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Abstract

In this study we present a new cyclone identification and tracking algorithm. Identifi-
cation is based on a recognition pattern of enclosed contours of 850 hPa filtered rela-
tive vorticity values, while tracking is based on the minimization of a cost function. In
particular, for each tracked cyclone our algorithm builds all possible tracks and finally5

chooses the one which presents the least differences of relative vorticity between con-
secutive track points. In parallel, for each track point the algorithm provides a cyclone
area within which different physical diagnostics are calculated (such as pressure and
wind speed). The area size is a function of the cyclone relative vorticity.

To validate our approach we apply the algorithm on the Northern Hemisphere for10

the winters of 1989–2009. Three integrations of the algorithm were performed, each by
using different filtering strengths. Using the three integrations, we assess the algorithm
sensitivity to prior filtering the relative vorticity field. We show that filtering the input
relative vorticity fields has an impact only on the weak cyclones, while in their majority
the strong cyclones are independently detected and tracked.15

1 Introduction

Identification and tracking of atmospheric features is thoroughly used for research in at-
mospheric sciences. Without doubt, the most investigated atmospheric features based
on identification and tracking algorithms are the tropical and extra-tropical cyclones
(e.g. Hodges, 1999; Blender and Schubert, 2000; Hoskins and Hodges, 2002; Ulbrich20

et al., 2009; Inatsu, 2009). However, several other atmospheric features are also iden-
tified and tracked in climatological datasets such as Mesoscale Convective Systems
(MCS; e.g. Machado et al., 1998), conveyor belts (e.g. Eckhardt et al., 2004), cut-off
lows (Wernli and Sprenger, 2007) and dry air intrusions (Roca et al., 2005; Flaounas
et al., 2012).25
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In general, tracking diagnostic tools function in two phases. In the first phase, the al-
gorithm has to identify the location of an atmospheric feature for a given time, while in
the second, all features are tracked by connecting their identified locations in consecu-
tive time steps. Numerous decisions have to be made during these two phases. These
decisions determine the algorithm’s level of flexibility. The more constraints applied in5

the identification phase, the narrower gets the range and number of the identified fea-
tures. For instance, in some studies, the definition of the location of a cyclone applies
three constraints on the fields of mean sea level pressure: (1) the representative grid
point of the data field has to have the minimum value among the neighboring grid
points; (2) the minimum value has to be inferior of a threshold value; and (3) the field10

gradient has to be superior of a threshold value (e.g. Murray and Simmonds, 1991;
Blender and Schubert, 2000; Nissen et al., 2010). However, the application of “strict”
constraints on pressure gradients may lead to tracking cyclones close to their mature
stage, whereas weak cyclones may not be detected at all.

Once the features identification phase is completed, tracking is the most challeng-15

ing task. An algorithm needs to decide on whether the identified features have been
displaced in time or they have ceased to exist. That decision step becomes more com-
plicated if a feature is split or merged, or simply, if there are more than one candidate
features to consider for its next location. The latter case is found often in noisy fields,
where the algorithm may identify as cyclone centers a significant number of grid points20

which are located close to each other. In this case, a well designed algorithm has to
decide which of the candidate features in the next time steps constitute the natural
evolution of the tracked feature and which should be neglected. In many methods a
“nearest point” approach is applied, where feature tracks are built by connecting the
identified features of a given time step with the nearest one of the following time step25

(Blender et al., 1997; Serreze et al., 1997; Trigo et al., 1999). In those methods, in-
conveniences might arise due to the wrong decisions of the algorithm between the
different next time step candidate locations. Other studies use more complicated track-
ing algorithms based on the feature’s speed (e.g. Murray and Simmonds, 1991; Wernli
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et al., 2006; Davis et al., 2008; Campins et al., 2011; Hanley and Caballero, 2012).
These algorithms make a “guess” of the feature’s next step location and therefore they
choose the nearest feature detected to this potential location. Finally, Inatsu (2009) pre-
sented an algorithm where tracking is based on neighbor enclosed area tracking. In this
scheme cyclones are regarded as an area of connected grids which satisfy a certain5

condition and they are tracked in time if the areas overlap in consecutive time-steps.
Post-treatment of the tracked features has been also proposed. In Hodges (1999),

the tracking algorithm constructs all tracks using a “nearest point” method. Then, the
tracks are altered by exchanging between them their track points. The algorithm contin-
ues to alter the tracks until a cost function is minimized. The cost function is a measure10

of smoothness of the total number of tracks. Hanley and Caballero (2012) apply a post
treatment routine in order to identify if the cyclones which present more than one cen-
ter undergo any merging or splitting process. If such processes are present during
a cyclone life-time, then tracks are altered accordingly (i.e. merged or split).

