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Abstract 22 

Repeated long-term censuses have revealed large-scale spatial patterns in Amazon Basin forest structure 23 
and dynamism, with some forests in the west of the Basin having up to a twice as high rate of 24 
aboveground biomass production and tree recruitment as forests in the east. Possible causes for this 25 
variation could be the climatic and edaphic gradients across the Basin and/or the spatial distribution of 26 
tree species composition. To help understand causes of this variation a new individual-based model of 27 
tropical forest growth, designed to take full advantage of the forest census data available from the 28 
Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-29 
stand variations in tree size distribution and key functional traits and between-stand differences in 30 
climate and soil physical and chemical properties. It runs at the stand level with four functional traits, 31 
leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) 32 
varying from tree to tree in a way that replicates the observed continua found within each stand. We 33 
first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement 34 
sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the 35 
model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree 36 
multi-annual growth rates generally agreed well with observations for small trees, but with deviations 37 
identified for larger trees. At the stand-level, simulations at 40 plots were used to explore the influence 38 
of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well 39 
as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On 40 
the other hand, all three measures of stand level productivity were positively related to both mean 41 
annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an 42 



2 

 

accurate parameterisation of within- and between-stand trait variability on the fidelity of model 43 
predictions. For example, when functional tree diversity was not included in the model (i.e., with just a 44 
single plant functional type with mean Basin-wide trait values) the predictive ability of the model was 45 
reduced. This was also the case when Basin-wide (as opposed to site-specific) trait distributions were 46 
applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling 47 
should strive to accurately represent observed variations in functionally important traits across the 48 
range of relevant scales.  49 

 50 

Keywords: Amazon Basin, tropical forest, individual-based model, functional traits, stomatal 51 
conductance, soil nutrient availability, gross primary productivity, net primary productivity, carbon use 52 
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1. Introduction 57 

The Amazon Basin, encompassing one of the planet’s largest forest areas and hosting one quarter 58 
of the Earth’s biodiversity, constitutes a large reservoir of living biomass (Malhi and Phillips, 2005). 59 
Amazon forests also have a substantial influence on regional and global climates (Shukla et al. 1990; 60 
Spracklen et al., 2012). These forests are, however, under strong human pressure through logging, 61 
forest to pasture conversion, and face at present a warming and more variable climate and changing 62 
atmospheric composition (Lewis et al., 2004; Gloor et al., 2013). Due to the enormous area of forest 63 
within the Amazon Basin, these factors have the potential to modify global atmospheric greenhouse 64 
concentrations, regional and global climate, and the overall biodiversity of the planet (Cramer et al., 65 
2004).  66 

Traditionally, two approaches have been followed to understand current and future state of the 67 
Amazon forests. First, Dynamic Global Vegetation Models (DGVM) have been used to simulate 68 
vegetation patterns and carbon fluxes across Amazonia (Moorcroft et al., 2001; Galbraith et al., 2010) 69 
with some predicting substantial carbon losses under scenarios of global change (White et al., 1999; 70 
Cox et al., 2004) but with others less so (Cramer et al., 2004), or even gains (Huntingford et al., 2013). 71 
A second approach to understand Amazonian forests dynamics is through the analysis of long-term 72 
field observations of patterns of tree growth and mortality as they relate to climatic and edaphic 73 
variations across the Basin (e.g. Phillips et al., 2004; Quesada et al., 2012).  74 

Analyses of Amazon forest inventory data, and particularly those of the Amazon Forest 75 
Inventory Network (RAINFOR) (Malhi et al., 2002), have revealed large-scale temporal trends in 76 
biomass and species composition as well as intriguing spatial patterns in many stand properties (Phillips 77 
et al., 1998; Baker et al., 2004, Phillips et al., 2009). Specifically, there is systematic spatial variation in 78 
species composition, biomass, growth and turnover rates, with western forests exhibiting higher wood 79 
productivity, faster turnover time and lower stand wood density compared to eastern forests (Baker et 80 
al., 2004; Malhi et al., 2006). This macroecological variation may possibly be explained by the Basin-81 
wide observed climate and soil nutrient availability gradients (terSteege et al., 2006; Quesada et al., 82 
2012). The climatic gradient comprises a southeast to northwest increase in annual precipitation and 83 
decrease in dry season length (Sombroek, 2001), with aboveground wood productivity positively related 84 
to precipitation (Malhi et al., 2004). On the other hand, a soil age/nutritional axis spans from the 85 
northeastern part of the basin to southwestern Amazonia, with generally younger and richer soils in the 86 
west and highly weathered nutrient poor soils in the east (Sombroek, 2000; Quesada et al., 2011), 87 
although at regional and local scales the patterns are often more complicated than this macro-gradient 88 
might imply (Higgins et al., 2011). Soil physical properties (such as rooting depth, drainage and water 89 
holding capacity and soil structure) are similarly related to soil age and parental material (Quesada et al., 90 
2010). Poor physical (for example soil depth) conditions (less weathered soils) are often associated with 91 
higher soil nutrient availability (Walker and Syers, 1976; Vitousek and Farrington, 1997) leading to 92 
increased nutrient concentrations at the leaf level (Fyllas et al., 2009) and thus a potential for higher 93 
photosynthetic rates (Reich et al., 1994; Raaimakers et al., 1995). In addition, increased disturbance-94 
associated mortality rates in soils of poor physical properties lend towards more dynamic stands where 95 
faster growing species dominate (Chao et al., 2009, Quesada et al., 2012). This positive feedback 96 
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mechanism could explain the higher aboveground productivity and turnover rates observed for western 97 
forests (Quesada et al., 2012).   98 

The simplistic ways by which plant functional diversity is currently reflected in DGVMs is an 99 
important shortcoming in predicting ecosystem response to environmental gradients and their 100 
vulnerability to global change (Lavorel et al., 2007). Some of the widely applied DGVMs represent 101 
Amazonian plant diversity with only few plant functional types (PFT), for example the LPJ model uses 102 
only two tropical-oriented PFTs (Sitch et al., 2003) and the JULES model only one (Clark et al., 2011). 103 
The mean values of key model parameters like photosynthetic capacity, wood density and leaf turnover 104 
times are selected to describe an a priori PFT definition (Fyllas et al., 2012). This means that many 105 
processes are controlled by a set of fixed parameters that describe viable plant strategies within very 106 
limited boundaries. Such PFT implementation has important drawbacks. It is usually based on the 107 
average value of a plant trait recorded from different field studies and different species. But recent 108 
studies have shown that key traits present a wide variation, dependent upon species identity and site 109 
growing conditions (Sultan, 2000; Fyllas et al., 2009; Baraloto et al., 2010a). Thus any given species has 110 
the potential to exhibit site-dependent shifts in its trait value; this being in addition to the inter-specific 111 
trait variability expected at any given site. Ignoring this plasticity could potentially bias modelling 112 
through an underestimation of the PFT's resilience by projecting dramatic but artificial switches in 113 
vegetation state caused by the limited and discrete (step-wise) nature of PFT descriptions.  114 

