Thus a statistical 266 267 outlier test, comparing how much any particular cell's carbon cycle has changed relative 268 to the start of the run, should be able to exclude cells whose inferred change in long-term 269 carbon density fall significantly outside of the norm. To do so we used a method based on 270 median absolute deviation (Davies and Gather, 1993), a robust (insensitive to outliers) 271 measure of central tendency. The scalars were then mapped from CLM's PFTs and grid

cells to GCAM's land-cover types and AEZ regions, weighted by PFT area, land area ineach grid cell, and cell area in the AEZ.

274 This technique depends on the overall population mean not being overly 275 perturbed, and thus will not work in extreme scenarios of mass deforestation (e.g., Bonan 276 et al., 1992). An important question is how soon, under increasing amounts of LUC, bias 277 (i.e., LUC effects masquerading as climate change to GCAM) will be introduced into the 278 iESM model system. We used a Monte Carlo simulation (M1 in Table 1), written in the 279 statistical package R 2.15.1 (R Development Core Team, 2012), to examine how robust 280 this outlier exclusion method would be to different levels of LUC, and what if any bias it 281 might introduce to the GCAM carbon density values. For this exercise, 10,000 cells (with 282 normalized, unitless data) were simulated in which a constant +10% climate-change 283 effect on equilibrium C was presumed to be occurring (Jain and Yang, 2005). A LUC 284 effect, ranging from -500% to +500% and affecting from 5% to 95% of the cells, was 285 then additionally applied. The outlier exclusion test defined above was then calculated on 286 the cells, and a putative signal calculated on the remaining cells. This inferred climate 287 change was then compared to the original known climate signal to estimate how much 288 error (i.e., the difference between the two signals) would be introduced into iESM under 289 such circumstances.

290

3. Results and Discussion

292 *3.1. Single-forcing tests: identifying the best proxy variables*

Clear differences emerged between the potential proxy variables tested in CLM in
 response to three different forcing factors (Figure 2). Most notably, carbon stocks were

much more sensitive to LUC than were carbon fluxes. This result matches both theory
(Odum, 1969) and a wide variety of field studies (Amiro et al., 2010; Goetz et al., 2012):
stocks are by their nature integrative and accumulate relatively slowly compared to C
flux changes. In contrast, the C flux variables were highly sensitive to climate effects, but
exhibited low sensitivity to LUC.

300 A second, related problem arising from the use of carbon stocks as proxy 301 variables can be seen in Figure 3. In this case a test coupling between CLM and GCAM, 302 using carbon stocks to pass climate-change information, produced sharp and unrealistic 303 changes from the GCAM RCP4.5 control run. (This occurred even when running the 304 outlier-exclusion protocol described above.) Global LUC emissions climbed throughout the 21st century in a departure from the RCP4.5 control, because a few CLM grid cells, 305 306 located in GCAM's "Middle East" region, were subject to LUC at the end of CLM's 307 transient simulation phase. As a result, their C stocks (and GCAM's estimation of their 308 long-term potential C) increased rapidly in the early years of the model run, leading 309 GCAM to pour more resources into these cells (because these cells' productivity 310 appeared extraordinarily high, as described in the Methods). Increasing the area of newly 311 planted bioenergy crops created an even stronger signal of rapidly increasing carbon 312 stocks, exacerbating the original problem and causing GCAM to put even more resources 313 into the region. By the end of the century, GCAM was mistakenly growing a huge 314 percentage of the world's bioenergy crops in the region, on a very small area of land 315 (Figure 3). Conversely, the use of NPP and HR caused no such problems, because of 316 their relatively fast recovery from LUC disturbance (cf. Figure 2).

The two primary fluxes determining carbon balance (net primary production and heterotrophic respiration, NPP and HR) were thus chosen as proxy variables linking CLM to GCAM, with CLM NPP changes used to scale GCAM's assumptions of aboveground equilibrium C, while a combination of NPP and HR provided a relative scaling for GCAM's belowground carbon, computed at 5-year coupling step as:

$$C_A = C_{A0} \frac{NPP}{NPP_0} \tag{1}$$

$$C_B = C_{B0} \left[\frac{NPP}{NPP_0} + \frac{HR_0}{HR} \right] / 2$$
⁽²⁾

Here the ratio of NPP (at the current time step) to NPP at the beginning of the run (NPP_0) determines how aboveground equilibrium C in GCAM (C_A) will change relative to the beginning of the run (C_{A0}). CLM's NPP and HR together determine changes in GCAM equilibrium belowground carbon (C_B); note that as NPP and HR get larger/smaller and smaller/larger compared to their starting values, GCAM's equilibrium C rises/falls.

