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Abstract

Agro-Land Surface Models (agro-LSM) have been developed from the integration of
specific crop processes into large-scale generic land surface models that allow calcu-
lating the spatial distribution and variability of energy, water and carbon fluxes within
the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a par-5

ticular attention must be given to the effects of crop phenology and management on the
turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon
pools. A part of the uncertainty of Agro-LSM models is related to their usually large
number of parameters. In this study, we quantify the parameter-values uncertainty
in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-10

STICS, using a multi-regional approach with data from sites in Australia, La Réunion
and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model
that calculates phenology and management, and ORCHIDEE, a land surface model
that calculates biomass and other ecosystem variables forced by STICS’ phenology.
First, the parameters that dominate the uncertainty of simulated biomass at harvest15

date are determined through a screening of 67 different parameters of both STICS and
ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass at-
tributable to those most sensitive parameters is quantified and specifically attributed to
either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables
including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter20

values is constrained using observations by calibrating the model independently at
seven sites. In a third step, a sensitivity analysis is carried out by varying the most sen-
sitive parameters to investigate their effects at continental scale. A Monte-Carlo sam-
pling method associated with the calculation of Partial Ranked Correlation Coefficients
is used to quantify the sensitivity of harvested biomass to input parameters on a con-25

tinental scale across the large regions of intensive sugar cane cultivation in Australia
and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS
modeled biomass at the 7 sites are identified by the screening procedure. We found
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that the 10 most sensitive parameters control phenology (maximum rate of increase of
LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen
stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthe-
sis, optimal carboxylation rate), radiation interception (extinction coefficient), and tran-
spiration and respiration (stomatal conductance, growth and maintenance respiration5

coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosyn-
thesis temperature parameters contribute most to the uncertainty in harvested biomass
simulations at site scale. The spatial variation of the ranked correlation between input
parameters and modeled biomass at harvest is well explained by rain and tempera-
ture drivers, suggesting climate-mediated different sensitivities of modeled sugar cane10

yield to the model parameters, for Australia and Brazil. This study reveals the spatial
and temporal patterns of uncertainty variability for a highly parameterized agro-LSM
and calls for more systematic uncertainty analyses of such models.

1 Introduction

In the recent years, many governments have set targets in terms of biofuels consump-15

tion for transportation fuel (Sorda et al., 2010), resulting in a large increase in bioenergy
cropping area around the world. Concerns about energy shortage, policy to reduce
CO2 emissions, and the search for new income for farmers can explain why energy
policies have considered biofuels as a serious alternative to fossil fuel in many coun-
tries (Demirbas, 2008). Yet, the claimed benefits of biofuels for fossil fuel substitution20

have been questioned in terms of their net effect on atmospheric CO2 and climate, and
even of their economic return (Doornbosch and Steenblik, 2008; Naylor et al., 2007).
In particular, the conditions of biofuel cultivation, such as the type of crop, practice,
previous land use, and local climate, have emerged as key factors that determine the
effectiveness of their carbon emissions reduction (Fargione et al., 2008; Hill et al., 2006;25

Searchinger et al., 2008). At the heart of biofuel cultivation is ethanol that represents
today 74 % of the energy content of the world production of liquid biofuels (Howarth
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et al., 2008) and whose production is expected to double between 2011 and 2021
(OECD, 2012), hence the urgency to better quantify and understand regional poten-
tials of bioethanol crops. Based on recent life cycle analysis studies (de Vries et al.,
2010; Schubert, 2006; von Blottnitz and Curran, 2007), ethanol from sugar cane is the
most competitive in terms of energy use and net carbon balance and the energy use5

projections from the International Energy Agency foresee that by 2050, sugar cane is
the only 1st generation biofuel that that will keep expanding (IEA, 2011).