Such unaccounted variability could be particularly important when modelling Amazonian forest 115 
dynamics, where environmental heterogeneity and plant functional diversity comprise key components 116 
of the ecosystem (Townsend et al., 2008). For example, the variation in leaf mass per area (Ma) 117 
recorded within Amazon forests covers an approximately similar range to the one identified in global 118 
datasets, ranging from 30 to 300 gm-2 (Fyllas et al., 2009). Similarly, there are large contrasts in soil 119 
physical and chemical conditions (Quesada et al., 2010). These important ecosystem flux drivers have 120 
now been better quantified with Amazon-wide climate (Malhi and Wright, 2004), soil (Quesada et al., 121 
2011) and functional trait datasets also having been obtained (Baker et al., 2009; Fyllas et al., 2009; 122 
Patiño et al., 2009; Patiño 

Two axes of functional variation/strategy are represented in the model: the leaf economic and 134 
the tree architecture spectra. The four functional traits include leaf mass per area (Ma), leaf nitrogen and 135 
phosphorous dry mass concentration (NLm and PLm respectively) and wood density (DW). The first three 136 

et al., 2012). This is in addition to continually expanding long-term forest 123 
inventory data in which tree growth, mortality and species composition data are regularly being 124 
recorded (Keeling et al., 2008; Chao et al., 2009). 125 

We here introduce a vegetation dynamics model developed as a tool to better analyse these 126 
observed Amazonian large-scale productivity patterns. This is achieved through specific incorporations 127 
of observed environmental and the biotic variations into the model formulation. Specifically we focus 128 
a) on the architectural variability, expressed through the size-class distribution of a stand, and b) on the 129 
functional variability, expressed through simulated distributions of four important functional traits 130 
which are allowed to vary from tree to tree within individual plots. Following a continuum approach, 131 
we replace the use of a discrete number of PFTs, with distributions of a functional traits "quartet" the 132 
within-stand distributions of which also vary from plot to plot in accordance with observation.   133 
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traits express one component of the leaf economic spectrum (Reich et al., 1997; Wright et al., 2004), i.e. 137 
a global photosynthetic tissue trade-off between inexpensive, short-lived and fast payback leaves vs. 138 
costly, long-lived and slow payback leaves; although we emphasise that other factors such as leaf cation 139 
concentrations may be important in this respect (Fyllas et al., 2012; Patiño et al., 2012). Low Ma and 140 
high nutrient content leaves are associated with comparably short longevity and usually have high 141 
(mass-based) gas exchange rates (Reich et al., 1994; Raaimakers et al., 1995). Lately the role of PLm has 142 
been highlighted as it expresses alternative limitations of the photosynthetic efficiency of tropical tree 143 
species (Domingues et al., 2010). The fourth trait, DW, is used to represent a tree architectural axis with 144 
denser wood species supporting an overall higher aboveground biomass and thus having a higher 145 
maintenance respiration (Chave et al., 2005; Mori et al., 2010, although see Larjavaara and Muller-146 
Landau, 2012). These two dimensions capture essentially a growth vs. survival trade-off. There is mixed 147 
evidence for a coordination between leaf and stem traits, i.e. a correlation between slow return related 148 
leaf traits and denser wood (Chave et al., 2009), with Baraloto et al. (2010b) suggesting that these two 149 
axes are independent, but with Patiño 

2. Materials and Methods 164 

et al. (2012) showing some important correlations with foliar 150 
traits such as PLm. For the purpose of this study we consider leaf and stem dimensions as independent 151 
axes of tree functional variation, with no predefined interrelationship between the representative traits. 152 
However, the observed among-stand variability of these four characters is used to express how growing 153 
conditions control plant processes while the within-stand trait variation represents a range of ecological 154 
strategies found under the same growing conditions.  155 

The model is initialised with site-specific tree diameter and functional traits data, and forced with 156 
daily climate data. We first test the ability of the model to estimate stand-level water fluxes at three 157 
eddy-flux tower sites. For a subset of seven RAINFOR plots where site-specific carbon allocation 158 
coefficients are known, a tree-level test of stem growth rates is applied. We further validate the ability 159 
of the model to simulate the spatial patterns of aboveground biomass productivity at 40 RAINFOR 160 
plots, and subsequently explore the variation of Gross Primary Productivity (ΠG), Net Primary 161 
Productivity (ΠΝ) and Carbon Use Efficiency (CU) along established Amazonian climatic and edaphic 162 
gradients. 163 

2.1 Model Description 165 

 “Traits-based Forest Simulator” (TFS) is an individual-based forest model, i.e. it simulates water 166 
and carbon fluxes for each tree in a stand. In the current version of the model, stand structure is 167 
prescribed in terms of the number of trees and their diameter at breast height (d). This is thus a 168 
“snapshot” version of the model, which does not take into account tree recruitment and mortality. In 169 
this version of TFS, each individual is fully described through d, with allometric equations used to 170 
estimate other attributes of interest like tree height (H), crown area (CA), total leaf area (LA) and tree-171 
level leaf area index (L). Whole tree biomass is then partitioned to leaf (BL), stem (BS), coarse root (BCR) 172 
and fine root (BFR) biomass using established allometric equations. Allocation of assimilated carbon to 173 
different plant components is static, i.e. it does not change with size or resource availability, but rather 174 
implements field-derived allocation coefficients (Aragão et al., 2009). The general architecture of the 175 
model is presented in Fig. 1. 176 
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Tree functional diversity is expressed through four traits (Ma, NLm, PLm, DW), which are randomly 177 
assigned to each tree: these pseudo-data being generated from local observations using a random vector 178 
generation algorithm. Leaf photosynthesis is calculated using a modified version of the Farquhar 179 
biochemical model (Farquhar et al., 1980), that incorporates leaf chemical and soil moisture effects. The 180 
maximum photosynthetic rate is regulated by NL or PL through the co-limitation model of Domingues 181 
et al. (2010). In contrast to most ecosystem fluxes models, where photosynthetic rates are directly 182 
regulated by water availability (Scheiter and Higgins, 2009; Clark et al. 2011), we couple water ‘stress’ to 183 
reduction of canopy conductance by estimating a daily fractional available soil water content for each 184 
tree in the stand. Carbon fluxes are simulated on an hourly and water fluxes on a daily time-step.  185 

Light competition is based on the assumption of a perfect canopy tessellation. The flat-top 186 
version of the perfect plasticity model (Purves et al., 2007) has been used in the current version of TFS 187 
to characterise canopy and sub-canopy trees, by assuming that all of a tree’s foliage is found at the top 188 
of its stem (S1, Canopy Architecture and Radiation Environment). A canopy height Z* is estimated for 189 
each forest stand, defining canopy and sub-canopy trees. By summing up the crown area (CA) of all 190 
trees in the stand, Z* is estimated as the height of the last tree that enters to the sum before the 191 
cumulative crown area is equal to the plot area. Canopy trees are absorbing a mean daily amount of 192 
shortwave solar radiation equal to the sum of mean beam, diffuse and scattered daily radiation in 193 
correspondence to the sun-shade model of de Pury and Farquhar (1997). The direct and diffuse 194 
fraction of solar radiation is estimated using the Spitters et al. (1986) approximation. The functional 195 
configuration of a tree (i.e. the values of the traits quartet) does not affect its light competitive status, as 196 
tree height and crown area are not directly associated to any of the four traits. Future versions of the 197 
model will incorporate such effects.  198 

