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Abstract 10 

In this study we present a new cyclone identification and tracking algorithm, namely cycloTRACK. 11 

The algorithm is an iterative process and at each time step it identifies all cyclone centers. These are 12 

defined as relative vorticity maxima, embedded in smoothed enclosed contours of at least 3x10
-5

 s
-1

 at 13 

the atmospheric level of 850hPa. Then, the algorithm constructs the tracks by linking the different 14 

cyclone locations at consecutive time steps. In particular, for each identified cyclone center the 15 

algorithm builds all possible tracks. The final cyclone track is selected as the one that presents the 16 

minimum score of a cost function. The cost function is the average differences of relative vorticity 17 

between consecutive track points, weighted by the distance between the track points. For each cyclone, 18 

the algorithm also computes “an effective area” in which different physical diagnostics are measured 19 

such as the minimum pressure and the maximum wind speed and they are attributed to the tracked 20 

cyclones. The area size is a function of the cyclone relative vorticity. 21 

We apply the algorithm to the ERA-Interim reanalyses in order to track the northern hemisphere extra-22 

tropical cyclones of the 1989–2009 winters. We assess the sensitivity of our method to the relative 23 

vorticity filtering and to other parameters used to perform tracking.  24 



1. Introduction 25 

Identification and tracking of atmospheric features is thoroughly used in atmospheric science research. 26 

Several atmospheric features are identified and tracked in climatological datasets such as Mesoscale 27 

Convective Systems (MCS; e.g. Machado et al, 1998), conveyor belts (e.g. Eckhardt et al, 2004), cut-28 

off lows (Wernli and Sprenger, 2007), fronts (Hewson and Titley, 2010), jet streams (Limbach et al, 29 

2012) and dry air intrusions (Roca et al, 2005; Flaounas et al, 2012). However, tropical and extra-30 

tropical cyclones are the most investigated atmospheric features by identification and tracking 31 

algorithms (e.g. Hodges, 1999; Blender and Schubert, 2000; Hoskins and Hodges 2002; Ulbrich et al, 32 

2009; Inatsu, 2009). 33 

Typical methods for cyclone detection and tracking utilize a two-step approach: First they identify the 34 

location of cyclone centers at all given time steps and then in a second step all cyclones are tracked by 35 

connecting their identified locations in consecutive time steps. The more constraints are applied in the 36 

identification step, the narrower becomes the range and the number of the identified features. For 37 

example, in some studies the definition of the location of a cyclone implies three constraints on the 38 

fields of mean sea level pressure: (1) the representative grid point of the data field has to have the 39 

minimum value among the neighboring grid points; (2) the minimum value has to be inferior of a 40 

threshold value; and (3) the field gradient has to be superior of a threshold value (e.g. Murray and 41 

Simmonds, 1991; Blender and Schubert, 1997; Nissen et al, 2010). However, the application of “strict” 42 

constraints on pressure gradients may lead to tracking cyclones only close to their mature stage, 43 

whereas weak cyclones may not be detected at all.  44 

A tracking algorithm needs to decide if the identified cyclones have moved over time or they have 45 

ceased to exist. In practice, this step is more complicated since cyclones can split or merge with other 46 

cyclones or there might exist more than one candidate to be considered for the next cyclone location. 47 

This is often the case in noisy fields, where an algorithm may identify a significant number of grid 48 

points located close to each other as cyclone centers. In this case, an algorithm has to determine which 49 

of the candidate features constitutes the next step of the tracked cyclone and which should be 50 



neglected. Many methods apply a “nearest neighborhood” approach where tracks are built by 51 

connecting the identified cyclone centers of a given time step with the nearest one of the following 52 

time step (Blender et al., 1997; Serreze et al., 1997; Trigo et al., 1999). Other studies use more 53 

complex tracking algorithms and utilize displacement speed (e.g. Murray and Simmonds, 1991; 54 

Wernli et al, 2006; Davis et al, 2008; Campins et al, 2011; Hanley and Caballero, 2012). These 55 

algorithms make a “guess” on the next step location of the cyclone and choose the nearest feature 56 

detected at that potential location. Finally, Inatsu (2009) presented an algorithm where tracking is 57 

based on neighbor enclosed area tracking, where cyclones are identified as areas of connected grid 58 

points that satisfy a certain condition; then tracking is performed by connecting the cyclone areas that 59 

overlap in consecutive time-steps. 60 

Post-treatment of the tracked features has been proposed by Hodges (1999). His tracking algorithm 61 

constructs all tracks using the “nearest neighborhood” approach. Then, the tracks exchange track 62 

points until a cost function is minimized. The cost function is a measure of the smoothness of the total 63 

number of tracks. Hanley and Caballero (2012) also applied a post-treatment process in order to 64 

identify if cyclones, that present more than one center, undergo any merging or splitting process and 65 

adapt tracks accordingly.  66 

Raible et al. (2008) were the first to compare the performance of three different tracking methods, 67 

applied on extra-tropical cyclones. Results converged on the interannual variability of cyclone 68 

occurrences; however they differed on the cyclone number trends and track densities. Recently the 69 