The impact of sugar cane expansion on climate and carbon balance is under scrutiny
with different approaches. Satellite observation data have been used to study biophys-
ical effects of sugar cane expansion on local temperature in the Brazilian Cerrado10

(Loarie et al., 2011). Survey for agricultural and industrial performances from sugar
cane mills have allowed Macedo et al. (2008) to establish the carbon balance of sugar
cane ethanol production in the Center-South of Brazil. Georgescu et al. (2013) simulate
the hydroclimatic impacts of sugar cane expansion by forcing sugar cane land cover
characteristics into a regional climate model. All approaches provide useful informa-15

tion on impacts and potentials but are impractical to apply outside of the regions and
conditions (climate, management) where they have been conducted.

In parallel with empirical approaches, significant progress has been made towards
mechanistic modeling of sugar cane yields using models. Crop models are gener-
ally used to simulate sugar cane production at site scale, with specific parameters20

(Cheeroo-Nayamuth et al., 2000). Land surface models (LSM) are rather used to esti-
mate the spatial distribution of crop productivity under different soil and climatic condi-
tions, over a region or even over the globe but with a simpler and generic description of
sugar cane plants (Black et al., 2012; Cuadra et al., 2012; Lapola et al., 2009). Agro-
LSM models stand at the interface between plot-scale crop models and global LSMs.25

Yet, as highlighted by Surendran Nair et al. (2012) if the development of agro-LSM
models for biofuels has been the subject of much interest recently, detailed parameteri-
zation, validation and uncertainty quantification is still very limited in regional and global
applications, and efforts must be made in that direction. The importance of evaluating
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and communicating about global models uncertainty was as well emphasized within
the framework of the model inter-comparison project AgMIP – providing insights for
IPCC AR5 report – in which crop models uncertainty is identified as a key theme of in-
terest that was only little explored so far (Rosenzweig et al., 2013). ORCHIDEE-STICS
(Gervois et al., 2004) is an agro-LSM model that has been developed from the cou-5

pling of the agronomical model STICS (Brisson et al., 1998) and the Land Surface
Model ORCHIDEE (Krinner et al., 2005), that has been applied for studies from site
to continent mainly for temperate crops in Europe (Gervois et al., 2008) and has been
recently adapted to sugar cane simulation (Valade et al., 2013).

Four uncertainty sources affect the simulation of sugar cane biomass with10

ORCHIDEE-STICS: (1) input uncertainty, on boundary conditions used for climate
drivers and soil properties, (2) structure uncertainty, related to model equations and pa-
rameterizations, (3) parameters value uncertainty, and (4) uncertainty associated with
the measurements used for model evaluation or calibration. Here we focus on structure
and parameters uncertainty (2) and (3) and try to estimate how these two sources of un-15

certainties affect the simulations of sugar cane harvest biomass. We want to determine
which parameters are responsible for most of the uncertainty in harvest biomass sim-
ulations (screening analysis) and to what extent this is related to the model’s structure
(uncertainty analysis). In addition, we want to quantify this uncertainty and examine its
temporal and spatial variability (sensitivity analysis).20

In the following, we first present the sites and regions considered in this study
(Sect. 2.1) and the main features of the ORCHIDEE-STICS model (Sect. 2.2). We
then describe the screening algorithm used to sort the most important parameters
(Sect. 2.3), and the methodology used for the uncertainty and the sensitivity analyses
(Sects. 2.4 and 2.5). Then we discuss the results of the screening analysis, in terms25

of the parameters identified by the screening as the most important for controlling har-
vested sugar cane biomass (Sect. 3.1). We describe the results for the measure of the
uncertainty calculated for 7 sites in Sects. 3.2 to 3.4 and present maps of the sensitivity
of the model to its main parameters in Sect. 3.5.
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2 Materials and methods