Recently the IMILAST project presented the results from a large effort in inter-15

comparing the performance of 15 different tracking algorithms in tracking extra-tropical
cyclones during the cold season of 21 yr over the entire planet (Neu et al., 2013). De-
pending on the algorithm, the tracks number, the cyclones life span or intensity might
vary significantly. Indeed, there is a divergence on the algorithms results which is fun-
damentally based on the fact that for each algorithm the definition of a cyclone is mod-20

eled accepting different constraints and/or different fields. In this sense, one of the main
results of this effort is that no algorithm is considered as “superior” or more “correct”
than the others, since cyclones are not defined in the same way. It is also noticeable in
Neu et al. (2013) that similar algorithms in their configuration might not present highly
matching results. Despite the variety of the results, Ulbrich et al. (2013) showed that25

the algorithms have a common behavior when considering the extra-tropical cyclones
tracks evolution in the context of changing climate. This result confirms that indepen-
dently of the different algorithms set-up and modeling constraints there is a common
robust behavior.
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In this study, our principal motivation is to design an algorithm which is able to provide
qualitative characteristics of the tracked features in parallel with their tracking (splitting,
merging, wind speed, associated rainfall, minimum pressure etc.). A new aspect of the
proposed approach is that cyclonic features are tracked based on their physical prop-
erties, by assuring a gradual evolution of the cyclone relative vorticity, and not on their5

displacement. The use of relative vorticity presents some advantages when compared
to geopotential height or mean sea level pressure since it is a high frequency vari-
able, representative of local scales and permits the tracking of a feature presumably
since its very initial perturbation, before it can be detected by closed pressure con-
tours (Hodges, 1999; Inatsu, 2009; Kew et al., 2010). This can be an advantage when10

considering for instance explosive cyclogenesis where cyclones intensity increases
significantly in twenty four hours (e.g. Sanders and Gyakum, 1980; Trigo et al., 2006;
Lagouvardos et al., 2007). On the other hand, relative vorticity is a wind-based field,
sensitive to the dataset horizontal resolution, while local maxima might not correspond
to wind vortices but to other features such as an abrupt wind turning.15

To deal with the spatial noise of relative vorticity, in our approach we smooth the input
fields. The smoothing operation partly counteracts the advantage of relative vorticity to
detect cyclones since their early stage but nevertheless we offer the algorithm a high
degree of flexibility, tracking perturbations which did not evolve to strong cyclones.
Such a setup for capturing weak cyclonic features has been also performed by previous20

studies (e.g. Murray and Simmonds, 1991; Pinto et al., 2005), however in our approach
this provides an added value for determining the cyclones which are not sensitive to
prior filtering. The code application and assessment is done in line with the efforts of
the IMILAST project, using the same time periods and input datasets, in order to make
the results of our algorithm comparable with those of the aforementioned project.25

Section 2 describes in detail the algorithm’s methodology while Sect. 3 provides
the results of its application on extra-tropical cyclones over the Northern Hemisphere
for the cold season (December-January-February) for the 21 yr period of 1989–2009.
Finally, Sect. 4 hosts the conclusion and our prospects.
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2 Identification and tracking algorithm methodology

In this section we present the functionality of the algorithm. To better understand the
different parts of the code we make a step by step application on the vorticity fields
at 850 hPa level for the extra-tropical latitudes of the Northern Hemisphere during the
winters of 1989–2009. Meteorological data are taken from the ERA-Interim reanalyses5

(ERA-I) with a horizontal resolution of 1.5◦ ×1.5◦ (ERA-I; Uppala et al., 2008). The
algorithm is composed by two independent phases: in the first phase, the algorithm
identifies all cyclonic features for all time steps of a dataset and in the second it builds
the feature’s tracks.

2.1 Phase I: identifying cyclones and quantifying their characteristics10

The first phase of the algorithm is devoted to the identification of the cyclones and to the
quantification of their characteristics. This is performed in three steps. First, the algo-
rithm identifies all cyclonic features, or more precisely all cyclonic circulations. Then, for
each cyclonic circulation the algorithm identifies all of its representative centers which
will be treated as different cyclones. Finally, for each center, the algorithm will quantify15

its characteristics (e.g. maximum relative vorticity, maximum wind speed, minimum sea
level pressure).

2.1.1 Identification of cyclonic circulations

In a first step, we spatially smooth the vorticity field by applying a spatial correlation
filter. The application of filtering is essential first for suppressing orographic or coastal20

vorticity maxima and second, for providing smoother gradients of relative vorticity fields.
The latter is very helpful since it helps the algorithm to reject local vorticity maxima
which are nested within noisy field gradients (especially near the core center of a cy-
clone and when considering very high resolution datasets). The smoothing operation
on the relative vorticity field is performed at each grid point separately by multiplying25
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the sum of all its neighboring X grid points by 1/X . For instance at any grid point a, b
the smoothed Relative Vorticity (RV) equals:

1
X

·
a+X∑

i=a−X

b+X∑
j=b−X

(RVi ,j ) (1)

As a result, the larger X is, the stronger is the smoothing operation on the relative5

vorticity fields. Finally, we apply a threshold value and we retain only the grid points
corresponding to higher values.