Soil water balance is approximated through a simple bucket model, with soil water content 199 
affecting leaf conductance and thus photosynthetic rates. Competition for soil water is approximated 200 
through a size hierarchy, i.e. bigger trees, with a more extensive root system are assumed to have access 201 
to deeper water (S1, Water Balance Algorithm). By assuming that a tree with a higher leaf biomass (BL) 202 
requires a higher fine root biomass (BFR), we indirectly implement a Ma effect on water competition (S1, 203 
Definition, Allometry and Stoichiometry of Individual Trees in TFS). In particular, between two trees 204 
of the same size, the higher Ma tree will be more competitive in terms of acquiring soil water.  205 

TFS is coded in Java and it is fully described in S1. The main effects of including functional 206 
diversity are realised through trait-driven effects on photosynthesis and respiration (Reich et al., 2008; 207 
Reich et al., 2009). Model components that are linked with any of the four base traits are described in 208 
following paragraphs. All statistical analyses and graphs were made with R (R Development Core 209 
Team, 2013). 210 

2.1.1 Within-stand Functional Diversity 211 

As noted above, TFS employs neither species nor PFT descriptions, but rather a different 212 
discrete combination of each the four key functional traits Ma, NLm, PLm and DW is assigned to each 213 
individual tree along with a diameter-based allometry. To achieve this, the four functional characters 214 
assigned are generated using a procedure based on the actual values recorded within each plot. This is 215 
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achieved using a random vector generation algorithm (Taylor and Thompson, 1986). This algorithm, 216 
appropriate for generating non-repeated pseudo-observations from a relatively small sample of 217 
observations, was originally developed to provide for a realistic probabilistic representation of shrapnel 218 
projectile distributions in military battlefield simulations in the face of only a limited amount of 219 
available data (due to the cost and difficulty of undertaking the appropriate experiments). This “ballistic 220 
method” is notable in that it was specifically designed to short-circuit the usual step of multivariate 221 
density in the generation a pseudorandom population with approximately the same moments as the 222 
original sample. The ballistic method is readily programmable as follows (with the underlying rationale 223 
as discussed in Taylor & Thompson (1986) and Thompson (1989)) and with the following description 224 
based on Visual Numerics (2014):  225 

First take a vector X with n multivariate observations (x1…. xn). To generate a pseudodataset z 226 
from x, one observation (xj) is first chosen at random and its nearest m neighbours, xj1, xj2, xjm are then 227 

determined and with the mean jx  of those nearest neighbours subsequently calculated. Next, a random 228 

sample u1, u2, …, um is generated from a uniform distribution with lower bound , and 229 

upper bound. . The random variate zj is then the estimated as    230 

and the process then repeated as required. Somewhat subjective here is the selection of the appropriate 231 
value of the number of nearest neighbours (m) although the nature of the simulations is not strongly 232 
dependent upon that value (Taylor & Thompson, 1986). Thus, following their recommendation and as 233 
in the Visual Numerics (2014) default, we have taken here m = 5.  234 

In our case, applying this procedure resulted in a coordinated trait quartet for each tree in a stand 235 
being generated on the basis on the smaller observational trait quartets sampled from trees in the same 236 
stand (Baker et al., 2009; Fyllas et al., 2009; Patiño et al., 2012) and without any assumptions having to 237 
be made about their underlying statistical distributions. Thus no single functional trait “average stand” 238 
value is used (or even required). Further, between-stand differences in the traits distributions and their 239 
covariances are also intrinsically taken into account. This is because each stand is characterised by its 240 
own multivariate trait sample and size distribution. More fertile plots have an overall lower Ma and 241 
higher NLm and PLm compared to infertile plots (Fyllas et al., 2009), with this being reflected in the 242 
photosynthetic capacity of individual trees, as described in the next paragraph. 243 

2.1.2 Photosynthesis 244 

A tree-level leaf area index (L), estimated as the ratio of LA to CA, is used to compute the energy, 245 
carbon and water fluxes for each tree in a stand. The net photosynthetic rate (μmol m-2 s-1

n sα c= ( - )A g C C

) is given 246 
from: 247 

 (1) 248 
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with Cα the atmospheric CO2 mixing ratio (μmol mol-1), Cc the CO2 mixing ratio inside the chloroplast 249 
and gs the CO2 stomatal conductance (mol m-2 s-1

{ }( )max a NV NV Lm PV PV Lm= min + , +V M a v N a v P

) calculated from Medlyn et al. (2011) and modulated 250 
by a soil moisture term. The leaf-level photosynthetic rate An is scaled-up to the tree-level by 251 
multiplying with the CA of the tree. 252 

The co-limitation equation suggested by Domingues et al. (2010), where the leaf level 253 
photosynthetic capacity (area basis) is potentially limited by either nitrogen or phosphorus is used TFS 254 
to estimate the leaf maximum carboxylation and electron transport rates:  255 

 (2) 256 

{ }( )max a NJ NJ Lm PJ PJ Lm= min + , +J M a v N a v P  (3) 257 

both in (μmol m-2 s-1), and aΝV, aΝJ, aPV, aPJ in (μmolg-1 s-1) and νΝV, νΝJ, νPV, νPJ in (μmol mg-1 s-1) empirical 258 
coefficients (see S1). The canopy-level photosynthetic capacity VCmax(μmol m-2 s-1

SH

) is estimated using the 259 
tree-level leaf area index L, taking into account within canopy gradients in light and photosynthetic 260 
capacity based on Lloyd et al. (2010). Nutrient optimisation is approximated using equations in Lloyd et 261 
al. (2010), with Ma also dependent on the height of each tree (Hi) and the mean canopy height ( ): 262 

* exp ( )a a H i SM M a H H = ⋅ ⋅ −  (4), with aH an empirical coefficient. 263 

2.1.2 Respiration 264 

Tree respiration includes a growth and a maintenance component, both computed daily. Growth 265 
respiration is considered as a constant fraction (0.25) of daily photosynthesis (Cannell and Thornley, 266 
2000). Three different maintenance respiration formulations are allowed in TFS (S1, Respiration), but 267 
in this study we use the one described below. Leaf maintenance respiration RmL is estimated as a 268 
fraction of VCmax (Scheiter and Higgins, 2009): 269 

mL Cmax=0.015R V  (5) 270 

Stem maintenance respiration is estimated from the sapwood volume (VS) of a tree:  271 

mS Sδ=R V  (6), with δ=39.6 (μmol m-3 s-1

LS 1 2 1 2=0.5 ( + )WH Dλ λ δ δΦ × ⋅ + +

) as reported in Ryan et al. (1994) for tropical trees. 272 

Sapwood volume is estimated by inversing the pipe model and assuming that the ratio of leaf area to 273 
sapwood area (ФLS) increases with the height and the wood density for tropical trees following (Calvo-274 
Alvarado et al., 2008; Meinzer et al., 2008): 275 

 (7), 276 

with λ1=0.066 m2 cm-2, λ2=0.017 m cm-2, δ1= - 0.18 m2 cm-2
 and δ2=1.6 cm3 g-1.  277 
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Sapwood area (m2) and volume (m3