In this study, we aim to quantify the uncertainty related to the parameter values of
a chain of two process-based models (STICS-ORCHIDEE) used to simulate sugar
cane yield (biomass at harvest date). This is a difficult task because this model is a de-
tailed and complex model that contains over 100 plant specific parameters within the5

primitive equations of phenology, energy and water balance, photosynthesis and al-
location. We perform the uncertainty analysis in three steps, illustrated in Fig. 1 and
consisting of screening, uncertainty and sensitivity analyses, all described in more de-
tails in Sect. 2. These three steps are sequential and complementary. The first step
is a screening to sort the most important parameters controlling yield, and to reduce10

the dimension of the parameter space from a large number of parameters to a few
key parameters, allowing a moderate number of sensitivity simulations. The screening
thus allows the restriction of the two further steps to a smaller parameter subset. The
second step is an uncertainty analysis that considers all retained parameters together
with their probability distributions and determines the probability distribution for the out-15

put variable (biomass). The third step is an analysis of the sensitivity of the modeled
spatial distribution of sugar cane yield to the model parameters for two large regions,
in Brazil and Australia, at a spatial resolution of 0.5◦. The sensitivity is established from
the spatial distribution of ranked correlations between each parameter and simulated
yield in each grid point. Along the study steps, we address several problems inherent20

to uncertainty and sensitivity evaluation such as the determination of the uncertainty
on the input parameters and the spatial (regional) differences of the sensitivity of the
model to its key parameters.

2.1 Sites and study areas

This study is based on sugar cane field trials in three regions (Fig. 2) where sugar25

cane is of economical importance, Brazil (1 site), Australia (4 sites), and La Réunion
Island (2 sites). These sites, already used by Valade et al. (2013) span different climatic
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conditions and agricultural practices, as shown in Table 1, which makes them useful for
our purpose to provide continental-scale sugar cane yield uncertainty estimates. More
details about the four sites from Australia and La Réunion can be found respectively
in Keating et al. (1999); Muchow et al. (1994); Robertson et al. (1996) and in Martiné
(unpublished). The site from Brazil is described in Marin et al. (2011). The sensitivity5

analysis of the yield spatial distribution to the model parameters is carried out for two
continental-scale areas where sugar cane is cultivated at large scale. In Brazil, we
consider the region encompassing partly the Sáo Paulo and Mato Grosso states, and
in Australia the sugar cane cultivation belt of the northeastern coast (Fig. 2).

2.2 Model and parameters considered10

We use the agro-Land Surface Model ORCHIDEE-STICS (Gervois et al., 2004) in
a version that has been calibrated for sugar cane for Leaf Area Index at the same
sites than used here (Valade et al., 2013). This model chains the crop model STICS
with sugar cane specific phenology and management with the generic process-based
land surface model ORCHIDEE that can be applied either at a site, or on a grid for15

regional runs.
STICS (Brisson et al., 1998) is an agronomical model designed for site-scale op-

erational applications, which describes in details the soil and crop processes associ-
ated with specific crop varieties and with management practices, such as aboveground
biomass, biomass nitrogen content, water and nitrogen content in the soil, yield, root20

density. Yet, STICS is a generic crop model, because from a set of common equations
it can describe a large number of crop species through specific parameterizations. Sim-
ilarly, specific vectors of parameters define crop cultivars. STICS has been validated
for a variety of cropping situations (Brisson et al., 2003)

ORCHIDEE (Krinner et al., 2005) is a land surface model developed for global appli-25

cations, standing now as the land surface model of the IPSL Earth System Model. It has
been developed from the association of a surface energy and water balance scheme
(SECHIBA) with a biogeochemistry module (STOMATE) and as such simulates the
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short time scale exchanges of water and energy between the land surface and the
atmosphere, as well as the processes of the carbon cycle including photosynthesis,
respiration, carbon allocation, soil decomposition. The vegetation is represented in OR-
CHIDEE with the Plant Functional Type (PFT) concept, by grouping species into a few
categories based on the similarities of their traits and resulting in an average plant. For5

example, sugar cane would fall in the generic “C4 crop” PFT in the standard version
of ORCHIDEE, and this un-calibrated version of the model fails to reproduce site-level
phenology, as shown by Valade et al. (2013).