327

328 *3.2.* Correlation between NPP and equilibrium pools in CLM

329 Simulations E1 and E2 provided insight into the relationship between NPP and 330 equilibrium C pools within CLM. NPP at the beginning of the E1 simulation was a good 331 predictor of the equilibrium pools values at the end of the simulation (**Figure 4**), although 332 the slope of this relationship varied for different PFTs. It was also apparent that this 333 relationship breaks down at very low NPP values for some PFTs. This result is consistent 334 with ecological theory and observations, as freshly disturbed ecosystems require a period 335 of initial growth before NPP stabilizes. These very low NPP values were reliably 336 excluded by the outlier exclusion method discussed above and tested below.

337 We also found that the change in NPP resulting from an altered pattern of climate 338 (comparing simulations E1 and E2) was a relatively good predictor of the subsequent 339 change in equilibrium C stocks. Table 2 shows the slopes of the linear relationships 340 between the change in initial NPP (simulation E2 minus E1) and change in equilibrium C 341 for each PFT in CLM. The initial (2005-2009) change in NPP was able to explain 19-92% of the variance in the C pool change over the 21st century simulation with one 342 343 exception (broadleaf evergreen shrubs, 6%). In general, NPP was a better predictor for 344 relatively high-carbon forest ecosystems, as compared to grasses, shrubs, and crops. This 345 is good, as high-C systems are particularly important for GCAM: changes in their land 346 areas exert disproportionate effects on atmospheric CO₂, which the model is frequently 347 trying to minimize.

348 To determine whether fire dynamics were responsible for some of the 349 unexplained variance in equilibrium C pools, we performed the same analysis a second 350 time, excluding PFT-gridcell combinations in which the cumulative carbon loss from fire over the 150 year E1 simulation exceeded 800 g C m^{-2} . This led to moderate (generally 5-351 10%) improvements in the R^2 values in all PFTs except the two broadleaf evergreen 352 353 PFTs, and moderate increases in the regression slopes, indicating that fire-influenced 354 regions tend to have lower C values than others. This is consistent with both observations 355 and CLM's general fire characteristics (Li et al., 2014), and suggests that fire dynamics 356 and fire regime changes in response to climate change are important to account for when 357 constructing simple proxies that can predict changes in future terrestrial carbon stocks 358 based on evolving climatic and ecological conditions.

359

360 *3.3. Distinguishing the effects of LUC from climate*

361	The initial experiments thus established the best available variables to loosely
362	couple CESM and GCAM. But how well could the coupling-specifically, statistically
363	excluding CLM grid cells whose carbon fluxes were changing 'too fast'-separate LUC
364	and climate signals? The M1 experiment results (Figure 5) suggested that as long as
365	fewer than $\sim 25\%$ of the simulation cells were disturbed, the error (between the known
366	climate signal and that inferred by the outlier test) remained relatively small (<20%).
367	Even when larger numbers of cells were perturbed, the LUC effect had to be quite large
368	to exceed this level. Because the outlier test is applied to the global population, and not
369	sub-regions, this implies that only under extreme scenarios will this mechanism start to
370	introduce substantial error. (In test iESM runs attempting to reproduce RCP 4.5, 4-8% of
371	the global grid cells were excluded-i.e., failed the outlier test-at each timestep.)
372	
373	3.4. Implications of the loose coupling between CLM and GCAM
374	For the initial construction of the iESM system, we chose a 'loose' coupling
375	between the ESM and IAM, in which GCAM's equilibrium C assumptions of various
376	ecosystems tracked the <i>relative</i> changes in CLM's short-term C fluxes, after exclusion of
377	LUC effects. This has the advantage of not requiring a fundamental rewriting of GCAM,
378	as the mathematical formulae and economic principles underlying its land-use decisions
379	are based on equilibrium C (Wise and Calvin, 2010). In addition, it guarantees that if
380	climate change affects the carbon cycle, GCAM's equilibrium assumptions will change

381 correspondingly for the same vegetation type and spatial location, feeding back into

382 economic and land-use decisions that propagate back to CLM (Di Vittorio et al., 2014).