A A LS= /S L Φ

) are then calculated from: 278 

 (8), with LA the total leaf area of the tree (m2

V A D( - )S S H C= ⋅

) and 279 

 (9), with CD the crown depth (m) 280 

Coarse root maintenance respiration RmCR is estimated as in Scheiter and Higgins (2009): 281 

CR
mCR R

CN

=0.218β
Φ
BR  (10)  282 

where ФCN is the root C:N ratio estimated on the basis of the simulated NR assuming a dry weight 283 
carbon fraction of 0.5.  284 

Fine root maintenance respiration RmFR is assumed to be equal to leaf respiration. 285 

All respiratory components are corrected with the temperature dependence function of Tjoelker et al. 286 
(2001). The total maintenance respiration Rm is then: 287 

m mL mS mCR mFR= + + +R R R R R  (11) 288 

2.1.3 Stomatal Conductance  289 

Initially, a maximum (no water stress) stomatal conductance, gs,max is calculated following Medlyn 290 
et al. (2011, 2012): 291 

1 n
s,max 0

aC

= +1.6 (1+ )⋅ ×
g Ag g

CD
 (12) 292 

with g0 (mol m-2 s-1) the minimum stomatal conductance, g1(-) an empirical coefficient that represents the 293 
water use efficiency of the plant, and DC the leaf-to-atmosphere vapour pressure difference. Values of 294 
g0 and g1 that lead to the best model performance were different between sites, as indicated by the 295 
model calibration procedure. For the basin-wide simulations constant values of g0=0.020 (mol m-2 s-1

 In contrast to most ecosystem fluxes model, where photosynthetic rates are directly regulated 301 
by water availability (Scheiter and Higgins, 2009; Clark et al. 2011), we couple soil water deficit to 302 
canopy conductance by estimating a daily fractional available soil water content 

) 296 
and g1=5.0 (-) were used, close to the estimates of Domingues et al. (2014). In future versions of the 297 
model, we anticipate that g0 and g1 will be related to other functional traits. The maximum stomatal 298 
conductance is subsequently reduced to the actual gS by multiplying the second term of equation 8 with 299 
a water stress coefficient. 300 

iϑ , for each i tree in the 303 
stand (S1, Water Balance and Soil Water Stress). This term is then used to estimate the water stress γi 304 
that has a direct effect on stomatal conductance, as also described in Keenan et al. (2010). 305 
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2.2 Study Sites & Simulations Set-up 306 

Three sets of site data were used to explore the behaviour of the model. These include a set of 307 
three eddy flux measurements (EFM) sites, seven plots with intensive carbon balance and allocation 308 
measurements (IM), and 40 permanent measurement plots (PM).  309 

2.2.1 Eddy flux (EFM) sites  310 

Daily climate and energy flux data from three EFM sites (Caxiuanã [1.72S, 51.46W], Manaus 311 
[2.61S, 60.21W] and Tapajós [2.86S, 54.96W]) were used to assess the ability of the model to estimate 312 
canopy-level water fluxes. Data were obtained from the Large Scale Biosphere-Atmosphere 313 
Experiment in Amazonia (LBA) project (http://daac.ornl.gov/LBA/lba.shtml). In particular mean 314 
daily climate parameters including incoming radiation, temperature, precipitation, relative humidity and 315 
wind speed were used to force the model. Latent heat flux (λΕ in Wm-2) was used to estimate a daily 316 

mean canopy conductance defined as 𝐺𝐺𝐶𝐶 = 𝜆𝜆𝐸𝐸
𝐷𝐷𝐶𝐶

. The EFM data cover a period from 2001 to 2008 for 317 

Caxiuanã, from 2000 to 2005 for Manaus and from 2002 to 2004 for Tapajós. Gc was only estimated 318 
for days with a complete diurnal record of λΕ. At each one of the EFM sites the mean daily Gc (mol m-2 319 
s-1

2.2.2 Intensive measurement (IM) sites  329 

) was compared between observations and simulations. The model was initialized with size-class 320 
distribution and functional traits data from RAINFOR permanent plots located near the eddy flux 321 
towers. Specifically, CAX-06 inventory data were used for Caxiuanã, BNT-04 for Manaus, and TAP-55 322 
for Tapajós. We note that the EFM sites are mainly found at the eastern part of Amazonia (Fig. 2) 323 
growing on low nutrient status soils.  324 

The model was initially calibrated to the site specific values for g0 and g1 of equation 8 that gave 325 
the best performance. A Standardised Major Axis (SMA) regression, forced through zero was used to 326 
verify the ability of the model to simulate Gc, with a regression slope close to one indicating a good 327 
model performance. 328 

The ability of the model to realistically simulate carbon fluxes at the tree-level is evaluated using 330 
data from the seven intensive measurement plots (Aragão et al., 2009; Malhi et al., 2009). These sites 331 
are amongst the intensively surveyed plots within the RAINFOR network (Fig. 2), where 332 
measurements of all major components of the C cycle are recorded (Malhi et al., 2009). At these plots, a 333 
detailed assessment of the carbon stocks is applied, and ΠΝ allocation coefficients to different plant 334 
components are estimated (Aragão et al., 2009; Malhi et a. 2011; Doughty et al., 2013). These site-335 
specific coefficients are used to calculate the amount of simulated ΠΝ that is allocated to stems ΠN,s 336 
(kgC y-1

The IM sites of interest include two plots at Agua Pudre in Colombia (AGP-01 & AGP-02), one 338 
(ALP-30) at Allpahuayo/Peru, one (BNT-04) at Manaus/Brazil, one in Caxiuanã /Brazil (CAX-06), one 339 
in Tambopata/Peru (TAM-05) and one in (TAP-55) Tapajós /Brazil. Based on data from Quesada et 340 
al. (2011), AGP-01, AGP-02, TAM-05 can be considered to be located on fertile soils, with the other 341 

). 337 

http://daac.ornl.gov/LBA/lba.shtml�
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four plots on infertile ones. Available soil depth data (Quesada et al., 2011) and functional traits data 342 
(Fyllas et al., 2009) were used for site specific simulations. For all seven sites we estimated the observed 343 
average multi-annual growth rate (2000-2006) of each tree from forest census data, in order to compare 344 
it with the simulated ΠN,s. 345 

The daily climate was extracted from the Princeton Global Meteorological Forcing Dataset 346 
(Sheffield et al., 2006). These simulations are used to validate the ability of the model to accurately 347 
estimate tree-level stem growth, under a given stand structure, a given climatic and soil profile and 348 
functional traits configuration of the established trees. Average observed stem growth rate (per 10 cm d 349 
bins), expressed in carbon units(i.e. kg C y-1

2.2.3 Permanent measurement (PM) sites  353 

), is compared with simulated ΠN,s using the York method 350 
of best straight line, which holds when both x and y observations are subject to correlated errors that 351 
vary from point to point (York et al., 2004).  352 

Inventory data from 40 RAINFOR permanent measurement plots (Fig. 2), including tree 354 
diameter and multiannual growth for all trees greater than 10 cm curated/managed in ForestPlots.net 355 
(Lopez-Gonzalez et al., 2009; Lopez-Gonzalez et al., 2011), are used to a) validate the ability of the 356 
model to accurately simulate stand-level carbon fluxes and b) explore patterns of ΠG, ΠN and CU along 357 
the Amazonian climatic and soil nutrient availability gradient. The size class distribution within each 358 
PM site is used to initialise the stand structure of the model and simulate patterns of productivity for 359 
the 2000-2006 period. Climate data for the same period were used here with the first year again used as 360 
a spin-up period (Sheffield et al., 2006). For those 40 PM plots, sample distributions of the traits 361 
quartet are available (Fyllas et al., 2009) as well as a description of soil chemical and physical properties 362 
(Quesada et al., 2011).  363 