The chaining of STICS with ORCHIDEE was performed to improve the ability of
ORCHIDEE to simulate specific crops, for which the PFT concept was not appropriate,10

as it lacks representation of crop phenology and crop management practices (Gervois
et al., 2004). In the chain-like structure (Fig. 3), STICS calculates phenology, water
and nitrogen requirements, and passes the key variables of Leaf Area Index (LAI), root
profile and nitrogen stress as well as the input data concerning irrigation requirements
to ORCHIDEE that uses them to calculate carbon assimilation and allocation, water15

balance, and energy-related variables.
ORCHIDEE and STICS each have a large number of parameters involved at every

step of a simulation over the course of a growing season. The values of these param-
eters – often empirically prescribed – are not easy to measure or are not measurable
at all, calling in many cases for expert judgment to set their values, when it is imprac-20

tical to find reference values. The uncertainty of these parameters is propagated onto
the output variables of ORCHIDEE-STICS and has impacts on the output variables
which strength depends on the structure of both STICS and ORCHIDEE. Because of
the chain-type structure of ORCHIDEE-STICS (Fig. 3), the parameters from STICS
that control LAI and nitrogen stress are expected to have a weaker and more indirect25

effect on downstream variables such as biomass compared with parameters from OR-
CHIDEE that directly control carbon assimilation processes and the development of
biomass to produce yield at the date of harvest.
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2.3 Parameter screening

In this section, we describe the screening step that allows us to select the most in-
fluential parameters upon which the model uncertainty is investigated. An initial set of
17 parameters from ORCHIDEE and 50 parameters from STICS is considered for the
screening, according to their influence on the simulation of biomass production, based5

on expert knowledge and literature as listed in Table 2. The screening analysis pro-
cedure is the same as described in Valade et al. (2013). It is based upon the method
of Morris (Campolongo et al., 2007; Morris, 1991; Pujol, 2009) often used to explore
the parameters space for complex models with a large number of parameters. Like all
screening methods, the Morris method gives qualitative information on the sensitivity10

of the output variables to the parameters, since it only discriminates parameters based
on their importance, but does not provide information on the relative difference of im-
portance (Cariboni et al., 2007). Its aim is to reduce the dimensionality of the problem
for further use of quantitative, computationally heavier methods (Saltelli et al., 2004).

The advantage of the Morris method is that it is computationally efficient and easy15

to implement and interpret. It is based on a one-at-a-time approach, in which only one
parameter is changed between two runs, allowing for the calculation of a local partial
derivative of the output variable with respect to the input parameter, called an ele-
mentary effect. The Morris method is considered to be a “global” screening method,
because the algorithm is repeated several times to calculate the elementary effects of20

each parameter in several locations of the parameters space so that the average and
standard deviation of all elementary effects associated with each parameter are repre-
sentative of the behavior of this parameter in its whole range of variation. The results
of the Morris screening algorithm can be represented by a 2-D plot of standard devi-
ation vs. mean value of the elementary effects on the output variable (here harvested25

biomass) of each parameter. A parameter with a high mean elementary effect (called µ,
or µ∗ for mean of absolute values) is interpreted as a parameter with high influence on
the output harvested biomass variable. A parameter with a high standard deviation of
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its elementary effects (σ) is interpreted as inducing non-linearities in the model output,
and/or as having interactions with other parameters.

Here, we apply the Morris method as implemented in the R “sensitivity” package
(Pujol et al., 2013) using site-scale simulations of ORCHIDEE STICS across the 7 field
trial sites listed in Table 1. For each site, we identify the most influential parameters for5

the output variable harvested biomass. The parameters identified as important at least
at two sites are selected for the rest of the study.