IMILAST project presented a comparison of the performance of 15 different algorithms which have 70 

been used for tracking extra-tropical cyclones during the cold season of 21 years over the entire planet 71 

(Neu et al, 2013). The tracks number, the cyclones life span and intensity may vary significantly 72 

depending on the algorithm. Indeed, there is a divergence on the algorithms results which is due to the 73 

fact that there is no common physical definition of a cyclone. Consequently, for each algorithm 74 

cyclone identification is performed by applying different constraints and/or different fields. In this 75 

sense, one of the main results of Neu et al. (2013) is that no algorithm is considered to be “superior” or 76 

more “correct” than the others, since cyclones are not defined in the same way. It is also noticeable 77 



that similar algorithms (in their configuration) might not present highly matching results. Despite the 78 

variety of the results, Ulbrich et al. (2013) showed that the algorithms have a common behavior when 79 

considering the extra-tropical cyclones tracks evolution in the context of a changing climate. This 80 

result confirms that independently of the different algorithms set-up and modeling constraints there is 81 

a common robust behavior. 82 

In this study, our principal motivation is to design an algorithm which is able to provide qualitative 83 

characteristics of the tracked features, in parallel with the tracking (splitting, merging, wind speed, 84 

associated rainfall, minimum pressure etc.). A new aspect of the proposed approach is that cyclonic 85 

features are tracked based on their physical properties, by assuring a gradual evolution of the cyclone 86 

relative vorticity, and not on their displacement. The use of relative vorticity presents some advantages 87 

when compared to the use of geopotential height or mean sea level pressure: it is a high frequency 88 

variable, representative of local scales that -presumably- permits cyclone tracking since its initial 89 

perturbation and thus before it is characterized by closed pressure contours (Sinclair, 1994, 1997; 90 

Hodges 1999; Inatsu 2009; Kew et al, 2010). This can be an advantage when considering for instance 91 

explosive cyclogenesis where cyclones intensity increases significantly in twenty four hours (e.g. 92 

Sanders and Gyakum, 1980; Trigo et al, 2006; Lagouvardos et al, 2007). On the other hand, relative 93 

vorticity is a wind-based field, sensitive to the dataset horizontal resolution, while local maxima might 94 

not correspond to wind vortices but to other features such as an abrupt wind turning.  95 

To deal with the spatial noise of relative vorticity, in our approach we smooth the input fields. The 96 

smoothing operation partly counteracts the advantage of relative vorticity to detect cyclones since their 97 

early stage, however our algorithm has a high degree of flexibility, that permits tracking of 98 

perturbations that did not evolve to strong cyclones. Similar setup has been also used in previous 99 

studies for capturing weak cyclonic features (e.g. Murray and Simmonds, 1991; Pinto et al, 2005), but 100 

in our approach this provides an added value for optimizing the algorithm and determining the 101 

cyclones that are not sensitive to filtering. The application and assessment of our method is done in 102 

line with the efforts of the IMILAST project, using the same time periods and input datasets, in order 103 

to make the results of our algorithm comparable with those of the aforementioned project. 104 



In Section 2 the cyclone detection and tracking method is described in detail. In Section 3 we present 105 

the results of several sensitivity tests of our method, applied to the ERA-Interim (ERA-I) data set for 106 

the winters (December-January-February) of the period 1989-2009. Finally, Section 4 hosts the 107 

conclusions and our prospects. 108 

 109 

2. Identification and tracking algorithm method 110 

In this section we present our algorithm and its application on the vorticity fields at 850hPa level 111 

within the extra-tropical latitudes of the Northern hemisphere during the winters of 1989-2009. We 112 

use meteorological data from the 6-hourly ERA-I reanalyses with a horizontal resolution of 1.5°x1.5° 113 

(Uppala et al, 2008). The algorithm is composed by two independent steps: In the first step, the 114 

algorithm identifies all cyclonic features for all time steps of a dataset and in the second step it builds 115 

the cyclone tracks.  116 

 117 

2.1 Step I: Identifying cyclones and quantifying their characteristics 118 

The first step of the algorithm is devoted to the identification of the cyclones and to the quantification 119 

of their characteristics. First, the algorithm identifies all cyclonic features, or more precisely all 120 

cyclonic circulations. Then, for each cyclonic circulation the algorithm identifies all of its 121 

representative centers which will be treated as different cyclones. Finally, for each center, the 122 

algorithm quantifies its characteristics (e.g. maximum relative vorticity, maximum wind speed, 123 

minimum sea level pressure). 124 

 125 

2.1.1 Identification of cyclonic circulations 126 

To identify cyclonic circulations, the vorticity field is smoothed by applying a spatial filter. In 127 

previous studies a variety of filtering operations has been used to smooth the vorticity field such as b-128 



spline techniques (Hodges, 1995), time band-pass filtering (Hoskins and Hodges, 2002; Inatsu, 2009) 129 

and 1-2-1 filters (Satake et al, 2013). Here we use a simple method of a 1-1-1 spatial filter, which is 130 

however adequate to smooth out the orographic or coastal vorticity maxima as well as the gradients of 131 

relative vorticity fields. The latter helps the algorithm to reject local vorticity maxima that are nested 132 

within noisy field gradients, especially when considering very high resolution datasets. The smoothing 133 

operation on the relative vorticity field is performed at each grid point separately by multiplying the 134 

sum of all its neighboring X grid points by 1/(2X+1). For instance at any grid point a, b the smoothed 135 