At the PM sites the simulated stand-level aboveground ΠN was compared with observed rates of 364 
aboveground growth (ΔBABG (kgCm-2 y-1

2.2.4 Randomisation Exercise  373 

)) for trees that survived during the 2000-2006 time period 365 
using a SMA regression. A second step was to explore the way ΠG, ΠN and CU vary across an Amazon 366 
climatic and soil nutrient availability gradient (Quesada et al., 2010). The site scores of a principal 367 
components analysis (PCA) on the soil properties of the 40 PM plots (see Fyllas et al., 2009) are used to 368 
categorise plots along a nutrient availability  gradient (Φ1), while the key climatic variables used were the 369 
annual mean temperature TA and annual total precipitation PA. A Kendall correlation coefficient (τ) was 370 
used to identify potential relationships of ΠG, ΠN and CU with TA, PA and Φ1, as in most cases non-371 
linear associations were observed. 372 

In order to explore a) the importance of including trait variability and thus functional diversity in 374 
our simulations and b) the importance of including constrains that are known to control the large scale 375 
patterns of Amazonian forest dynamics, we conducted a randomisation exercise with the model beeing 376 
run under four alternative set-ups at the 40 permanent RAINFOR plots. The first set-up denoted as 377 
var-tr is the variable-trait simulation with trait initialization based on the observed stand-level trait 378 
distribution as described in the previous paragraphs (default set-up). The second set-up, denoted as fix-379 
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tr, is a fixed-trait simulation with all trees having the same (dataset mean) values for each trait: This thus 380 
representing a single PFTs case. The third set-up (rand-tr) is a variable-trait simulation with trait 381 
initialization based on random values of the traits quartet as recorded in any individual along the 40 382 
permanent plots. This setup thus ignores any potential patterns of functional trait biogeography, i.e. 383 
traits are not related to the environmental or edaphic conditions under which a tree is growing. The 384 
fourth setup (rand-tr-N) is a variable trait simulation where the photosynthetic capacity of an individual 385 
is only defined by its leaf N content and thus the NP co-limitation constraint is removed. These 386 
alternative set-ups were compared by considering both the slope and the R2 

3. Results 390 

of SMA regressions 387 
between the predicted and the observed ΠΝ,S. 388 

 389 

3.1 Canopy conductance simulations at the EFM sites 391 

Values of best model performance for g0 and g1 were different between sites, with g0=0.035 (mol 392 
m-2 s-1) and g1=7.5 at Caxiuanã, g0=0.035 and g1=7.0 at Manaus with g0=0.01 and g1=2.5 these being 393 
somewhat lower than the estimates of Domingues et al. (2013) at Tapajós. Simulated Gc was 394 
underestimated for Caxiuana (α=0.85±0.05) and Manaus (α=0.90±0.02), with the model overestimating 395 
Gc in Tapajos (α=1.28±0.04), but exhibiting an overall adequate performance (Fig. 3). For simulations 396 
at the IM and the PM sites, constant values of g0=0.02 (mol m-2 s-1

3.2 Stem growth rate simulations at the IM sites 400 

) and g1=5 (-) were used, which are 397 
found within the range of values in the EFM sites and reported estimates (Medlyn et al. 2012; 398 
Domingues et al., 2013). 399 

The mean simulated stem growth rate ΠN,s of each tree in the seven IM plots was compared with 401 
the observed aboveground biomass gains (ΔΒABG) for the 2000-2006 period. An accurate simulation of 402 
ΠN,s can be seen for small size classes, but with greater differences between the observed and the 403 
simulated multi-annual growth found for bigger trees (Fig. 4). At infertile ALP-30, the estimate slope of 404 
the York model indicated an overestimation of aboveground production (α=1.18±0.06), driven mainly 405 
by an overestimation of the mid-size classes. At BNT-04 the model underestimated the overall growth 406 
(α=0.82±0.03). Aboveground growth was overestimated in CAX-06 (1.11±0.07). At TAP-55 407 
(α=1.44±0.15) the model underestimated aboveground production (0.90±0.06). At fertile AGP-01 408 
(α=1.36±0.08) and AGP-02 (α=1.25±0.05) an overestimation of aboveground productivity was 409 
observed although with simulations of most size classes falling within the observed ranges. At TAM-05 410 
(α=0.79±0.07) though, the simulated aboveground growth was underestimated with the overall slope 411 
driven by divergences in smaller size classes. The range and distribution of ΠΝ allocation to stem 412 
growth is adequately captured by TFS as summarised in Fig B1. 413 
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3.3 GPP, NPP and CUE simulations at the PM sites 414 

Simulated stand-level aboveground net primary productivity ΠΝ,A was positively associated with 415 
observed changes in aboveground biomass of trees that survived in the PM plots over the 2000-2006 416 
period ΔΒABG, with an R2

3.4 Randomisation Exercise Simulations 421 

=0.42, suggesting an adequate model behaviour (Fig. 5). A summary of 417 
simulated stand-level ΠG, ΠN and CU relationship to key environmental drivers is given in Table 1 (see 418 
also Fig B2). ΠG and ΠN and CU were not associated with temperature. However, all three measures of 419 
stand level productivity were positively related to annual precipitation and soil nutrient availability.  420 

Results from the randomisation exercise (Fig. 6) found the fully constrained default set-up (var-tr) 422 
to have the best predictive performance (R2=0.42 with a SMA slope a=0.92). This is as compared to 423 
the fixed trait simulations (fix-tr) single PFT parameterization with a decreased predictive ability of TFS 424 
(R2=0.29, a=0.82) and an overall higher mean predicted aboveground productivity. Not accounting for 425 
the site specific distribution of the traits quartet, i.e. bypassing potential biogeographic patterns of 426 
functional diversity and/or environmental-trait interactions (rand-tr) also reduced the predictive ability 427 
of the model (R2=0.29, a=0.74). Finally the random trait no NP co-limitation set-up (rand-tr-N) similarly 428 
lead to an inferior model performance (R2

4. Discussion 432 

=0.33, a=0.88) and with the highest mean simulated 429 
aboveground productivity.   430 

 431 

We report here on the core components of an individual-based model that has been developed in 433 
order to help better understand the patterns revealed by recent integrated measurements of climate, 434 
soils, functional diversity and stand dynamics for a wide range of forests across the Amazon Basin. In 435 
its current setup the model does not explicitly simulate regeneration and mortality dynamics but rather 436 
uses the observed size distribution of trees at the study sites, thus taking into account stand structure 437 
and functional trait variability as observed along the main climatic and edaphic axes of the Amazon 438 
Basin. With the current setup we were able to reproduce the tree- and stand- level ΠN patterns found 439 
across Amazonia and to explore for potential environmental controls over stand-level ΠG, ΠN and CU.  440 