2.4 Uncertainty analysis (UA)

The goal of the UA is to quantify the overall uncertainty in the harvested biomass output
variable that results from uncertain input parameter values. Firstly, based on the a pri-10

ori probability of each parameter’s value, a Probability Density Function is assigned to
each parameter in order to generate sample parameter sets according to the Latin Hy-
percube Sampling (LHS) method. Secondly, an ensemble of model runs is performed
using those samples. Thirdly, the uncertainty on the output variables is obtained from
the statistical properties of the distribution of simulated harvested biomass from the15

ensemble runs by defining the uncertainty as the 1-σ standard deviation of the distri-
bution.

The first step is thus to generate parameters samples constrained with prior param-
eters ranges and statistical distributions that are then used as inputs for ensemble
simulations.20

The parameters considered for the uncertainty (UA) for both STICS and ORCHIDEE
are those selected by the screening analysis, allowing a reduction in the parameters
space hypercube dimensionality and therefore in the required computing resources.
Starting from the initial set of 17 and 50 parameters respectively for the screening of
ORCHIDEE and STICS parameters, the Morris algorithm result (see Sect. 3.1) allows25

us to reduce the parameter numbers to 8 and 3 parameters for ORCHIDEE and STICS,
respectively.
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For the UA, we use Monte-Carlo methods, which are less computationally expensive
than variance-based approaches (Marino et al., 2008), making them a frequent choice
in environmental sciences (Poulter et al., 2010; Verbeeck et al., 2006; Zaehle et al.,
2005). The Monte-Carlo sampling scheme used here is the stratified Latin Hypercube
Sampling (LHS), which is an efficient scheme for generation of multivariate samples5

of statistical distributions (McKay et al., 1979). In LHS, the range of each of the k
parameters X1, X2, . . .Xk included in the study is divided into N intervals of equal
probability. One value is randomly selected from each interval. The N values obtained
for the X1 parameter are then paired at random, without replacement, with the N values
obtained for the X2 parameter, then to the N values obtained for the X3 parameter and10

so on until the kth parameter. The procedure results in N sets of k parameters, or
samples, that can be used for input to the model. In this study, from the 11 parameters
identified by the screening, N is set to 250 resulting in 250 simulations for exploring the
uncertainty around modeled biomass for each site.

In order to get insights on the part of the uncertainty attributable to each of the two15

models chained together, STICS and ORCHIDEE (Fig. 1), first, only the uncertainty
coming from ORCHIDEE parameters is evaluated (Fig. 1), secondly, only the uncer-
tainty propagated from STICS parameters (Fig. 1), and last, uncertainties propagated
from both ORCHIDEE and STICS parameters are considered together through the
chained model ORCHIDEE-STICS.20

An important difficulty in the utilization of sampling-based UA methods is the lack of
literature about a priori probability distribution of most parameters, given the depen-
dency of output upon a priori assigned values (Marino et al., 2008). If most studies rely
on a thorough literature search and expert judgment (Medlyn et al., 2005; Verbeeck
et al., 2006; Wang et al., 2005), this approach might result in an overestimation of the25

model output uncertainty due to combinations of extreme parameters values that are
not realistic and therefore excessively decrease the estimated reliability of the mod-
els. Some studies have addressed this issue by trying to rationalize the parameters
ranges through benchmarking outputs (removing parameter sets resulting in values for
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output variables outside of a given benchmark range) or by prescribing hypothesized
correlations between parameters (Poulter et al., 2010; Zaehle et al., 2005). Here, after
a first estimation of uncertainty based on expert opinion for the a priori parameters
range (overestimation of uncertainty), we propose a second approach to overcome the
scarcity of information about parameters reference distributions by reducing the param-5

eters a priori range based on site-optimized values, thus providing narrower and more
realistic a priori ranges that are constrained by observations (likely underestimation of
uncertainty).