Relative Vorticity (RV) is given by: 136 

 

    
          

   
     

   
          Eq. 1 137 

As a result, the larger X is, the stronger is the smoothing operation on the relative vorticity field. 138 

Finally, we apply a threshold value and we retain only the grid points exceeding this threshold.  139 

Figure 1 shows the raw relative vorticity fields and the filtered ones by applying three different filters 140 

with X equal to 3, 5 and 7. The relative vorticity fields are derived from ERA-I and they are centered 141 

over Europe at 00:00 UTC, 3 December 1999, featuring the Anatol storm over Denmark as the 142 

strongest detected cyclone. In all panels of Fig. 1 the threshold is set at 3x10
-5

 s
-1

. The stronger the 143 

applied filter is, the weaker are the relative vorticity values. Small vorticity features tend to be 144 

suppressed but nevertheless, the structure and location of the vorticity maxima of the strongest 145 

features, as the Anatol storm, are not altered among the different filter operations. Filtering here is 146 

used for smoothing values within a cyclonic circulation. As a result, the filtering matrix should not be 147 

much larger than the length scale of a cyclone. In this sense, a 7x7 grid point filter for ERA-I means 148 

that relative vorticity is smoothed in a 10.5°x10.5° region which is certainly a large area.  149 

As shown in Figs 1a and 1b, each cyclonic circulation might correspond to a unique cyclone or to a 150 

larger complex of cyclonic centers of more than one local maximum. The 3x10
-5

 s
-1 

threshold applied 151 

on the ERA-I dataset (1.5°x1.5° resolution) has been found adequate for describing cyclones even at 152 

their initial stage, for all three filtering sensitivity tests. In this step, the algorithm identifies and labels 153 

with a number all cyclonic circulations which are defined as the areas composed by neighboring grid 154 



points of values exceeding the 3x10
-5

 s
-1 

threshold. The selected threshold value is a good trade off for 155 

detecting cyclones in coarse resolution datasets (e.g. 1.5°x1.5°, as in ERA-I used here) and in high 156 

resolution datasets (e.g. 20km regional climate runs). A threshold may function conveniently as a 157 

constant for better adjusting the filtering strength. Alternatively, one could keep the filtering strength 158 

constant and make the threshold value vary. However, it is only by varying the filtering strength that 159 

the vorticity field may be smoothed within the characteristic length scale of cyclones. Similar 160 

approaches in identifying a feature through an enclosed area have been previously used for cyclones 161 

(e.g. Hodges 1999; Wernli et al, 2006; Inatsu, 2009; Flaounas et al 2013) as well as for other features 162 

such as MCS (e.g. Machado et al, 1998). 163 

 164 

2.1.2 Identification of cyclonic centers 165 

Inspection of Figure 1b, 1c and 1d reveals that not all cyclonic circulations correspond to a unique 166 

cyclone. For this reason each labeled cyclonic circulation is further treated in order to locate all 167 

embedded local vorticity maxima. These local maxima will be also labeled and eventually will be 168 

treated as centers of unique cyclones. The term “centers of unique cyclones” has no physical basis but 169 

it is conveniently used here in order to describe the grid points which present local maxima of relative 170 

vorticity and are followed in time in order to construct cyclones tracks. In this sense we need to 171 

provide the algorithm with a representative cyclone center even though the cyclone structure might be 172 

very complex with more than one vorticity maximum, especially in very high resolution datasets. To 173 

deal with this issue, (1) we filter the data, smoothing the noisy gradients (already performed in the 174 

previous step), (2) we define the local maximum as the maximum value of the central grid point 175 

among its eight surrounding grid points and (3) we consider that between two centers there is a 176 

relative vorticity difference greater than a threshold value (in this case set equal to 3x10
-5

 s
-1

) which is 177 

applied to define the cyclonic circulations. The last criterion prohibits weak cyclonic circulations (i.e. 178 

identified cyclones of relative vorticity close to the threshold value) to present multiple centers.  179 

 180 



2.1.3 Quantifying cyclone characteristics 181 

Once all cyclones have been identified, we determine an “effective area” for each cyclone. This area is 182 

a circular disk centered at the cyclone vorticity maximum, as identified in the previous step. The disk 183 

radius grows gradually until: (1) all grid points included in the disk have a vorticity average inferior to 184 

a threshold value, or (2) until the radius reaches a pre-defined maximum length, or (3) until a relative 185 

vorticity value greater than that of the cyclonic center, is found within the area. According to this 186 

empirical method, strong or large and weak cyclones tend to produce large effective areas. The third 187 

criterion favors the stronger cyclones to spread their area independently of the presence of other 188 

weaker ones in their region, while it restrains the weaker cyclones to share the same area with stronger 189 

cyclones. In Flaounas et al. (2013) the cyclone area was defined by the cyclone enclosed contour as 190 

defined by the applied threshold value (see their appendix figure). However, such an enclosed area 191 

might not capture grid points that present relative vorticity values lower than the applied threshold. In 192 