383	This is a powerful improvement over the fixed assumptions of both IAMs and
384	ESMs in these areas, sidestepping the lack of process fidelity and spatial resolution (for
385	the IAM) and addressing the lack of human agency (for the ESM). The loose coupling
386	does have disadvantages, however, requiring the statistical identification of outlier grid
387	cells and inevitable mismatches between the models' definitions of PFTs, C pools, and
388	time steps (Di Vittorio et al., 2014). In addition, the outlier-exclusion step will break
389	down under extreme LUC scenarios, scenarios that while unrealistic can be a useful
390	research tool (Bonan, 2008; Nobre et al., 1991; Thomson et al., 2010). This is a particular
391	concern given that the current mechanism was only tested under the relatively moderate
392	RCP 4.5. For these reasons, we anticipate that the long-term solution is a full
393	incorporation of an IAM into an ESM, with a unified C cycle.
394	
395	4. Conclusions

396 Here we have implemented and tested a coupling mechanism between the carbon 397 cycles of an earth system model (CLM) and an integrated assessment (GCAM) model. 398 CLM's net primary production and heterotrophic respiration outputs were found to be the 399 most robust proxy variables by which to manipulate GCAM's assumptions of long-term 400 ecosystem steady state carbon, with short-term forest NPP shifts strongly correlated with 401 long-term biomass changes in particular. By assuming the carbon cycle effects of land-402 use change are short-term and spatially limited relative to widely distributed climate 403 effects, we were able to distinguish these effects successfully in the model coupling, 404 passing only the latter to GCAM. Increasingly extreme LUC scenarios will eventually 405 break down this mechanism, however.

406 This work is only one step to a full coupling of an ESM and IAM; the second is 407 described by Di Vittorio et al. (Di Vittorio et al., 2014), and consists of land-use and 408 land-cover harmonization steps that allow CLM to achieve higher afforestation and wood 409 harvest rates than possible in the CMIP5 process. By allowing climate effects on the 410 CLM carbon cycle to modulate, in real time, the economic and policy decisions of an 411 integrated assessment model, it provides a foundation for further development of the 412 iESM project linking these models in a robust and flexible framework. Such a framework 413 will, in turn, facilitate future modeling of the two-way interactions between human and 414 earth system processes. 415 416 Acknowledgements 417 We are grateful to the DOE Office of Science Integrated Assessment Research 418 Program and Earth System Modeling Program for funding through the integrated Earth 419 System Modeling Project. This research used resources of the National Energy Research 420 Scientific Computing Center, which is supported by the Office of Science of the U.S.

421 Department of Energy under Contract DE-AC02-05CH11231. The CESM project is sup-

- 422 ported by the National Science Foundation and the Office of Science (Biological and
- 423 Environmental Research) of the U.S. Department of Energy. We thank S. Smith for his
- 424 thoughtful comments on an early draft.

425

426 **References**

427 Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J. M.,

428 Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D.,

429	Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E.,
430	Margolis, H. A., Martin, T. A., McCaughey, J. H., Misson, L., Montes-Helu, M.
431	C., Noormets, A., Randerson, J. T., Starr, G., and Xiao, J.: Ecosystem carbon
432	dioxide fluxes after disturbance in forests of North America, J. Geophys. Res
433	Biogeosci., 115, G00K02, <u>10.1029/2010JG001390</u> , 2010.
434	Arora, V., and Boer, G. J.: Uncertainties in the 20th century carbon budget associated
435	with land use change, Global Change Biol., 16, 3327-3348, 10.1111/j.1365-
436	2486.2010.02202.x, 2010.
437	Bonan, G. B., Pollard, D., and Thompson, S. L.: Effects of boreal forest vegetation on
438	global climate, Nature, 359, 716-718, 1992.
439	Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X. B., Dai, Y., Dickinson,
440	R. E., and Yang, ZL.: The land surface climatology of the community land
441	model coupled to the NCAR community climate model, J. Climate, 15, 3123-
442	3149, 2002.
443	Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits
444	of forests, Science, 320, 1444-1449, 10.1126/science.1155121, 2008.
445	Brovkin, V., Boysen, L., Arora, V., Boisier, J. P., Cadule, P., Chini, L., Claussen, M.,
446	Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D.,
447	Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M. S.:
448	Effect of anthropogenic land-use and land-cover changes on climate and land
449	carbon storage in CMIP5 projections for the twenty-first century, J. Climate, 26,
450	6859-6881, 10.1175/JCLI-D-12-00623.1, 2013.
451	Calvin, K. V., Edmonds, J. A., Bond-Lamberty, B., Clarke, L. E., Kim, S. H., Kyle, G. P.,