For the first a priori estimation of parameters range, ranges and distributions are
assigned to parameters based on expert knowledge and previous parameterization10

studies (Kuppel et al., 2012) and centered on their a priori values. The a priori ranges
prescribed using this approach are considered as overestimations of the likely ranges
for parameters’ values for sugar cane because they are adapted from studies in which
parameters’ ranges were assigned for plant functional types instead of a single crop as
is the case here and sometimes used for optimization studies therefore requiring wide15

enough ranges within the model’s domain of applicability (Groenendijk et al., 2011;
Kuppel et al., 2012). By using overestimated ranges for input parameters, we estimate
an upper bound for the value of the uncertainty on output variables.

The second (site-constrained) a priori estimation is a refinement of the uncertainty
estimation based on the idea that the “real” probability distribution of the parame-20

ters can be approached by the distribution of optimal parameters over all the pos-
sible case studies (sites, weather, management). It is of course not possible to de-
termine the model’s optimal parameters for an infinite number of eco-climatic and
land-management conditions, but a sample of representative case studies can provide
a rough estimate of the parameters plausible range. Building on this hypothesis, the25

model is calibrated independently at 7 sites using an iterative method, seeking to con-
strain the uncertainty analysis with observation-based parameters ranges. For this, we
performed a Bayesian calibration of the model parameters, using a standard variation-
nal method based on the iterative minimization of a cost function that measures both
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the model data misfit as well as the parameters’ deviations from a prior knowledge. The
iterative scheme is described in (Tarantola, 1987) with the hypothesis of Gaussian error
on the observations and the parameters. At each site, parameter values are varied iter-
atively until the best match between simulation and observation is found. More details
on the calibration results can be found in the Supporting Information. We are aware5

that the optimization of the parameters at 7 sites only to obtain a representative a priori
range of the parameters distributions likely results into an optimistic estimate of this
range even though the sites chosen cover different climatic, edaphic and management
conditions making them well suited for applying our method.

For both a priori parameters range estimations (expert judgment vs. site con-10

strained), when no parameter value appears to be more likely than another, a uniform
a priori uncertainty distribution is prescribed. When there is some level of confidence
that the a priori value is more likely, we use a beta distribution. This type of distribution
is often used for uncertainty analyses, because of its adjustable shape (parameterized
equation) yet having the advantage of bounded tails (Monod et al., 2006; Wyss and15

Jorgensen, 1998). The successive analysis of both techniques provides an improve-
ment in the estimation of the uncertainty from the first (expert-judgment based, likely
too pessimistic) to the second (observation-based, perhaps too optimistic) approach.

2.5 Spatial sensitivity analysis (SA)

The first step in the sensitivity analysis also consists in generating parameters samples.20

The same parameters are considered for the SA as for the UA (Sect. 2.4), i.e. the 11
parameters (8 parameters from ORCHIDEE and 3 parameters from STICS) selected
by the screening analysis.

As opposed to the UA where all parameters are considered together for their effect
on the distribution of the harvested biomass output variable, the goal of the sensitivity25

analysis is to rank the influence of parameters based on their impact on the biomass
and its spatial distribution obtained in the continental-scale 0.5◦ runs. The partial cor-
relation coefficient (PCC) measures the correlation between an output variable and
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a parameter after the correlation with other parameters has been eliminated (Marino
et al., 2008). However, for monotonic but non-linear relationships, these measures per-
form poorly and a rank transformation needs to be applied to the data first to linearize
the relationship. The correlation calculated between the rank-transformed data is then
called partial rank correlation coefficients (PRCC). PRCC has been found to be an5

efficient indicator for the influence of parameters, because it is a measure of the sensi-
tivity of the output to parameters (Saltelli and Marivoet, 1990) The larger the PRCC, the
more important the parameter is with respect to the output variable. Here, the relation-
ship between modeled biomass on a grid, and parameters is diagnosed through the
calculation of the Partial Ranked Correlation Coefficients (PRCC) on each grid point10

between the output and parameter assuming a monotonic behavior of the model.
The SA is implemented from the results of the 0.7◦ simulations over Brazil and Aus-

tralia (see Fig. 1 and Sect. 3.5). In this regional sensitivity analysis, ORCHIDEE-STICS
is run for each region on a grid of 20 by 15 grid points and 13 by 20 grid points respec-
tively, driven by gridded climate forcing fields from the reanalysis products ERA-Interim15