4.1 Scientific Outcomes 441 

Our simulations found no association of stand level gross primary productivity (ΠG) with 442 
temperature, probably due to the relatively small range of variation of temperature across our plots. ΠG 443 
decreased until an annual temperature of approximately 26oC but remained relative constant above this 444 
point (Table 1, Fig. A.2.2). However, our simulations suggest that a strong association of ΠG with the 445 
annual precipitation and soil nutrient availability of the plots. ΠG was positively related to annual 446 
precipitation over the entire range observed in the 40 PM plots. The association of ΠG with the 447 
nutrient availability axis is in agreement with fertilisation experiments showing an increase with nutrient 448 
supply (Giardina et al., 2003). In our Basin-wide examination of ΠG the soil nutrient availability and 449 
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stand structure gradients are not, however, independent (Quesada et al., 2012), as in the RAINFOR 450 
network permanent plots it has been observed that bigger/older trees are more abundant on eastern 451 
infertile forests, where soil physical conditions can support a bigger tree size (Baker et al., 2009) with a 452 
lower risk of trees being uprooted (Chao et al., 2009). Bigger trees generally support a greater foliage 453 
area and thus could significantly contribute to the overall carbon assimilation of the stand. However, 454 
bigger trees on infertile plots are generally characterised by lower leaf nutrient concentrations (Fyllas et 455 
al., 2009) and thus slower assimilation rates (Reich et al., 1994; Domingues et al., 2010). On the other 456 
hand a higher abundance of smaller trees with higher gas exchange rates is observed on more dynamic, 457 
fertile plots. Ultimately this indicates that stand structure should be specifically taken into account when 458 
simulating ΠG in tropical forests, and thus individual-based models could significantly contribute 459 
towards a deeper understanding of the functioning and sensitivity of these ecosystems. 460 

In our simulations stand-level net primary productivity (ΠN) showed no significant association to 461 
annual temperature but increased with soil nutrient availability and annual precipitation (Table 1, Fig. 462 
A.2.2). Our ΠN simulations are in agreement with field observations of increasing aboveground wood 463 
productivity with precipitation (Quesada et al., 2012). Based on TFS parameterisation, photosynthetic 464 
rates are expected to be higher at a greater soil nutrient availability due to associated higher leaf N and 465 
P concentration (Fyllas et al., 2009; Domingues et al., 2010). Using a similar parameterisation for a “sun 466 
and shade” big leaf model, Mercado et al. (2011) found an increase in net canopy assimilation rate with 467 
leaf P content in agreement with our positive association between ΠN and soil nutrient availability. 468 
Their simulated ΠG accounted for approximately 0.30 of the observed wood productivity in 33 study 469 
plots, and thus the R2

In our simulations carbon use efficiency (CU) ranged from 0.43 to 0.54. Recent research suggests that 481 
the CU is not as constant as had been previously suggested (De Lucia et al., 2007; Zhang et al., 2009). 482 
For example the meta-analysis of De Lucia et al. (2007) found that CU varies from 0.23 to 0.83 in 483 
different forest types. Our average estimate of CU=0.51 is, however, above the range of reported in 484 
Malhi (2012). Zhang and colleagues (2009) identified a negative trend of the ΠN/ΠG ratio with 485 
temperature at the range of 20 to 30 

=0.42 between simulated ΠN and aboveground growth found here suggest a 470 
marginally improved model behaviour. It should be noted that our definition of soil nutrient availability  471 
(Φ1), based on the PCA analysis in Quesada et al. (2010), directly relates to soil P content. As shown 472 
first in the analysis of Quesada et al. (2012), where data from almost 60 plots were considered, 473 
aboveground ΠN is positively related to soil P content in lowland tropical forest. The increased ΠN in 474 
fertile environments (apart from the higher ΠG) seems to be enhanced by the greater abundance of 475 
small trees there. As tree size increases maintenance respiration likely “consumes” an increasing 476 
proportion of assimilated carbon, and thus at large size classes the proportion of trees which have 477 
enough carbon to allocate to growth decreases (Givnish, 1988; Cavaleri et al., 2008). This is in line with 478 
the negative relationship between coarse wood production and maximum height documented for some 479 
Amazonian trees (Baker et al., 2009). 480 

oC, as also simulated here especially above 26oC (Fig A2.2). 486 
Simulated CU increased with soil nutrient availability, being marginally lower at infertile (0.48) compared 487 
to fertile (0.50) plots. This is attributable to smaller size class trees (with lower relative respiratory costs) 488 
constituting a greater proportion of the total stand biomass on higher nutrient status soils. One factor 489 
relating to soil nutrient availability but not included in the current version is an implicit consideration of 490 
the respiratory costs of plant nutrient uptake (Lambers et al., 2008) either directly, or through other 491 
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processes such as organic acid exudation (Jones et al., 2009) or the symbiotic associations (Duponnois 492 
et al., 2012.) One would expect these costs to be proportionally higher for stand of a low nutrient 493 
status, especially with regard to P (Quesada et al., 2012).  494 

4.2 Practical implications 495 

The modelling of tropical forest carbon fluxes and stand dynamics has traditionally involved 496 
approaches aimed at a balance between simplicity, computational economy, and complexity. On one 497 
hand, the enormous biological and biogeochemical heterogeneity of tropical forests (Townsend et al., 498 
2008) places special importance on how modelers prioritise both the amount and the detail of 499 
processes that should be included to capture the main controls and feedbacks. On the other hand, the 500 
finding that Amazonia is dominated by just 227 tree species (ter Steege et al., 2013) implies that most 501 
biogeochemical cycling in the world’s largest tropical forest is performed by a tiny sliver of its diversity. 502 
At one end of the complexity spectrum are individual-based models which are able to properly simulate 503 
population dynamics and thus lags due to demography. Individual-based models of tropical forests 504 
have traditionally focused on realistically representing the light environment (TROLL - Chave, 1999) or 505 
grouping tree species on the basis of their different responses to environmental resources as suggested 506 
by field observations (FORMIND - Kohler & Huth, 1998, LPJ-GUESS – Helly et al., 2006). At the 507 
other end of the complexity spectrum are DGVMs which simulate population dynamics more 508 
simplistically (but see Moorcroft et al., 2001; Scheiter & Higgins, 2009). Using a DGVM model 509 
Verheijen et al. (2013) allowed for within-PFT climate-driven trait variation to occur and achieved an 510 
improvement of the predicted vegetative biomass and PFT distribution patterns. A similar rationale was 511 
followed in Wang et al. (2012) where it was shown that the inclusion of multi-trait covariance in 512 
DGVM can be used to constrain model parameters and reduce uncertainties in simulated ecosystem 513 
productivity. Fisher et al. (2010) applied the individual-based Ecosystem Demography model 514 
(Moorcroft et al., 2001), and showed that by varying traits related to demographic processes, forest and 515 
biomass dynamics exhibited a wide range of responses to climate forcing. 516 