Lim and Simmonds (2007) the cyclone area was defined by a representative circular disk of a radius 193 

defined equal with the average distance between the cyclone center and the enclosing zero contour of 194 

the mean sea level pressure laplacian. In our algorithm the circular disk seemed the best choice in 195 

order to capture the areas affected by a cyclonic vortex, although more “irregular shapes” might be 196 

considered, as for instance enclosed contours of pressure (Wernli et al, 2006; Hanley and Caballero, 197 

2012) or of relative vorticity (Flaounas et al, 2013).  198 

Once the effective area is defined, our algorithm computes the physical properties of the cyclone 199 

within it. As an example, Fig. 2 shows the effective area and the detected minimum sea level pressure 200 

and maximum 10-meter wind of the storm Anatol at the same time as in Figure 1b. 201 

 202 

2.2 Step II: Tracking cyclones 203 

Before combining the cyclone centers into a track, the algorithm sorts the identified cyclones based on 204 

their relative vorticity value, from the strongest (i.e. the one with the highest relative vorticity value) to 205 

the weakest. Then, it starts from the first cyclone and searches forward and backward in time for all its 206 



possible tracks. More precisely, the algorithm constructs all possible cyclone tracks which present the 207 

same highest vorticity state. Once all possible tracks are constructed, the algorithm chooses the track 208 

that presents the most “natural evolution” of relative vorticity, i.e. the track which presents the 209 

smallest differences of relative vorticity in consecutive points, weighted by the distance between the 210 

track point locations.  211 

Figure 3a illustrates an idealized experiment, presenting the locations of all identified cyclones in a 212 

four time step dataset. Six cyclones are identified: one cyclone in the first time step, one cyclone in the 213 

second time step and two cyclones for each of the time steps three and four. The tracking process 214 

begins from the strongest cyclone (i.e., the cyclone 2(12)) and constructs all possible tracks by 215 

iterating forward and backward in time with all other features. Figure 3b shows that the first cyclone 216 

may undertake four possible tracks, however it is obvious that the track 1(9), 2(12), 3(10), 4(8) 217 

presents the most “natural evolution”, since maximum relative vorticity presents the smallest 218 

difference from one time step to the next. The algorithm saves this track and deletes the used cyclones’ 219 

locations from the dataset. Then, a new iteration begins where the algorithm will start from the 220 

cyclone with the highest vorticity and eventually a new track will be constructed (Figure 3c). Starting 221 

the tracks from the cyclone’s mature state was found to be more efficient for the first steps of the 222 

tracks construction. Indeed, in the previous and next time step of the cyclone with the highest vorticity 223 

state, for most cases, there is only one strong cyclone to act as a candidate for continuing the tracks. 224 

The practice of cost function minimization has been used in relevant literature on tracking algorithms. . 225 

Namely, Hodges (1995) builds the feature tracks by minimizing the cost function of the feature’s track 226 

smoothness while Hewson and Titley (2010) by applying likelihood score on the feature's physical 227 

characteristics. Here, the feature’s evolution in each track is determined by a cost function (C), 228 

represented by the absolute average difference of the relative vorticity weighted by the distance 229 

between two consecutive time steps: 230 

  
                       

   

       
     
   

  Eq. 2 231 



Where C is the cost function of a candidate track, N is the total number of the track’s time steps, d is 232 

the distance between two consecutive track points and V is the relative vorticity at each time step.  233 

The number of possible tracks is quite large. However, their number can be significantly reduced by 234 

the application of a series of legitimate heuristics, that remove those tracks that present a non-natural 235 

behavior: (1) from each time step to the next, the location of the next candidate cyclone must be within 236 

a threshold range, (2) the maximum vorticity between the tracked cyclone and a candidate cyclone 237 

must not differ more than 50% and (3) if the displacement is more than 3° long between two 238 

successive displacements, then the angle between these displacements must be greater than 90°. The 239 

first constraint prohibits the algorithm from searching for next step candidate features in locations 240 

where the tracked cyclone could by no means be displaced. In our algorithm the cyclones are searched 241 

within a 5°x10° latitude-longitude range which is the largest possible displacement for extratropical 242 

cyclones as proposed by Hodges (1999). The second constraint prohibits the algorithm from choosing 243 

candidates which consist by no means a possible evolution of the tracked feature. The use of a 244 

percentage is highly convenient since large vorticity values are subject to higher changes between 245 

consecutive time steps compared to small vorticity values. Finally, the third constraint prohibits the 246 

algorithm to take into account abrupt backs-and-forths of the cyclone’s movement. Such 247 

displacements are more likely to take place in raw vorticity fields, where local maxima might change 248 

abruptly. For instance the algorithm would not choose the track 2(12), 3(4) and 4(8) in Figure 3 since 249 

the consecutive displacements present an angle of 74° (marked in red in Fig. 3) which is smaller than 250 

90°.  251 

Finally, our algorithm returns as output for each track a matrix that contains information on the 252 

cyclone’s track and physical characteristics. The matrix has a number of rows which is equal to the 253 

track points and a number of columns equal to the algorithm standard outputs plus the number of 254 

physical diagnostics. The optional output diagnostics might vary depending on the study needs and the 255 

data inputs. Labeling the cyclonic circulations (section 2.1.1) and the cyclonic centers (section 2.1.2) 256 

within the tracks permits a post-treatment analysis for determining merging and splitting of cyclones. 257 