Figure 1 shows the raw relative vorticity fields and the filtered ones by applying three
different filters with X equal to 3, 5 and 7. The relative vorticity fields are derived from
ERA-I and they are centered over Europe at 00:00 UTC on the 3 December 1999,10

featuring the Anatol storm over Denmark as the strongest detected cyclone. In all pan-
els of Fig. 1 the threshold is set at 3×10−5 s−1. Depending on the filter strength the
relative vorticity values are accordingly weakened and all small vorticity features are
suppressed. Nevertheless, the structure and location of the vorticity maxima of the
strongest features, as the Anatol storm, are not altered among the different filter op-15

erations. In fact, filtering is used for smoothing values within a cyclonic circulation. As
a result, the filtering matrix should not be much larger than the length scale of a cyclone.
In that sense a 7×7 grid point filter for ERA-I means that relative vorticity is smoothed
in a 10.5◦ ×10.5◦ region which is certainly a large area. Hence, for the dataset used
in this application, 3×3 grid points (smoothing fields in a 4.5◦×4.5◦ area) is physically20

more consistent with the cyclone length scales.
As shown in Fig. 1a and b, each cyclonic circulation might correspond to a unique

cyclone or to a larger scale cyclonic circulation (i.e. 3×10−5 s−1 enclosed contours)
of more than one local maximum. The application of the 3×10−5 s−1 threshold on the
1.5◦×1.5◦ dataset has been found adequate for describing cyclones even at their initial25

perturbation, for all filtering integrations. In this step of the algorithm, and after applying
the threshold value, the algorithm identifies as a cyclonic circulation the areas com-
posed by neighboring grid points with values above the applied threshold and labels
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them with a number (i.e. all the enclosed contours of relative vorticity above the de-
fined threshold). Similar approaches in identifying a feature through an enclosed area
have been previously used for cyclones (e.g. Hodges, 1999; Wernli et al., 2006; Inatsu,
2009; Flaounas et al., 2013) as well as for other features (e.g. for MCS in Machado
et al., 1998).5

2.1.2 Identification of cyclonic centers

It is evident in Fig. 1b–d that not all cyclonic circulations correspond to a unique cy-
clone. For this reason each labeled cyclonic circulation is further treated by locating all
local vorticity maxima within the cyclonic circulation. These local maxima will be also
labeled and eventually will be treated as the centers of unique cyclones. The term “cen-10

ters of unique cyclones” has no physical basis but is conveniently used here in order
to describe the grid points which present local maxima of relative vorticity and are fol-
lowed in time in order to construct the cyclones tracks. In this sense we need to provide
the algorithm with a representative cyclone center even though the cyclone structure
might be very complex with more than one vorticity maximum, especially in very high15

resolution datasets. To deal with this issue, (1) we filter the data, smoothing the noisy
gradients (already performed in the previous step), (2) we define the local maxima as
the maximum value of the central grid point among its eight surrounding grid points and
(3) we consider that between two centers there is a relative vorticity difference greater
than the threshold value which is applied to define the cyclonic circulations (in this case20

the difference is of at least 3×10−5 s−1). The last criterion prohibits the weaker cyclonic
circulations (i.e. identified cyclones of relative vorticity close to the threshold value) to
present multiple centers. Indeed, accepting the threshold value as our fundamental cri-
terion for separating cyclones from the rest of the atmospheric circulation, two cyclones
within a larger cyclonic circulation must differ by embedded enclosed contours where25

their maxima and lateral contours have a difference of at least the threshold value.
Figure 1 shows the different maxima identified in the raw and filtered relative vorticity
fields. It is evident that the number of the cyclone centers diminishes proportionally
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to the filter strength. Indeed, smoothing the relative vorticity fields has the effect of
reducing the vorticity values and thus the gradients strength within the identified cy-
clonic circulations. As a result, the number of embedded cyclonic centers is reduced
especially due to our third criterion.