452	Smith, S. J., Thomson, A. M., and Wise, M.: 2.6: Limiting climate change to 450
453	ppm CO ₂ equivalent in the 21st century, Energy Economics, 31, S107-S120,
454	<u>10.1016/j.eneco.2009.06.006</u> , 2009.
455	Caspersen, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., and Birdsey,
456	R. A.: Contributions of land-use history to carbon accumulation in U.S. forests,
457	Science, 290, 1148-1151, 10.1126/science.290.5494.1148, 2000.
458	Davies, L., and Gather, U.: The identification of multiple outliers, Journal of the
459	American Statistical Association, 88, 782-792, 1993.
460	Di Vittorio, A. V., Chini, L., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J.,
461	Branstetter, M. L., Collins, W. D., Thornton, P. E., Edmonds, J. A., Thomson, A.
462	M., Hurtt, G. C., Calvin, K. V., Jones, A. D., and Craig, T.: From land use to land
463	cover: Restoring the afforestation signal in GCAM to CESM land coupling and
464	the implications for CMIP5 RCP simulations, Biogeosciences, in prep, 2014.
465	Edmonds, J. A., and Reilly, J.: A long-term global energy-economic model of carbon
466	dioxide release from fossil fuel use, Energy Economics, 5, 74-88, 1983.
467	Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
468	Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the
469	nitrogen cycle: recent trends, questions, and potential solutions, Science, 320,
470	889-892, 10.1126/science.1136674, 2005.
471	Gasser, T., and Ciais, P.: A theoretical framework for the net land-to-atmosphere CO2
472	flux and its implications in the definition of "emissions from land-use change",
473	Earth System Dynamics Discussions, 4, 179-217, 10.5194/esdd-4-179-2013,
474	2013.

475	Gedalof, Z. e., and Berg, A. A.: Tree ring evidence for limited direct CO2 fertilization of
476	forests over the 20th century, Glob. Biogeochem. Cycles, 24, GB3027,
477	10.1029/2009GB003699, 2010.
478	Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R.,
479	Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H.,
480	Yang, ZL., and Zhang, M.: The Community Climate System Model Version 4, J.
481	Climate, 24, 4973-4991, 10.1175/2011JCLI4083.1, 2011.
482	Goetz, S. J., Bond-Lamberty, B., Harmon, M. E., Hicke, J. A., Houghton, R. A.,
483	Kasischke, E. S., Law, B. E., McNulty, S. G., Meddens, A. J. H., Mildrexler, D.,
484	O'Halloran, T. L., and Pfeifer, E. M.: Observations and assessment of forest
485	carbon recovery following disturbance in North America, J. Geophys. Res
486	Biogeosci., 117, G02022, 10.1029/2011JG001733, 2012.
487	Houghton, R. A.: The annual net flux of carbon to the atmosphere from changes in land
488	use 1850–1990, Tellus, 51, 298-313, <u>10.1034/j.1600-0889.1999.00013.x</u> , 1999.
489	Houghton, R. A.: Keeping management effects separate from environmental effects in
490	terrestrial carbon accounting, Global Change Biol., 19, 2609-2612,
491	10.1111/gcb.12233, 2013.
492	Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., Caspersen, J. P., Shevliakova, E.,
493	Houghton, R. A., and Moore III, B.: Projecting the future of the U.S. carbon sink,
494	Proc. Nat. Acad. Sci., 99, 1389-1394, 10.1073/pnas.012249999, 2002.
495	Hurtt, G. C., Fisk, J. P., Thomas, R. Q., Dubayah, R. O., Moorcroft, P. R., and Shugart,
496	H. H.: Linking models and data on vegetation structure, J. Geophys. Res
497	Biogeosci., 115, G00E10, <u>10.1029/2009JG000937</u> , 2010.