(Dee et al., 2011), with varying parameter values from a sampling where only bounds
and no distributions were assigned to the parameters. The management information
(date of planting, date of harvest, fertilization, irrigation) and the soil properties (as
described in Valade et al., 2013) are assumed to be uniform across each region and
were defined as typical of each area. The a priori bounds used for the parameters in20

the SA correspond to the first version of the parameters ranges considered in the un-
certainty analysis (i.e. derived from expert knowledge). As cited by Wang et al. (2005),
for sensitivity analyses, Bouman (1994) advises to use parameters ranges as broad
as possible within the limits of the model validity domain. Once the parameters’ a pri-
ori bounds have been set, ensemble runs are performed with all the parameter sets.25

From the distributions of input parameters and output variables obtained at each pixel,
a spatial distribution of PRCC is obtained, which is interpreted in Sect. 3.5 in terms of
regional differences of each parameter on modeled sugar cane yield.
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The interest of carrying out such a regional sensitivity analysis is that it provides
maps of the geographic patterns of the importance of each parameter, leading to a bet-
ter comprehension of the mechanisms behind the parameter-related model sensitiv-
ity. These results can be very useful for planning purposes, for instance to quantify
what are the different factors that control sugar cane yield and ethanol production over5

a large region under future climatic conditions as compared to present-day conditions.

3 Results and discussion

3.1 Screening

From the Morris screening method, we obtain for each parameter two indices µ∗ and
σ, that measure the influence of each parameter and its degree of involvement in non-10

linearities and interactions with other parameters, respectively. From µ∗ and σ values,
we establish a ranking of the parameters by only considering parameters involved in
limited interactions and/or non-linearities (σ < 2µ∗) and then we rank the remaining
parameters based on their µ∗ index, a larger µ∗ being interpreted as a more influential
parameter. The Morris parameters ranks for ORCHIDEE and STICS are respectively15

shown in Fig. 5a and b where each radar plot corresponds to one model. The axes refer
to the parameters and the line colors to the sites. For STICS, for the sake of readability,
not all of the initially selected 50 parameters are represented on the radar plot but only
those parameters that pertain to the 10 top-ranked parameters at least at one site. The
maximum number of 10 parameters was fixed based on examination of Morris indices20

µ∗ and σ at individual sites that only revealed 3 to 5 sensitive parameters each time.
The positions and roles in the model of the parameters identified as most important are
shown in Fig. 3. Figure 4 gives more details, with the main equations through which
these parameters affect the output variables of STICS and of ORCHIDEE.

The 3 most influential parameters of STICS (Fig. 3a) reflect the way STICS and OR-25

CHIDEE are chained (Fig. 3). Indeed, from the chained model structure, the indirect

1211

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1197–1244, 2014

Modeling sugar cane
yield

A. Valade et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

impact of STICS parameters on harvested biomass occurs through their effect on pro-
cesses related to LAI, root growth and nitrogen stress, the only STICS variables passed
to ORCHIDEE for calculating biomass. This chaining of the models through three vari-
ables is reflected in the identification of the 3 most important STICS parameters, which
control the daily maximum rate of foliage production δmax

LAI , the growth rate of the root5

front, κroot and the threshold of nitrogen nutrition index INNmin. δmax
LAI and INNmin pa-

rameters are both involved in LAI calculation. Indeed, the LAI equation has four mem-
bers describing four processes of the sugar cane foliage development. First, the LAI-
development (∆dev

LAI in Fig. 4) describes the potential LAI increase through the scaling
of the daily maximum rate of foliage production by a function of the development stage10