2.1.3 Quantifying cyclone characteristics5

Once all cyclones have been identified, we determine an “effective area” for each cy-
clone. This area is a circular disk centered on the cyclone vorticity maximum as iden-
tified in the previous step. The disk radius grows gradually until: (1) all grid points
included in the disk have a vorticity average inferior to a threshold value or (2) until the
radius reaches a pre defined maximum length or (3) until a higher than that of the cy-10

clonic center relative vorticity value is found within the area. According to this empirical
methodology, strong or large (but weak) cyclones tend to produce large effective areas.
The third criterion favors the stronger cyclones to spread their area independently of
the presence of other weaker ones in their region, while it restrains the weaker cyclones
not to share atmospheric fields with the strong cyclones. In Flaounas et al. (2013) the15

cyclone area was defined by the cyclone enclosed contour as defined by the applied
threshold value (see their appendix figure). However, such an enclosed area might
not capture grid points which present lower than the applied threshold relative vorticity
values. In Lim and Simmonds (2007) the cyclone area was also defined by a repre-
sentative circular disk of a radius which derived by the average distance between the20

cyclone center and the enclosing zero contour of the mean sea level pressure lapla-
cian. In our algorithm the circular disk seemed the best choice of capturing the affected
areas by a cyclonic vortex, although more “irregular shapes” might be considered as
for instance enclosed contours of pressure (Wernli et al., 2006; Hanley and Caballero,
2012) or of relative vorticity (Flaounas et al., 2013).25

Once the effective area is defined, our algorithm computes the physical properties of
the cyclone within the area’s grid points. Among the physical properties, the maximum
wind speed and pressure gradient, and total precipitation, are included. As an example,

1253

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1245–1276, 2014

Tracking winter
extra-tropical

cyclones

E. Flaounas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2 shows the effective area and the detection of the minimum sea level pressure
and the maximum 10 m wind of the storm Anatol at the same time as in Fig. 1b.

2.2 Phase II: tracking cyclones

Before the start of the tracking phase, our algorithm sorts the identified cyclones based
on their relative vorticity value, from the strongest (i.e. the one with the highest rela-5

tive vorticity value) to the weakest. Then, it starts from the first cyclone and searches
forward and backward in time for all its undergoing possible tracks. More precisely, the
algorithm constructs all possible cyclone tracks which present the same highest vor-
ticity state. Once all possible tracks are constructed, the algorithm chooses the track
for which the feature presents the most “natural evolution” of relative vorticity, i.e. the10

track which presents the smallest differences of relative vorticity in consecutive points,
weighted by the distance between the track point locations.

Figure 3a illustrates an idealized experiment, presenting the locations of all identified
cyclones in a four time step dataset. Six cyclones are identified: one cyclone in the first
time step, one cyclone in the second time step and two cyclones for each of the time15

steps three and four. The tracking process begins from the strongest cyclone (i.e., the
cyclone 2(12)) and constructs all possible tracks by iterating forward and backward in
time with all other features. Figure 3b shows that the first cyclone may undertake four
possible tracks, however it is obvious that the track 1(9), 2(12), 3(10), 4(8) presents the
most “natural evolution”, since maximum relative vorticity differs the least from one time20

step to the next. The algorithm saves this track and deletes the used cyclones’ locations
from the dataset. Then, a new iteration begins where the algorithm will start from the
cyclone with highest vorticity and eventually a new track will be constructed (Fig. 3c).
Starting the tracks from the cyclone’s highest vorticity state was found very convenient
for reducing the mistakes in the beginning of the trajectories construction step. Indeed,25

in the previous and next time step of the cyclone with the highest vorticity state, for
most cases, there is only one strong cyclone to act as a candidate for continuing the
tracks.
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The practice of minimizing cost functions, has been used before by Hodges (1995,
1999), who builds the feature tracks by minimizing the cost function of the feature’s
trajectory smoothness. Here, the feature’s evolution in each track is determined by
a cost function (C), represented by the absolute average difference of relative vorticity
weighted by the distance between two consecutive time steps:5

C =
n=N−1∑
n=1

dn→n+1(|Vn+1 − Vn|) (2)

where C is the cost function of a candidate track, N is the total number of the track’s
time steps, d is the distance between two consecutive track points and V is the relative
vorticity at each time step. Performing sensitivity tests by altering Eq. (2), we found10

that the term d did not add significantly to the performance of the algorithm. However,
for certain cases it seemed useful to weight the vorticity differences by the distance,
especially when the candidate cyclones presented similar vorticity with the tracked
cyclone, but were located unrealistically far from the tracked cyclone.