498	Imhoff, M. L., Bouana, L., Ricketts, T., Loucks, C., Harriss, R. C., and Lawrence, W. T.:
499	Global patterns in human consumption of net primary production, Nature, 429,
500	870-873, 10.1038/nature02619, 2004.
501	Ito, A.: A historical meta-analysis of global terrestrial net primary productivity: Are
502	estimates converging?, Global Change Biol., 17, 3161-3175, 10.1111/j.1365-
503	2486.2011.02450.x, 2011.
504	Jain, A. K., and Yang, X.: Modeling the effects of two different land cover change data
505	sets on the carbon stocks of plants and soils in concert with CO2 and climate
506	change, Glob. Biogeochem. Cycles, 19, GB2015, 10.1029/2004GB002349, 2005.
507	Jones, A. D., Collins, W. D., Edmonds, J. A., Torn, M. S., Janetos, A. C., Calvin, K. V.,
508	Thomson, A. M., Chini, L., Mao, J., Shi, X., Thornton, P. E., Hurtt, G. C., and
509	Wise, M.: Greenhouse gas policies influence climate via direct effects of land use
510	change, J. Climate, 26, 3657-3670, 10.1175/JCLI-D-12-00377.1, 2013a.
511	Jones, A. D., Collins, W. D., and Torn, M. S.: On the additivity of radiative forcing
512	between land use change and greenhouse gases, Geophys. Res. Lett., 40, 4036-
513	4041, 10.1002/grl.50754, 2013b.
514	Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, SK., Hnilo, J. J., Fiorino, M., and
515	Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), Bulletin of the American
516	Meteorological Society, 83, 1631-1643, 10.1175/BAMS-83-11-1631, 2002.
517	Kim, S. H., Edmonds, J. A., Lurz, J., Smith, S. J., and Wise, M.: The O ^{bj} ECTS
518	framework for integrated assessment: Hybrid modeling of transportation, Energy
519	Journal, 27, 63-91, 2006.
520	Kloster, S., Nahowald, N. M., Randerson, J. T., Thornton, P. E., Hoffman, F. M., Levis,

521	S., Lawrence, P. J., Feddema, J. J., Oleson, K. W., and Lawrence, D. M.: Fire
522	dynamics during the 20th century simulated by the Community Land Model,
523	Biogeosciences, 7, 1877-1902, 10.5194/bg-7-1877-2010, 2010.
524	Laganière, J., Angers, D. A., and Paré, D.: Carbon accumulation in agricultural soils after
525	afforestation: a meta-analysis, Global Change Biol., 16, 439-453, 10.1111/j.1365-
526	2486.2009.01930.x, 2009.
527	Lawrence, D. M., Slater, A. G., Romanovsky, V. E., and Nicolsky, D. J.: Sensitivity of a
528	model projection of near-surface permafrost degradation to soil column depth and
529	representation of soil organic matter, J. Geophys. Res., 113, F02011,
530	10.1029/2007jf000883, 2008.
531	Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O'Neill, B. C., Oleson, K.
532	W., Levis, S., Lawrence, D. M., Kluzek, E., Lindsay, K., and Thornton, P. E.:
533	Simulating the biogeochemical and biogeophysical impacts of transient land
534	cover change and wood harvest in the Community Climate System Model
535	(CCSM4) from 1850 to 2100, J. Climate, 25, 3071-3095, 10.1175/JCLI-D-11-
536	00256.1, 2012.
537	Le Queré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway,
538	T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K. R.,
539	Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R.,
540	Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T.,
541	Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy,
542	N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of
543	carbon dioxide, Nature Geoscience, 2, 831-836, <u>10.1038/ngeo689</u> , 2009.