For our application on the extra-tropical cyclones only maximum 10-meter wind speed and sea level 258 



pressure minima are considered. As an example of the algorithm performance, Fig. 4 presents two 259 

cyclone tracks which evolve by sharing the same cyclonic circulation. The tracks are supported by the 260 

physical characteristics of the cyclones (evolution of relative vorticity, maximum 10-meter wind speed 261 

and minima of sea level pressure), demonstrated in Figure 5.  262 

It is likely that our method detects fronts associated with vorticity maxima  as cyclone centers, 263 

especially when applied to high resolution datasets (e.g. regional climatic simulations). In order to 264 

avoid the detection of a frontal zone, additional criteria of high or low complexity should be 265 

considered (e.g. Hewson and Titley, 2010). However, such criteria could be dependent on several 266 

factors -as for instance the spatial resolution of the dataset- and would result to a “stricter” cyclone 267 

definition. The more precise the mathematical criteria, the more constrained are the tracking results to 268 

systems of specific characteristics. In the case of fronts, the latter could for instance exclude the early 269 

stages of certain tracked cyclones that emerge from high vorticity frontal areas of a “parent” cyclone.  270 

An example of a front detection is illustrated in the two cyclones cases, presented in Fig. 4. Inspection 271 

of surface pressure charts (not shown) showed that the first track point of the second cyclone (red dot 272 

in Fig. 4b) corresponds to the front of an extra-tropical cyclone (the one depicted by the black track). 273 

In the following time steps (Fig 4c to 4f), this secondary vorticity maximum evolves to a strong 274 

cyclone (red track) which presents its own low pressure minimum. Here we capture the initial stage of 275 

the vorticity maximum, before the occurrence of a pressure minimum. Nevertheless, not applying 276 

additional criteria might demand post-treatment of the track results in order to exclude “wrong” tracks 277 

or tracks that do not match the research needs. 278 

 279 

3. Application the tracking algorithm in a climatological context and sensitivity in different 280 

parameters 281 

In this section we present the results of the application of the algorithm for all winters (December, 282 

January and February) of the period 1989-2009 along with the results of three sets of sensitivity 283 

tests:(a) on relative vorticity filtering, (b) on the cost function of Eq. 2, and (c) on the constraint that 284 



relative vorticity between two consecutive track points must not differ more than 50%. In all 285 

sensitivity tests, the threshold used to define cyclones is 3x10
-5

 s
-1

 and we analyze only tracks with a 286 

life time of at least one day. 287 

 288 

3.1 Method sensitivity on filtering the relative vorticity field 289 

In this section we apply three different filter strengths (described in section 2.1.1) to the ERA-I dataset. 290 

The applied spatial filters correspond to a 3x3, a 5x5 and a 7x7 grid points filtering, named as filter3, 291 

filter5 and filter7, respectively. Figure 6a presents the number of detected cyclonic centers as a 292 

function of their relative vorticity for all three sensitivity tests and Fig. 6b their relative frequency. 293 

Since all tests are bounded to identify cyclones exceeding a common threshold of 3x10
-5

 s
-1 

and since 294 

filtering decreases the relative vorticity values, due to its smoothing operation, it is of no surprise that 295 

the total number of detected cyclone centers is reduced with increasing filtering intensity. Regardless 296 

the spatial filtering strength, all three sensitivity tests present a logarithmic distribution (Fig. 6a), while 297 

the stronger the filter the more cyclones intensities are reduced (Fig. 6b).  298 

Strong filtering versus weak filtering may have two effects: first it tends to detect fewer tracks, which 299 

also correspond to the stronger cyclones, and second it tends to reduce the cyclone track lengths (by 300 

not taking into account the weakest vorticity perturbations in the early and late stages of a cyclone 301 

track). The validity of the first hypothesis is evident from Fig. 1 where smoothing suppresses many 302 

weak cyclonic centers, but stronger cyclones (such as the Anatol storm) are equally detected with all 303 

three filters. To verify the second hypothesis we investigate the characteristics of the tracks as detected 304 

by filter3, filter5 and filter7. Figures 7a, 7b and 7c show the distribution of the relative frequency for 305 

the life-time of cyclone tracks, the average speed of the cyclones and their maximum relative vorticity. 306 