The number of possible tracks is quite large. However, their number can be signifi-15

cantly reduced by the application of a series of legitimate heuristics, that remove those
tracks that present a non-natural behavior: (1) from each time step to the next, the
location of the next candidate cyclone must be within a threshold range, (2) the max-
imum vorticity between the tracked cyclone and a candidate cyclone must not differ
more than 50 % and (3) if the displacement is more than 3◦ for two successive dis-20

placements, then the angle between these displacements must be greater than 90◦.
The first constraint prohibits the algorithm from searching for next step candidate fea-
tures in locations where the tracked cyclone could by no means be displaced. In our
algorithm the cyclones are searched within a 5◦ ×10◦ latitude-longitude range which
is the largest possible for extratropical cyclones displacement as proposed by Hodges25

(1999). The second constraint prohibits the algorithm from choosing candidates which
consist by no means a possible evolution of the tracked feature. The use of a per-
centage is highly convenient since large vorticity values are subject to higher changes
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between consecutive time steps compared to small vorticity values. Finally, the third
constraint prohibits the algorithm to take into account abrupt backs-and-forths of the
cyclone’s movement. Such displacements are more likely to take place in raw vorticity
fields, where local maxima might change abruptly. For instance the algorithm would
not choose the track 2(12), 3(4) and 4(8) in Fig. 3 since the consecutive displacements5

present an angle of 74◦ (marked in red in Fig. 3) which is smaller than 90◦.
Finally, our algorithm returns as output a matrix for each track, containing information

on the cyclone’s track and physical characteristics. The matrix has a number of rows
which is equal to the track points and a number of columns equal to the algorithm stan-
dard outputs plus the number of physical diagnostics. The optional output diagnostics10

might vary depending on the study needs and the data inputs. Labeling the cyclonic
circulations (Sect. 2.1.1) and the cyclonic centers (Sect. 2.1.2) within the tracks permits
a post-treatment analysis for determining merging and splitting of cyclones. For our ap-
plication on the extra-tropical cyclones only maximum 10 m wind speed and sea level
pressure minima are considered. As an example of the algorithm performance, Fig. 415

presents two cyclone tracks which evolve by sharing the same cyclonic circulation. The
tracks are supported by the physical characteristics of the cyclones (evolution of relative
vorticity, maximum 10 m wind speed and minima of sea level pressure), demonstrated
in Fig. 5.

3 Applying and calibrating the tracking algorithm in a climatological context20

In this section we present the results from three algorithm integrations for all winters
(December, January and February) of the period 1989–2009. The three integrations
differ on the use of the initial filtering of the relative vorticity field. The applied spatial
filters (described in Sect. 2.1.1) correspond to a 3×3, a 5×5 and a 7×7 grid points
filtering, forming three integrations named filter3, filter5 and filter7, respectively. For all25

integrations the threshold used to define cyclones is 3×10−5 s−1. For this analysis only
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tracks of at least one day life time are considered (i.e. tracks with at least four time
steps).

3.1 Algorithm sensitivity on filtering

Figure 6 presents the number of cyclonic centers in function of their relative vorticity
value for all three algorithm integrations. Since all integrations are bounded to identify5

cyclones from a common threshold of 3×10−5 s−1 and since filtering decreases the
relative vorticity values, due to its smoothing operation, it is of no surprise that the total
number of cyclone centers is reduced with increasing filtering intensity. Regardless the
integration, the forms of the three histograms in Fig. 6 seem to be similar. Indeed,
calculating the average relative vorticity distance between the histogram of filter7 and10

the histogram filter3 we found 7.7×10−5 s−1 and between filter5 and filter7 we found
2.8×10−5 s−1. For both average differences the standard deviation is less than 10−5 s−1.

Strong filtering vs. weak filtering should have two effects: first it tends to detect fewer
tracks, which also correspond to the stronger cyclones, and second it tends to reduce
the cyclone track lengths (by not taking into account the weakest vorticity perturba-15

tions in the early and late stages of a cyclone track). The validity of the first hypothesis
is evident from Fig. 1 where smoothing suppresses many weak cyclonic centers but
stronger cyclones (such as the Anatol storm) are equally detected by all three integra-
tions. To verify the second hypothesis we investigate the characteristics of the tracks
as detected by filter3, filter5 and filter7. Figure 7a–c show the Probability Distribution20

Function (PDF) for the life-time of tracks, the average speed of cyclones and their max-
imum relative vorticity. According to the results, no significant changes between the
different algorithm integrations are observed when considering the cyclone life-time.
Consequently the second hypothesis that average track characteristics are sensitive to
the filtering can be rejected. It is interesting though that algorithm integration with weak25

filtering detects weak cyclones which have similar life scales. The fact that the PDF of
the average speed of cyclones in Fig. 7b is also similar for all integrations means that
the weaker cyclones in filter3 and filter5 do not correspond to weak stationary vorticity
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perturbations, but nevertheless do not evolve to strong extra-tropical cyclones. An in-
teresting question which might arise is why the weaker cyclones which are detected in
filter3 and filter5 integrations do not evolve into strong cyclones, however, this issue is
out of the scope of this paper.