544	Lenton, T. M., and Huntingford, C.: Global terrestrial carbon storage and uncertainties in
545	its temperature sensitivity examined with a simple model Global Change Biol., 9,
546	1333-1352, 2003.
547	Li, F., Bond-Lamberty, B., and Levis, S.: Quantifying the role of fire in the Earth system
548	- Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the
549	20th century, Biogeosciences, 11, 1345-1360, 10.5194/bg-11-1345-2014, 2014.
550	Mao, J., Shi, X., Thornton, P. E., Piao, S., and Wang, X.: Causes of spring vegetation
551	growth trends in the northern mid-high latitudes from 1982 to 2004, Environ. Res.
552	Lett., 7, 014010, 10.1088/1748-9326/7/1/014010, 2012a.
553	Mao, J., Thornton, P. E., Shi, X., Zhao, M., and Post, W. M.: Remote sensing evaluation
554	of CLM4 GPP for the period 2000–09, J. Climate, 25, 5327-5342, 10.1175/JCLI-
555	D-11-00401.1, 2012b.
556	Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-
557	ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model
558	description and calibration, Atmos. Chem. Phys., 11, 1417-1456, 10.5194/acp-11-
559	1417-2011, 2011a.
560	Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating atmosphere-ocean
561	and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications,
562	Atmos. Chem. Phys., 11, 1457-1471, 10.5194/acp-11-1457-2011, 2011b.
563	Mitchell, T. D., and Jones, P. D.: An improved method of constructing a database of
564	monthly climate observations and associated high-resolution grids, Internat. J.
565	Climat., 25, 693-712, 2005.
566	Monfreda, C., Ramankutty, N., and Hertel, T.: Global agricultural land use data for

567	climate change analysis, in: Economic Analysis of Land Use in Global Climate
568	Change Policy, edited by: Hertel, T., Rose, S. K., and Tol, R., Routledge, New
569	York, 368, 2009.
570	Nobre, C. A., Sellers, P. J., and Shukla, J.: Amazonian deforestation and regional climate
571	change, J. Climate, 4, 957-988, 1991.
572	Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie, R. E.: CO2
573	enhancement of forest productivity constrained by limited nitrogen availability,
574	Proc. Nat. Acad. Sci., 107, 19368-19373, 10.1073/pnas.1006463107, 2010.
575	Odum, E. P.: The strategy of ecosystem development, Science, 164, 262-270,
576	10.1126/science.164.3877.262, 1969.
577	Oleson, K. W., Niu, GY., Yang, ZL., Lawrence, D. M., Thornton, P. E., Lawrence, P.
578	J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.:
579	Improvements to the Community Land Model and their impact on the
580	hydrological cycle, J. Geophys. ResAtmos., 113, G01021,
581	<u>10.1029/2007JG000563</u> , 2008.
582	Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P.
583	J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R.
584	E., Feddema, J. J., Heald, C. L., Hoffman, F. M., Lamarque, J. F., Mahowald, N.
585	M., Niu, GY., Qian, T., Randerson, J. T., Running, S. W., Sakaguchi, K., Slater,
586	A. G., Stöckli, R., Wang, A., Yang, ZL., Zeng, X., and Zeng, X.: Technical
587	Description of version 4.0 of the Community Land Model (CLM), National
588	Center for Atmospheric Research, Boulder, 257, 2010.
589	Pechony, O., and Shindell, D. T.: Driving forces of global wildfires over the past

- 590 millennium and the forthcoming century, Proc. Nat. Acad. Sci., 107, 19167-
- 591 19170, 10.1073/pnas.1003669107, 2010.
- 592 Pongratz, J., Reick, C. H., Raddatz, T. J., and Claussen, M.: Effects of anthropogenic
- 593
 land cover change on the carbon cycle of the last millennium, Glob. Biogeochem.
- 594 Cycles, 23, GB4001, 10.1029/2009GB003488., 2009.
- 595 Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay, K., Lee,
- 596 Y.-H., Nevison, C. D., Doney, S. C., Bonan, G. B., Stöckli, R., Covey, C.,
- 597 Running, S. W., and Fung, I. Y.: Systematic assessment of terrestrial
- 598 biogeochemistry in coupled climate–carbon models, Global Change Biol., 15,
- 599 2462-2484, 10.1111/j.1365-2486.2009.01912.x, 2009.
- Running, S. W., and Hunt, R. E.: Generalization of a forest ecosystem process model for
- other biomes, BIOME-BGC, and an application for global-scale models, in:
- 602 Scaling Physiologic Processes: Leaf to Globe, edited by: Ehleringer, J. R., and