No significant changes between the results obtained with the different filters are observed when 307 

considering the cyclone life-time. Consequently, the second hypothesis that average track 308 

characteristics are sensitive to filtering can be rejected. It is interesting though that our applications 309 

using weak filtering detect weak cyclones that have similar life scales. The fact that the distributions of 310 



the relative frequencies of the average speed of cyclones in Fig. 7b is also similar for all three filters 311 

means that the weaker cyclones in filter3 and filter5 do not correspond to weak stationary vorticity 312 

perturbations, but nevertheless they also do not evolve to strong extra-tropical cyclones. The 313 

dynamical reasons for not evolving to strong cyclones are an interesting issue; however, it is out of the 314 

scope of this paper. 315 

 In order to verify the cyclone tracks location, Fig. 8 shows the Cyclones Center Density (CCD) for all 316 

three filtering strengths. It is evident that different magnitudes of CCD are observed, depending on the 317 

filtering strength, however, the spatial pattern remains coherent for all three cases. A question that may 318 

arise is whether weak cyclones in the strongly filtered sensitivity tests correspond to strong cyclones in 319 

the weakly filtering tests. To address this question we took into account all points of the distributions 320 

in Fig. 6 and we associated the common points between filter3 and filter7 (points sharing the same 321 

timing and having a distance inferior of 5°). Results showed that filter7 shared 52% of its points (2331 322 

points) with filter3. The median of the intensity of the common points of filter3 corresponded to the 323 

78
th
 percentile of all filter3 points’ intensity. Consequently cyclones in filter7 correspond to the 324 

strongest cyclones of the weakly filtered datas. This comes in accordance with the relative frequency 325 

of cyclone centers intensity in Fig. 6b, where most of filter7 identified cyclones are concentrated to 326 

weaker relative vorticity values, respect to filter3 and filter5. 327 

The effect of filtering (for instance filter7 compared to filter3) is characteristic to the CCD within the 328 

Mediterranean region, where the cyclones are known to be weaker (Campa and Wernli, 2012) than the 329 

other extratropical cyclones forming over the oceans. Indeed, in filter7 there is a dramatic decrease of 330 

detected cyclones over the Mediterranean Sea, compared to filter3 and filter5. Figure 8 presents a high 331 

similarity with the results from other algorithms (Neu et al., 2013) independently if filtering is 332 

performed or if sea level pressure or relative vorticity is used as input for the detection of cyclones. 333 

Indeed CCD maxima are distinctly located over the Pacific Ocean, the Northern Atlantic Ocean, and 334 

the Mediterranean. Furthermore, regardless the filtering strength, both cyclone speed and life time 335 

relative frequency distributions (Figs. 7a and 7b) seem to be in good agreement with the other 336 

algorithms (Neu et al, 2013) presenting most probable cyclone speeds between 30 to 40 km/hour and 337 



cyclone life time relative frequency distributions decreasing exponentially from less than 2 days up to 338 

a total of approximately 8 days.  339 

Figure 9 presents the time series of the number of cyclone centers. For all three filters, our results are 340 

in agreement with those of Neu et al. (2013) showing no specific inter-annual trend. As expected, the 341 

cyclone center number per year depends on the filtering strength. The cyclone center numbers 342 

decrease from approximately 9000/year for filter3 to approximately 3000/year for filter7. All three 343 

tests are within the ranges of other algorithms which range from 2000/year to 12000/year but it is only 344 

filter5 which is consistent with the majority of other algorithm results which calculated 4000 to 7000 345 

cyclonic centers per year. The time series phasings are in good agreement between filter3 and filter5, 346 

presenting a correlation score of 0.91. On the other hand, the correlation score between filter5 and 347 

filter7 is 0.43, suggesting that the time series phasing between the two sensitivity tests is dependent to 348 

the weaker cyclones that are suppressed in filter7. This should not raise a question on the “correctness” 349 

of the different test results, but rather on the results independence to the different filtering strengths.  350 

 351 

3.2 Method sensitivity on tracking parameters 352 

As already mentioned, two additional sets of sensitivity tests have been performed in order to test the 353 

tracking method (step II) results. The first set of the sensitivity experiments relates with the cost 354 

function (Eq. 2) and it is composed by the following members: (a) Srel, where the final track choice is 355 

only dependent to the track relative vorticity evolution (Eq. 3) and (b) Sdist, where the cost function is 356 

only dependent to the distance between consecutive track points (Eq. 4).  357 

              
     
    Eq. 3 358 

         
     
      Eq. 4 359 

The second set relates with the constraint that the relative vorticity between consecutive track points 360 

may not vary by more than 50% (Section 2.2) and it is composed by three members, where the 50% 361 

threshold has been modified to 25% (S25%), 75% (S75%), 100% (S100%), while the original cost function 362 



(Eq. 2) has been used. For both sets we used the identified cyclones from filter3 since this is the 363 

dataset with the highest number of identified cyclones (Fig. 6), amplifying the differences between the 364 

tracking results of the sensitivity tests. 365 

Figure 10 presents the tracks life time and average speed for both sets of sensitivity experiments. The 366 

results of the first set of experiments that focus on the cost function (Figs 10a and 10b), show that the 367 

cyclones life time and average speed is quasi-equal for all filter3, Srel and Sdist (maximum differences 368 

are less than 1%). This suggests that the number of track points (i.e. life time) and distance between 369 

the track points (i.e. average speed) are rather insensitive to the change of the cost function. This is due 370 

to the fact that the algorithm always presented several alternative tracks for a single cyclone but in the 371 

majority of the cases, these alternative tracks were similar and only presented short deviations from 372 

the cyclones' main path. In such cases, the usefulness of the cost function is on choosing the smoothest 373 

track in terms of intensity and distance between consecutive track points. It is noteworthy that in Srel 374 

and Sdist, the algorithm was still bounded by the constraint of linking cyclone centers that presented 375 

relative vorticity values that did not vary by more than 50%. Climatologically, the term d in the cost 376 

function does not add significantly to the performance of the algorithm. However, for certain cases it 377 

seemed useful to weight the vorticity differences by the distance, especially when the candidate 378 

cyclones presented similar vorticity with the tracked cyclone, but were located unrealistically far from 379 

it. 380 

The results of the second set of experiments that relate with the 50% threshold (Figures 10c and 10d) 381 

reveal similar distributions for all varying thresholds, however when comparing S100% and S25%, the 382 

former tends to form longer tracks (Fig. 10c) with longer distances between the track points (Fig. 10d). 383 