Most of the above approaches have used discrete PFTs to represent tree species and functional 517 
diversity. These studies suggest that by allowing for within PFT trait variability a more plastic and 518 
realistic response to the relevant environmental drivers is observed. In contrast to the above, TFS 519 
replaces the use of PFTs with traits distributions, following a different model philosophy and 520 
architecture using the concept of multidimensional trait continua. In particular, considering functional 521 
diversity to be expressed by a multidimensional trait space, the use of PFTs selects a number of clusters 522 
where the central vector defines the average trait values of each PFT (Fyllas et al., 2012). Recent studies 523 
(Verheijen et al., 2013; Wang et al., 2012) allow for the average trait values to be shifted based on 524 
empirical climatic and/or trait inter-correlation functions. In contrast, the use of trait continua does not 525 
cluster the multidimensional trait space but rather allows any realistic trait combination (as suggested by 526 
the limited sampling of the actual population) to be simulated. Successful trait combinations under 527 
given environmental conditions may then be expected to emerge as a by-product of model dynamics 528 
(Higgins et al., 2014). A similar to TFS representation of functional diversity has been implemented in 529 
the aDGVM model (Scheiter & Higgins, 2009; Scheiter et al., 2013) where the importance of including 530 
trait-variability in simulations of vegetation dynamics has also been highlighted. In TFS, variable-trait 531 
(R2=0.42) simulations led to a better model performance compared to fixed-trait (R2=0.29) simulations 532 

http://www.planta.cn/forum/files_planta/2_666.pdf�
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(Fig. 6). Thus including functional diversity in simulations of vegetation dynamics is expected not only 533 
to suggest less vulnerable communities under changing climatic conditions (Fauset et al., 2012; Scheiter 534 
et al., 2013) but also, it seems, to better describe the current patterns of key ecosystem properties like 535 
aboveground productivity.  536 

A few modelling studies that implement a similar traits continua approach have recently been 537 
published. Scheiter & Higgins (2009) were the first to develop an individual-based framework that 538 
eschews the use of PFTs and allows for plants to allocate carbon as a function of local environmental 539 
conditions. Falster and colleagues (2011) presented a model where they used leaf economic strategy, 540 
height, wood density and seed size to scale-up from individual scale processes to landscape predictions. 541 
Pavlick et al. (2013) applied an interesting approach where they used 15 traits to incorporate trait 542 
diversity within plant community in a DGVM. The rationale of the above models is that they allow 543 
different plant functional strategies to be available in a specific location with given environmental 544 
conditions (for example a grid cell), and that by setting up a set of functional trade-offs they “filter out” 545 
poorly adapted trait combinations from the community. This is effectively an implementation of ideas 546 
arising from the environmental filtering/community assembly theory to predict an optimum plant 547 
community at a given location (Keddy, 1992; Scheiter et al., 2013; Fortunel et al., 2014). By contrast, 548 
drawing on recent findings on the processes controlling Amazonian forest dynamics, we have here 549 
attempted to incorporate within TFS the relevant observed associations between functional trait 550 
diversity, stand-structure and soil physical and chemical properties (Fyllas et al., 2009, Quesada et al., 551 
2012). Although there are similarities with some of the more recent models discussed above to our 552 
knowledge this is the first time all these linkages have been represented in a single modelling 553 
framework. Our approach has been made possible (and thus differs from others) because of the type 554 
and quantity of observational constraints used. For example in any given plot we do not force the 555 
model to select some “optimum” trait combination based on the prevailing environmental conditions, 556 
but we rather assume that the observed trait distribution reflects that of the evolutionary stable 557 
community structure occurring at each site. Similarly we don’t require the model to predict what the 558 
optimum tree-size class distribution would be. Rather, we initialize simulations with what is observed. 559 
We have here employed this implementation as our primarily aim in this first instance has been to 560 
validate the predictive ability of the model at some extensively monitored Amazonian plots.     561 

Even with these prescribed constraints, the trait randomization exercise yielded some 562 
interesting outputs regarding the importance of trait variability in simulations of forest dynamics. As 563 
already discussed the default variable-trait (var-tr) simulations gave the best TFS performance in terms 564 
of predicting patterns of aboveground production at the 40 permanent measurement plots with fixed 565 
trait (fix-tr) TFS simulations showing a lower predictive ability and an overall higher mean ΠΑΝ. This 566 
pattern of trait variability reducing above-ground biomass is in contrast with a similar simulation from 567 
Scheiter et al. (2013), where variable trait simulations gave rise to a higher mean biomass because of an 568 
increased chance of selecting a trait combination allowing trees to grow larger. This difference arises 569 
from the photosynthesis NP co-limitation constraint hardwired into the current version of TFS as the 570 
use of the Amazon wide mean NL and PL values, leads inevitably to universally phosphorus limited 571 
estimates of Vcmax and Jmax that reduce the overall predictive ability of the model. Indeed, when the NP 572 
co-limitation is removed, the variable trait simulations (rand-tr-N) do actually yield the highest ΠAN 573 
estimates. Finally the random variable trait setup (rand-tr) resulted again in a similarly poor TFS 574 
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behavior (R2

The importance of realistically representing autotrophic respiration processes in models of 613 
vegetation dynamics is also highlighted here. Modelling respiration has proven to be a difficult task 614 
(Cannell and Thornley, 2000), and accurately representations of this component is of great importance 615 

=0.29), emphasizing the importance of potential environment – trait interactions in 575 
accounting for between-stand structural differences. In other words, in the modelling tropical forest 576 
dynamics it is clear that trait distributions cannot be used without a consideration of how they may be 577 
shifted by the local growing conditions.   578 

The four functional traits used in the current version of TFS, i.e. leaf dry mass per area, leaf 579 
nitrogen and phosphorous concentrations and wood density, are directly related to the rates of tree 580 
photosynthesis and respiration. For that reason they provide a stable basis that should allow alternative 581 
ecological strategies based on well known trade-offs such as the “growth vs. survival” to be 582 
implemented in trait-based vegetation dynamics models. These four traits have been extensively studied 583 
around 70 plots in the Amazon and their patterns of variation and inter-correlation have been analysed 584 
(Baker et al., 2009; Fyllas et al., 2009; Patiño et al., 2009; Patiño et al., 2012). For the purpose of this 585 
study, it is important to know the within stand variation of the functional traits used, i.e. the trait values 586 
at the individual level across different plots. Additional functional traits that were considered but not 587 
included as base traits in this version of TFS were the seed size and the leaf area to sapwood area ratio. 588 
Seed size is an important functional trait that expresses a tolerance vs. fecundity trade-off, with seed 589 
size trading-off with seed number and with larger seed species being more tolerant at more stressful 590 
places (Muller-Landau, 2010). However, data on seed size are usually available at the species level, i.e. 591 
intraspecific variation is not usually recorded, and thus this kind of data cannot be included in the 592 
current version of TFS. The leaf area to sapwood area ratio, ФLS, is an important trait that can be used 593 
to constrain the hydraulic architecture of trees (Meinzer et al., 2008). Here ФLS is expressed as a 594 
function of DW and H (equation 7) and it is not used as an independent (base) trait. Future version of 595 
TFS will include this aspect of functional variability, but for this first study we have selected just a small 596 
set of key traits in order to maintain a relative simple model structure.          597 