603 Field, C. B., Academic Press, San Diego, CA, 141-158, 1993.

- 604 Shi, X., Mao, J., Thornton, P. E., Hoffman, F. M., and Post, W. M.: The impact of
- 605 climate, CO₂, nitrogen deposition and land use change on simulated contemporary
- 606 global river flow, Geophys. Res. Lett., 38, L08704, 10.1029/2011GL046773,
- 607 2011.

608 Shi, X., Mao, J., Thornton, P. E., and Huang, M.: Spatiotemporal patterns of

- 609 evapotranspiration in response to multiple environmental factors simulated by the
- 610 Community Land Model, Environ. Res. Lett., 8, 024012, 10.1088/1748-
- 611 9326/8/2/024012, 2013.
- Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the

- experiment design, Bulletin of the American Meteorological Society, 93, 485-
- 614 498, 10.1175/BAMS-D-11-00094.1, 2012.
- 615 Thomson, A. M., Calvin, K. V., Chini, L., Hurtt, G. C., Edmonds, J. A., Bond-Lamberty,
- 616 B., Frolking, S. E., Wise, M., and Janetos, A. C.: Climate mitigation and the
- 617 future of tropical landscapes, Proc. Nat. Acad. Sci., 107, 19633-19638,
- 618 <u>10.1073/pnas.0910467107</u>, 2010.
- 619 Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S.,
- 620 Goldstein, A. H., Monson, R. K., Hollinger, D. Y., Falk, M., Chen, J., and Sparks,
- 521 J. P.: Modeling and measuring the effects of disturbance history and climate on
- 622 carbon and water budgets in evergreen needleleaf forests, Agric. Forest Meteorol.,

623 113, 185-222, <u>10.1016/S0168-1923(02)00108-9</u>, 2002.

- Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of
 carbon-nitrogen cycle coupling on land model response to CO2 fertilization and
- 626 climate variability, Glob. Biogeochem. Cycles, 21, Art. No. GB4018,
- 627 10.1029/2006GB002868, 2007.
- 628 Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F. M., Arora, V., Hajima, T., Jones, C.
- 629 D., Shevliakova, E., Tjiputra, J., Volodin, E. M., Wu, T., Zhang, Q., and Allison,
- 630 S. D.: Changes in soil organic carbon storage predicted by Earth system models
- during the 21st century, Biogeosciences, 11, 2341-2356, 10.5194/bgd-10-189692013, 2014.
- van Vuuren, D. P., Bayer, L. B., Chuwah, C., Ganzeveld, L., Hazeleger, W., van den
- Hurk, B. J. J. M., van Noije, T., O'Neill, B. C., and Strengers, B. J.: A
- 635 comprehensive view on climate change: coupling of earth system and integrated

637	9326/7/2/024012, 2012.
638	Wise, M., Calvin, K. V., Thomson, A. M., Clarke, L. E., Bond-Lamberty, B., Sands, R.
639	D., Smith, S. J., Janetos, A. C., and Edmonds, J. A.: Implications of limiting CO ₂
640	concentrations for land use and energy, Science, 324, 1183-1186,
641	<u>10.1126/science.1168475</u> , 2009.
642	Wise, M., and Calvin, K. V.: GCAM 3.0 Agriculture and Land Use: Technical
643	Description of Modeling Approach, Pacific Northwest National Laboratory
644	PNNL-20971
645	(https://wiki.umd.edu/gcam/images/8/87/GCAM3AGTechDescript12_5_11.pdf),
646	2010.
647	Wise, M., Calvin, K. V., Kyle, G. P., Luckow, P., and Edmonds, J. A.: Economic and
648	physical modeling of land use in GCAM 3.0 and an application to agricultural
649	productivity, land, and terrestrial carbon, Climate Change Economics, 5,
650	1450003, 10.1142/S2010007814500031, 2014.
651	