Indeed, when applying stricter (loose) thresholds on the permitted evolution of the cyclones intensity, 384 

then it is more likely that the algorithm will form shorter (longer) tracks due to the smaller (larger) 385 

accepted differences on the relative vorticity evolution of consecutive track points. Ideally, the 50% 386 

threshold could be neglected; however this would create numerous alternative tracks when the input 387 

datasets are of high resolution. In general, the constraints applied in step II (i.e. 50% threshold, 388 

searching cyclones within a 10°x5° area and the angle criterion; Section 2.2) have been found as a fair 389 



compromise between cutting off “unnatural” possible cyclone tracks and providing all possible tracks 390 

for the algorithm to depict the “correct” one according to the cost function.  391 

 392 

3.4 Physical coherence of the tracked cyclones  393 

In this section we perform an analysis of the effective area diagnostic tool (described in section 2.1.3) 394 

by retaining only the cyclone tracks of filter3 after calibrating its results (i.e. taking into account the 395 

dashed lines of filter3 in Fig. 9). Figure 11 presents the composite life cycle of the cyclones physical 396 

characteristics, centered on the time of the maximum vorticity of the tracks (mature stage) and 397 

averaged for all tracks detected in the Pacific Ocean (from 130° to 240° of longitude and from 30° to 398 

90° of latitude), North Atlantic Ocean (from 300° to 360° of longitude and from 30° to 90° of latitude) 399 

and within the Mediterranean region (from 345° to 45° of longitude and from 25° to 50° of latitude). 400 

The results show that regardless of the region, there is a strong coherence between the life cycle of sea 401 

level pressure minima, relative vorticity and maximum 10-meter wind speed. The strength of the 402 

cyclones tends to increase rapidly but decays with a slower rate. This slow weakening of the cyclones' 403 

intensity in the composite time series of Fig. 11 is due to the fact that the duration of the cyclones 404 

mature stage is highly variable (as shown in Fig. 7). Here, for the construction of the composites there 405 

is no distinction on the cyclones life time, while one should note that the further we get from the time 406 

of the cyclone maximum vorticity (i.e. the composite center) the fewer cyclones last long enough to 407 

provide diagnostics for the composites. For instance, the Mediterranean cyclones life-time scale is 408 

inferior from the other extra-tropical cyclones and rarely exceeds 2-3 days. Nevertheless, our 409 

motivation here is to assess the validity of the effective area diagnostic which seems to capture 410 

correctly the life cycle of cyclones physical characteristics regardless the region. Indeed, in agreement 411 

with Campa and Wernli (2012), Mediterranean cyclones are less deep, in terms of sea level pressure, 412 

while Atlantic cyclones are slightly deeper than those occurring over the Pacific Ocean.  413 

 414 

4. Conclusions 415 



In this article we presented a new algorithm for identifying and tracking cyclones, applied on winter 416 

extra-tropical cyclonic systems over the northern hemisphere. The algorithm performance was tested 417 

for three different strengths of filtering applied on the high frequency relative vorticity fields. The 418 

results showed that the number of tracks were inversely proportional to the filter strength while the 419 

cyclone spatial and temporal variability was coherent with those produced by other tracking 420 

algorithms presented in the literature. Finally, the algorithm was shown to successfully capture the 421 

physical characteristics of cyclones. 422 

As in previous methods in literature, our identification and tracking algorithm for cyclones uses the 423 

fewer constraints possible, not only for tracking weak vorticity perturbations which evolved in strong 424 

cyclones, but also for tracking weak perturbations that did not evolve into strong cyclones. This 425 

permits the better calibration of the algorithm, but also in a future work the more precise description of 426 

the environmental conditions which favor cyclogenesis and cyclone intensification. Furthermore, we 427 

chose the vorticity criteria to vary dynamically (vorticity must not vary more than 50% in consecutive 428 

time steps) and we avoided any threshold or cut-off values which would prohibit tracking cyclones of 429 

“anomalous behavior”. It should be noted that although in this study we applied the algorithm based 430 

on relative vorticity to identify and track cyclones, the same algorithm might be applied on any dataset 431 

which presents enclosed areas after applying a threshold value. For instance the algorithm could be 432 

applied on datasets of brightness temperature or cloud cover for tracking supercells or mesoscale 433 

convective systems. 434 

Tracking uses a cost function minimization approach, based on the cyclone relative vorticity maxima. 435 

Mistakes were observed especially when cyclonic circulations were found to be very noisy with 436 

multiple local maxima. As an alternative to the vorticity-based cost function used here, it would be 437 

interesting to use the weighted mean differences of additional cyclone physical characteristics 438 