In order to verify the cyclone tracks location, Fig. 8 shows the Cyclones Center Den-5

sity (CCD) for all three integrations. In agreement with Fig. 6, different magnitudes of
CCD are observed, depending on the filtering strength. However, the spatial pattern
remains coherent for all three cases, meaning that the weakest cyclones detected in
filter3 and filter5 (compared to filter7 ) are not orographic or coastal stationary rela-
tive vorticity perturbations. The effect of filtering (for instance filter7 respect to filter3)10

is characteristic to the CCD within the Mediterranean region, where the cyclones are
known to be weaker (Campa and Wernli, 2012) than the other extratropical cyclones
forming over the oceans. Indeed, applying a strong threshold there is a dramatic de-
crease of detected cyclones over the Mediterranean Sea. Figure 8 presents a high
similarity with the results from other algorithms (Neu et al., 2013) independently if15

initial filtering is performed or if sea level pressure or relative vorticity is used as in-
put for the detection of cyclones. Indeed CCD maxima are distinctly located over the
Pacific Ocean, the Northern Atlantic Ocean, and the Mediterranean. Furthermore, re-
gardless of the integration both speed and life time PDFs (Fig. 7a and b) seem to be
in good agreement with the other algorithms (Neu et al., 2013) presenting most prob-20

able cyclone speeds between 30 to 40 kmh−1 and cyclone life time PDF decreasing
exponentially from< 2 days up to a total of approximately 8 days.

3.2 Calibrating the algorithm

Figure 9 presents the interannual distribution of the number of cyclone centers which
resulted from the three integrations. For all three filters, our results are in agreement25

with those of Neu et al. (2013) showing no specific inter-annual trend. As expected, the
cyclone center number per year depends on the filtering strength. The cyclone center
numbers decrease from approximately 9000 yr−1 for filter3 to approximately 3000 yr−1
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for filter7. All three integrations are within the ranges of other algorithms which range
from 2000 yr−1 to 12 000 yr−1 but it is only filter5 which is consistent with the majority
of other algorithm results which calculated 4000 to 7000 cyclonic centers per year.

One question, which points directly at the robustness of the algorithm results and
its sensitivity to initial filtering, is if the results of filter3 and filter5 would converge with5

those of filter7 if weak cyclones are omitted. We use filter7 as a reference for our anal-
ysis since it presents the strongest filtering and thus the smallest number of cyclones.
Then, taking into account the fact that Fig. 6 shows a constant cyclone center intensity
difference between the distributions of different algorithm integrations (7.7×10−5 s−1

between filter3 and filter7 and 2.8×10−5 s−1 between filter5 and filter7 ) we apply10

these differences as thresholds in order to exclude from filter3 and filter5 the tracks
that did not reach such high intensities. In other words, we exclude in filter3 and fil-
ter5 all tracks which did not reach relative vorticity values of at least 3+7.7×10−5 s−1

and 3+2.8×10−5 s−1, respectively. Adding 3×10−5 s−1 is essential since this is the
basis threshold value to identify a cyclone and since this threshold is applied after fil-15

tering the raw relative vorticity fields. The results from excluding cyclone tracks from
the filter3 and filter5 total cyclone center number are shown in Fig. 9 (in dashed lines).
After excluding weak cyclone tracks, both new cyclone center counts for filter3 and
filter5 converge approximately on the exact same value, which is also consistent with
the majority of the other algorithms presented in Neu et al. (2013). However, both new20

cyclone center counts do not converge with filter7. This is due to the fact that we only
exclude from the counting all the cyclonic centers of the tracks with maximum relative
vorticity smaller than the cut-off value and not all cyclonic centers with vorticity below
the cut-off value. This is a logical operation that we apply since we are not interested in
getting the exact same distribution of cyclonic centers but we seek in getting cyclone25

tracks which present similar characteristics in intensity for all three integrations. Indeed,
Fig. 7d shows that the PDF of the tracks maximum relative vorticity for filter3 and fil-
ter5 present now a similar structure after excluding the weaker tracks (displaced in
stronger relative vorticity for filter3) (Fig. 7d respect to Fig. 7c). Indeed, cyclone tracks
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are constructed around the track point of highest relative vorticity, while other track
points present a smoothed evolution of decreasing relative vorticity. As a result, one of
the advantages of the algorithm is that cyclone tracks distribution can be calibrated by
taking into account only their maximum relative vorticity.

The initial filtering in our approach functions as a spatial smoothing operator, based5

on the number of grid points within a square area. As a result, if the grid of our input
dataset was of sufficiently fine horizontal resolution in order to permit many filtering
matrix sizes, there would be an “optimal” filtering. This optimal filtering would be such
that after applying the above methodology, then all cyclone center number distributions
from weaker filtering would be reduced to the distribution of the optimal filtering. In10

any case, however, the track results given by weaker filtering should not be interpreted
as “wrong”. In fact, they should be treated as weak cyclones which are sensitive to
the strength of the filtering. In contrast, the cyclone tracks remaining after rejecting
the weaker ones can be considered as independent of the filtering. What should be
considered as a strong or weak filtering is certainly dependent on the spatial resolution15

of the input dataset.