assessment models, Environ. Res. Lett., 7, 024012, 10.1088/1748-

Name	Туре	Purpose	
S1	Uncoupled CLM, 1850-2010,	Control for S2, S3, S4	
	constant (1901-1920) climate		
S2	S1 + changing CO ₂	Single-factor experiments quantifying how	
S3	S1 + changing N deposition	CO ₂ , N deposition, and LUC affect	
S4	S1 + changing LUC	potential proxy variables	
E1	Uncoupled CLM, constant	Equilibrium biomass simulations	
	(2005-2009) climate	quantifying how initial NPP predicts final	
		vegetation C	
E2	Uncoupled CLM, constant	Equilibrium biomass simulation	
	(2090-2094) climate	quantifying how climate-driven changes in	
		NPP predict changes in vegetation C	
M1	Idealized Monte Carlo	Assess error that could be introduced to	
		climate effects scalars by increasing	
		amount of LUC.	

Table 1. Summary of simulations performed.

656	Table 2. Slope (yr), adjusted R^2 value, and number of grid cells for the relationship
657	between change in NPP in response to a climate change signal and resulting change in
658	equilibrium biomass (simulations E1 and E2 in Table 1). Excluding PFTs whose
659	cumulative carbon loss from fires exceeds 8 Mg C ha ⁻¹ over 150 years generally
660	improved the R ² values and increased the slopes (data not shown).

PFT	Name	Slope	R ²	Count
1	needleleaf_evergreen_temperate_tree	20.4	0.52	3500
2	needleleaf_evergreen_boreal_tree	20.5	0.68	5136
3	needleleaf_deciduous_boreal_tree	24.9	0.92	1643
4	broadleaf_evergreen_tropical_tree	18.0	0.35	2609
5	broadleaf_evergreen_temperate_tree	20.9	0.40	1702
6 broadleaf_deciduous_tropical_tree		25.2	0.56	3909
7 broadleaf_deciduous_temperate_tree		21.9	0.49	3966
8	broadleaf_deciduous_boreal_tree	23.6	0.64	5311
	All trees	21.5	0.51	27776
9	broadleaf_evergreen_shrub	1.9	0.06	299
10	broadleaf_deciduous_temperate_shrub	5.8	0.45	3336
11	broadleaf_deciduous_boreal_shrub	6.5	0.60	5979
	All shrubs	6.0	0.50	9614
12	c3_arctic_grass	1.8	0.30	6417
13	c3_non-arctic_grass	2.4	0.38	8061
14	c4_grass	1.1	0.19	5436
	All grasses	1.6	0.28	19914

	15	crop	1.7	0.19	9142
661					

- Figure 1. High-level overview of the iESM (integrated earth system model) system; a
 more detailed schematic is presented by Di Vittorio et al (2014). Oval boxes represent
 models, and arrows show data flows. This paper focuses on the information flow between
- 666 CLM (part of CESM) and GCAM, in bold.

- 670 (simulation S2), nitrogen deposition (NDEP, simulation S3), and land-use/land cover
- 671 change (LULLC, simulation S4; cf. **Table 1**). Outputs shown are all relative to an 1850
- baseline, as described in the text, and include fire emissions (Fire), terrestrial gross
- 673 primary production (GPP), heterotrophic respiration (HR), net primary production (NPP),
- 674 carbon in soil organic matter (SOMC), total ecosystem carbon (TotC), and total
- 675 vegetation carbon (VegC).

678 Figure 3. GCAM model output (energy derived from bioenergy by region of the world) 679 in three model runs, the RCP4.5 control, a coupled CLM-GCAM run using carbon stocks 680 as a coupling mechanism, and a run using the final coupling described in the text. In the 681 second case the model diverged sharply and unrealistically from the RCP4.5 control, 682 because the vulnerability of C stock data to disturbance effects triggered a feedback loop 683 in GCAM. The final run, incorporating the coupling and outlier-exclusion mechanisms 684 described in the text, showed no such divergence. Data are from model year 2065, when 685 the second run was stopped.

686

Figure 4. Relationship between net primary production (NPP, 2005-2009) to biomass (2090-2094) in CLM for crops, grasses, shrubs, and trees; cf. Table 2. Lines show best-fit linear regressions. Results are from the E1 and E2 simulations in Table 1.