(pressure, wind speed etc.) between consecutive time steps. This has been previously applied by 439 

Machado et al. (1998) for tracking MCS based on brightness temperature satellite observations. 440 

However, their method assumes a-priori choice of the weighting value, risking restraining our method 441 

adaptability to track cyclones of different origin (e.g. extra-tropical and tropical cyclones). Our 442 



algorithm links cyclone centers in consecutive time steps, in contrast with the alternative configuration 443 

proposed by Machado et al (1998) and Inatsu (2009) to link enclosed areas. This decision was made 444 

because if enclosed areas were linked, then large cyclonic circulations would not correspond to a 445 

single cyclone and additional criteria -and/or filtering- would be needed, while weak cyclones would 446 

be neglected.  447 

Further development of the algorithm includes (1) extension of the identification part in three 448 

dimensions and (2) extension of the method adaptability for different atmospheric features such as 449 

MCS. The algorithm source is freely available in MatLab language upon request to the corresponding 450 

author.  451 
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Figure captions 584 

 585 

586 
Figure 1 A) Relative vorticity raw fields at 00:00 UTC, 3 December 1999. The threshold applied is 587 

3x10
-5

 s
-1

. Crosses represent the central maxima located in the center of a 3x3 grid point area. B) as in 588 

(A) but relative vorticity field is filtered using a 3x3 correlation spatial filter. C) as in (A) but relative 589 

vorticity field is filtered using a 5x5 correlation spatial filter. D) as in (A) but relative vorticity field is 590 

filtered using a 7x7 correlation spatial filter. 591 

 592 



 593 

Figure 2 The Anatol storm at 00:00 UTC, 3 December 1999. Relative vorticity smoothed by a 3x3 594 

spatial filtering (color), mean sea level pressure (in contour) and 10-meter wind field (in arrows). 595 

Thick black contour represents the cyclone effective area. Locations and values of maximum wind 596 

speed and lower pressure is depicted by the thick lines. 597 
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 599 

 600 

 601 

 602 



 603 

Figure 3 A) An idealized case of cyclone locations in four time steps. Locations are depicted by circles. 604 

Numbers above the locations are in the form X(Y), where X denotes the time step and Y the relative 605 

vorticity. Circles size is proportional to the cyclones relative vorticity value. B) all possible trajectories 606 

of cyclone 2(12) searching backwards and forward in time. C) Track results after retaining in B the 607 

track which presents the minimum average change of relative vorticity in successive time steps.  608 

 609 



 610 

Figure 4 Relative vorticity smoothed by a 3x3 spatial filter (color), sea level pressure (contours, with a 611 

5 hPa interval, thick contour denotes 1000hPa) and tracks (thin lines) of two splitting cyclones for 612 

different time frames in December 1999.  613 
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 617 

 618 

Figure 5 (A) Maximum relative vorticity (solid line) at the track centers and minimum sea level 619 

pressure (dashed line) as detected within the cyclones effective area for the two cyclones shown in Fig. 620 

4 (B) as in (A) but dashed line corresponds to maximum 10-meter wind speed. Color lines are the 621 

same as in the tracks in Fig. 4. The horizontal axes represent the period 6-16 December 1999. 622 
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 627 

 628 

Figure 6 Number of cyclonic centers in function of their relative vorticity, as detected in the three 629 

algorithm sensitivity tests. B) Relative frequency distributions of the relative vorticity for the 630 

identified cyclone centers. 631 

 632 



 633 

Figure 7 A) Relative frequency distributions of cyclones life times for the three sensitivity tests. B) As 634 

in A) but for cyclones average speed. C) as in A) but for tracks maximum relative vorticity D) as in C) 635 

but after excluding tracks that did not reach 10.7 and 5.8 of x10
-5

 s
-1

 of relative vorticity in filter3 and 636 

filter5, respectively. 637 

 638 



 639 

Figure 8 Cyclone center density expressed as the percentage of cyclone occurrence per time step and 640 

per unit area of (1000 km
2
) for the A) filter3, B) filter5 and C) filter7. 641 



 642 

 643 

Figure 9 Number of cyclone centers as function of the year for the three sensitivity tests. 644 
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 647 



 648 

Figure 10 A) Relative frequency distribution of cyclones life time for the sensitivity tests filter3, Srel 649 

and Sdist. B) As in A) but for cyclones average speed. C) as in (A) but for the sensitivity tests filter3, 650 

S25%, S75% and S100% D) as in (B) but for the sensitivity tests filter3, S25%, S75% and S100% 651 

 652 



 653 

Figure 11 (A) Average composite time series of Pacific cyclones physical characteristics. 0h 654 

corresponds to the time when the cyclone presents its maximum relative vorticity: relative vorticity 655 

(thick black line), sea level pressure (red thick line) and maximum 10-meter wind speed (thin black 656 

line). Wind speed scale values are shown in the left vertical axes in parenthesis. (B) as in (A) for the 657 

Atlantic cyclones. (C) as in (A) for Mediterranean cyclones. Note that the Y-axis has not the same 658 

value intervals in the three panels.  659 