3.3 Physical coherence of the tracked cyclones

In this section we perform an analysis of the effective area diagnostic tool (described in
Sect. 2.1.3) by retaining only the cyclone tracks of the filter3 integration after calibrat-
ing its results (i.e. taking into account the dashed lines of filter3 in Fig. 9). Figure 1020

presents the composite evolution of the cyclones physical characteristics, centered on
the time of maximum vorticity of the tracks (mature state) and averaged for all tracks
detected in the Pacific Ocean (from 130◦ to 240◦ of longitude and from 30◦ to 90◦ of
latitude), North Atlantic Ocean (from 300◦ to 360◦ of longitude and from 30◦ to 90◦ of
latitude) and within the Mediterranean region (from 345◦ to 45◦ of longitude and from25

25◦ to 50◦ of latitude). The results show that regardless of the region there is a strong
coherence between the evolution of sea level pressure minima, relative vorticity and
maximum 10 m wind speed. The strength of the cyclones tends to increase rapidly but
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decays in a slower rate. This slow weakening of the cyclones’ intensity in the composite
time series of Fig. 10 is due to the fact that the duration of the cyclones mature state is
highly variable (as shown in Fig. 7). Here, for the construction of the composites there
is no distinction depending on the cyclones life time, while one should note that the fur-
ther we get from the time of the cyclone maximum vorticity (i.e. the composite centers)5

the fewer cyclones last long enough in order to provide diagnostics for the compos-
ites. For instance, the Mediterranean cyclones life-time scale is inferior from the other
extra-tropical cyclones and rarely exceeds 2–3 days. Nevertheless, our purpose here
is to assess the validity of the effective area diagnostic which seems to capture cor-
rectly the evolution of cyclones physical characteristics regardless the region. Indeed,10

in agreement with Campa and Wernli (2012), Mediterranean cyclones are less deep,
in terms of sea level pressure, while Atlantic cyclones are slightly deeper than the ones
occurring over the Pacific Ocean.

4 Discussion and prospects

In this article we presented a new algorithm for identifying and tracking cyclones. The15

developed algorithm has been applied for the identification of winter extra-tropical cy-
clonic systems over the Northern Hemisphere. The algorithm was integrated with three
different initial filtering of the high frequency relative vorticity fields. The results showed
that the number of tracks were inversely proportional to the filter strength. However, for
all three algorithm integrations the results showed coherent cyclone spatial and tempo-20

ral variability when compared with the results of other tracking algorithms presented in
the literature. Furthermore, we showed that weak filtering makes the algorithm able to
detect more cyclones but post-treatment of the tracking results provides robust results
on the tracks independently of the initial filtering of the input fields. Finally, the algorithm
was shown to successfully capture the physical characteristics of cyclones.25

Our motivation while developing the identification and tracking algorithm for cy-
clones was to apply the fewer constraints possible, not only for tracking weak vorticity
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perturbations which evolved in strong cyclones, but also for tracking weak perturba-
tions that did not evolve into strong cyclones. This permits the better calibration of the
algorithm, but also – in a future work – the more precise description of the environ-
mental conditions which favor cyclogenesis and cyclone evolution. Furthermore, we
chose the vorticity criteria to vary dynamically (vorticity must not vary more than 50 %5

in consecutive time steps) and we avoided any threshold or cut-off values which would
prohibit tracking cyclones of “anomalous behavior”. It should be noted that although in
this study we applied the algorithm based on relative vorticity to identify and track cy-
clones, the same algorithm might be applied on any dataset which presents enclosed
areas after applying a threshold value. For instance the algorithm could be applied on10

datasets of brightness temperature or cloud cover for tracking supercells or mesoscale
convective systems.

Tracking uses a cost minimization approach, solely based on the cyclone relative
vorticity maxima. In our experiments, rarely did the code presented more than 10–20
alternative tracks for a single cyclone, and in the majority of cases, the algorithm has15

chosen the correct track. Mistakes were observed especially when cyclonic circula-
tions were found to be very noisy with multiple local maxima. As an alternative to the
vorticity-based cost function used here, it would be interesting to use the weighted
mean differences of additional cyclone physical characteristics (pressure, wind speed
etc.) between consecutive time steps. This has been previously applied by Machado20

et al. (1998) for tracking MCS using brightness temperature satellite observations.
However, this method would suppose an a-priori choice of the weighting value, risking
restraining the code adaptability to track cyclones of different origin (e.g. extra-tropical
and tropical cyclones).