Like most modelling efforts, TFS represents work in progress. We identify three particularly 598 
promising avenues for future improvements. Firstly, discrepancies between the observed and simulated 599 
stem level growth rates, particularly in larger size classes, could result from the allometric equations 600 
used to estimate aboveground biomass and growth not being species or size specific. The allometric 601 
equations used here express a generic height (H) vs. d relationship for Amazonia, without taking into 602 
account habitat and species differences, so a more accurate representation of tree architecture would 603 
probably result in better biomass growth estimation. Indeed, H-d relationships do vary significantly 604 
among species (King, 1996; Poorter et al., 2006) and across regions (Nogueira et al., 2008; Feldpausch 605 
et al., 2011; Goodman et al., 2013). An additional source of bias when estimating stem-level growth 606 
rates could be related to the uniform (static) allocation coefficient used in this study. For example, 607 
Litton et al. (2007) showed that allocation to aboveground tree biomass components increases with age 608 
and the availability of resources. Furthermore, Castanho et al. (2013) improved the predictions of a 609 
DGVM by adjusting allocation coefficients based on soil texture. Such ontogenetic and/or resource 610 
based shifts in patterns of carbon allocation could be potentially modelled through the use of dynamic 611 
allocation schemes (Friedlingstein et al., 1999; Franklin et al., 2012).  612 
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for understanding the global C cycle (Valentini et al., 2000). For example the way respiration is 616 
represented in DGVMs could have a substantial control over the way the dynamics of Amazonian 617 
forest under scenarios of climatic change are simulated (Huntingford et al., 2004; Galbraith et al., 2010). 618 
Nitrogen content of plant tissue has been proven a good predictor of respiration rates (Reich et al., 619 
2008). However, Mori et al. (2010) suggested a mixed-power equation where the exponent varies from 620 
1 to 3/4 as size increases. Both the Reich and Mori models are implemented in TFS, but we found that 621 
a third method, combining the size and nitrogen control, performed better. Thus we suggest that an 622 
amalgamation of those two approaches could provide a better way to estimate respiration fluxes in the 623 
new generation of dynamic vegetation models. In addition leaf phosphorous content seems to 624 
constrain respiration rates stronger than nitrogen content in some tropical forests (Meir et al., 2001; 625 
Meir and Grace, 2002), and thus inclusion of a phosphorus constraint in future equations of leaf 626 
respiration could increase their realism. 627 

Finally, discrepancies in the observed versus the simulated canopy conductance GC could result 628 
from the parameterisation of the stomata conductance model of Medlyn et al. (2011). The estimates for 629 
g0 and g1 used in the 40 PM plots simulations were taken as constant. However, Medlyn et al. (2011) 630 
suggested that g0 and g1 could vary with functional group. Thus the Amazon wide parameterisation used 631 
here should be replaced with local level estimates when appropriate gas exchange data are available, and 632 
ultimately with estimates based on linked functional traits as evidenced through recently documented 633 
associations between structural characteristics such as wood density and leaf area: sapwood ratio with 634 
leaf physiological traits such as Ma and leaf 13C/13

5. Conclusions 639 

C ratio (Patiño et al., 2012), although we also note that 635 
the extent of such structural/physiological linkages remains the subject of debate (Baraloto et al., 636 
2010b). Alternative stomatal closure equations as a function of soil water availability (Harris et al. 2004) 637 
should also be tested along with the conductance model in future versions of the model.    638 

We set out to develop a modelling framework for tropical forests that is relatively simple yet 640 
adequately complex to capture the main ecological gradients in the world’s most extensive tropical 641 
forest. Our study places special emphasis on processes highlighted by recent field studies to strongly 642 
influence Amazonian forest dynamics, especially functional trait diversity and its association with 643 
multiple soil properties (Fyllas et al., 2009). In summary TFS is characterised by a relatively simple 644 
setup, which is capable to reproduce water and carbon fluxes as observed at both daily and multi-645 
annual time scales. TFS represents an important link between inventory data, and large scale models 646 
with the incorporation of the continuum of plant strategies, through the inclusion of trait distributions 647 
providing a step towards better representing diversity in vegetation modelling (Lavorel et al., 2007), 648 
representing important processes and trait variation that cannot be adequately accounted for by a 649 
DGVM approach to vegetation modelling. Since TFS is based heavily on measured data, the model is 650 
well suited to testing hypotheses related to the present day Amazon biogeography and biogeochemical 651 
fluxes.  652 
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6. Code availability 653 

The JAVA source code can be obtained upon request. Contact: nfyllas@gmail.com 654 
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Tables & Figures 1053 

Table 1. Kendall correlation coefficients (τ) and associated significance levels (p) between simulated 1054 
gross primary productivity (ΠG), net primary productivity (ΠN), carbon use efficiency (CU) and key 1055 
environmental factors. 1056 

 ΠG(kgC m-2 y-1 ΠN(kgC m) -2 y-1 CU (-) ) 
Mean Annual 

Temperature - TA (o
τ = -0.17         
p = 0.131 C) 

τ = -0.21              
p = 0.065 

τ = -0.11          
p = 0.33 

Annual Precipitation 
PA(mm) 

τ = 0.54          
p < 0.001 

τ = 0.60               
p < 0.001 

τ = 0.36            
p = 0.002 

Soil nutrient availability        
Φ1 (PCA Axis 1) 

τ = 0.48          
p < 0.001 

τ = 0.50               
p < 0.001 

τ = 0.39           
p < 0.001 

 1057 
 1058 

1059 
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Figure Captions 1060 

Figure 1: The five basic components of the model and information flow among them. Tree by tree 1061 
traits and size initialisation takes place at the beginning of each simulation. Carbon and water fluxes, as 1062 
well as gross and net primary productivity are estimated daily.  1063 

1064 
  1065 
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Figure 2. Geographic distribution of study sites. Dark grey triangles indicate the three eddy flux tower 1066 
sites (with local names), light gray circles indicate the seven intensive measurement plots (with plot 1067 
codes), and crosses indicate the coordinates of the 40 RAINFOR permanent measurement plots. 1068 

  1069 
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Figure 3: Simulated against observed mean daily canopy conductance GC for the three sites with eddy 1070 
flux data. The broken line represents an 1:1 relationship and the continuous line illustrates a 1071 
standardised major axis (SMA) regression.  1072 

1073 
  1074 
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Figure 4: Simulated stem growth rate ΠN,s against observed aboveground biomass change ΔΒABG for 1075 
different size classes for the 2000-2006 period. Upper panel: infertile plots. Lower panel: fertile plots. 1076 
The broken line represents an 1:1 relationship continuous. The continuous line illustrates the straight 1077 
line fit using the York method (see text for details). 1078 
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  1080 
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Figure 5: Simulated stand-level aboveground net primary productivity (ΠAΝ) against observed stand-1081 
level aboveground biomass growth (ΔΒABG) of surviving trees, at the 40 PM plots. The line illustrates a 1082 
SMA regression of α=0.92 (0.72...1.18) and R2=0.42. Red dots indicate high nutrient availability and 1083 
blue dots indicate low nutrient availability plots. 1084 
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Figure 6: Summary of the randomisation exercise simulations. a) Simulated stand-level aboveground net 1086 
primary productivity (ΠAΝ) against observed stand-level aboveground biomass growth (ΔΒABG) for the 1087 
four different set-ups. The slope of the SMA (a) and the adjusted R2 are given in the parentheses for 1088 
each set-up. Different colours indicate different setups b) Simulated Amazon-wide aboveground net 1089 
primary productivity (ΠAΝ) for the four different set-ups.   1090 
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