The proposed algorithm links representative centers in consecutive time steps in25

contrast with the alternative configuration proposed by Machado et al. (1998) and
Inatsu (2009) to link enclosed areas. This decision was made because if enclosed
areas were linked, then large cyclonic circulations would not correspond to a single cy-
clone and additional criteria – and/or filtering – would be needed, while weak cyclones
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would be neglected. At this point it should be noted that the extension of our algorithm
to the vertical direction has been also explored. The preliminary results of the appli-
cation of the tracking algorithms in three dimensions presented good skill only for the
tropics. The presence of planetary waves in the mid latitudes imposed large structures
of high relative vorticity values in the mid-to-high atmospheric levels which were not5

easily separated from the cyclones vertical structure.
Further development of the algorithm includes (1) extension of the identification part

in three dimensions by searching geopotential height minima over and within the effec-
tive area and (2) extension of the code adaptability for different atmospheric features
such as MCS. The code will be applied in priority for the analysis of weather extremes10

with special focus on the Mediterranean. More specifically merging and splitting diag-
nostics and the determination of more complex cyclone physical characteristics, such
as temperature gradients in order to define frontal regions within the cyclones area, are
the subject of the authors future work. Finally, the algorithm source is freely available
in MatLab code upon request to the corresponding author.15
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Fig. 1. (A) Relative vorticity raw fields at 00:00 UTC, 3 December 1999. The threshold applied
is 3×10−5 s−1. Crosses represent the central maxima located in the center of a 3×3 grid point
area. (B) as in (A) but relative vorticity field is filtered using a 3×3 correlation spatial filter. (C)
as in (A) but relative vorticity field is filtered using a 5×5 correlation spatial filter. (D) as in (A)
but relative vorticity field is filtered using a 7×7 correlation spatial filter.

1267

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1245–1276, 2014

Tracking winter
extra-tropical

cyclones

E. Flaounas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. The Anatol storm at 00:00 UTC, 3 December 1999. Relative vorticity smoothed by a 3×3
spatial filtering (color ), mean sea level pressure (in contour ) and 10 m wind field (in arrows).
Thick black contour represents the cyclone effective area. Locations and values of maximum
wind speed and lower pressure is depicted by the thick lines.
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Fig. 3. (A) An idealized case of cyclone locations in four time steps. Locations are depicted by
circles. Numbers above the locations are in the form X(Y), where X denotes the time step and
Y the maximum relative vorticity. Circles size is proportional to the cyclones maximum relative
vorticity value. (B) all possible trajectories of cyclone 2(12) searching backwards and forward
in time. (C) Tracks results after retaining in B the track which presents the minimum average
change of relative vorticity in successive time steps.
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Fig. 4. Relative vorticity smoothed by a 3×3 spatial filter (color ), and tracks (thin lines) of two
splitting cyclones for different time frames in December 1999.
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Fig. 5. (A) Maximum relative vorticity (solid line) at the tracks centers and minimum sea level
pressure (dashed line) as detected within the cyclones effective area for the two splitting cy-
clones shown in Fig. 4b as in (A) but dashed line corresponds to maximum 10 m wind speed.
Color lines are the same as in the tracks in Fig. 4. The horizontal axes represent the period
6–16 December 1999.
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Fig. 6. Number of cyclonic centers in function of their relative vorticity value as detected by
applying the three algorithm integrations.
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Fig. 7. (A) Probability Distribution Function (PDF) of cyclones life times for the three algorithm
integrations. (B) As in (A) but for cyclones average speed. (C) as in (A) but for tracks maximum
relative vorticity (D) as in (C) but after excluding tracks that did not reach 10.7 and 5.8 of
×10−5 s−1 of relative vorticity in integrations filter3 and filter5, respectively.
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Fig. 8. Cyclone center density expressed as the percentage of cyclone occurrence per time
step and per unit area of (1000 km2) for the (A) filter3, (B) filter5 and (C) filter7 integration.

1274

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1245/2014/gmdd-7-1245-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1245–1276, 2014

Tracking winter
extra-tropical

cyclones

E. Flaounas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 9. Number of cyclone centers in function of the year for the three algorithm integrations
(black for filter3, gray for filter5 and light grey for filter7). Dashed lines correspond to the integra-
tions filter3 and filter5 after excluding tracks which did not reach a maximum intensity of 10.7
and 5.8×10−5 s−1 of relative vorticity.
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Fig. 10. Average composite time series of cyclones physical characteristics, in three different
regions. 0 h corresponds to the time when the cyclone presents its maximum relative vortic-
ity: relative vorticity (thick black line), sea level pressure (red thick line) and maximum 10 m
wind speed (thin black line). Wind speed scale values are shown in the left vertical axes in
parenthesis. Note that the y-axis has not the same value intervals in the three panels.
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