(kLAI), and is logically directly controlled by the value of parameter δmax
LAI . The second

member in the LAI defining equation in Fig. 4 represents the temperature effect on LAI
growth through the accumulation of degrees above a temperature threshold (Tmin in
Fig. 3). The last two members of the equation represent processes that can limit LAI
development and competition for light between plants due to planting density (∆dens

LAI in15

Fig. 4) and a limitation from trophic stress emerging from competition between plant
components for nitrogen, based on the calculation of a nitrogen nutrition index limited
by parameter INNmin. The root growth rate κroot has a less direct impact on LAI since it
intervenes in the calculation of the root front depth, which then impacts the availability
of nitrogen and water and therefore the stress status of the crop (impact on Cplant

N and20

Ws in Fig. 4).
The 8 most influential parameters that control harvested biomass in ORCHIDEE,

are identical for all sites except for the Colimaçons site (where only 7 parameters are
identified as influential by the Morris method). The Morris top ranked parameters of
ORCHIDEE control photosynthesis and water budget equations as well as respiration25

processes (Fig. 4). Three of those (the minimum and optimal temperatures for photo-
synthesis, Tmin, Topt, the maximum rate of carboxylation V opt

Cmax
) affect directly the rate of

carboxylation Vc that is calculated from the maximum rate of carboxylation weighted by
a mean leaf efficiency and scaled by a limiting factor depending on the optimum and
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minimum temperatures for photosynthesis. The stomatal conductance gs that links as-
similation and transpiration is defined by the Ball–Berry equation (Ball et al., 1987) as
a function of assimilation and depends on the air relative humidity and CO2 concentra-
tion, scaled by a slope factor, called the Ball–Berry slope (β). The root profile constant
(κhum) describes the exponential distribution of root density in the soil and is involved in5

the definition of available water and root temperature. Finally, the extinction coefficient
(kext) intervenes in an equation derived by Monsi and Saeki (1953), similar to Beer’s
law, which describes the attenuation of light with depth in the canopy.

Two ORCHIDEE parameters controlling autotrophic respiration also stand out, with
the maintenance respiration coefficient (αMresp) and the fraction of biomass allocated10

to growth respiration (fGresp). The leafcrit
age parameter that is involved in the biomass

allocation also ranked high (5th most important) but only for one site and is therefore
not retained for the rest of the study.

For the chained model STICS-ORCHIDEE, the 11 most influential parameters show
a good agreement between sites for the most important parameters as seen on Fig. 515

where ranking lines overlap for most of the parameters. Building on the results of the
Morris screening analysis, we select the 8 top ranked parameters for ORCHIDEE and
3 for STICS that were revealed as influential for biomass for further uncertainty and
sensitivity analysis.

3.2 Uncertainty analysis: parameters controlling biomass uncertainty at a typi-20

cal site

In this section, we attribute the harvested biomass uncertainty to the uncertainty of the
ORCHIDEE vs. STICS parameters. The simulated biomass uncertainty is a function
of time during the growing season, and it differs between sites. In Fig. 6, we show
the contributions of ORCHIDEE and STICS parameters respectively to the total uncer-25

tainty for one typical site, Grafton, Australia, during the 1994–1995 growing season,
which has climate conditions within the range of other sites. Figure 6a–c displays the
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normalized frequency distributions of simulated biomass obtained from ensemble runs
for three times in the growing season: (1) very early in the cycle in Fig. 6a, at 100 days
after planting (DAP), (2) during the peak growing season in Fig. 6b, at 200 DAP and
(3) short before harvest in Fig. 6c, at 350 DAP. We distinguish between the normalized
frequency distributions of simulated biomass when considering the uncertainty propa-5

gated from STICS parameters alone (green), ORCHIDEE parameters alone (yellow),
and from ORCHIDEE and STICS parameters together (brown), along with their best-fit
normal distributions overlaid. These distributions were obtained by Monte Carlo LHS
ensemble runs (Sect. 2.4) with a sampling of parameters of STICS alone, ORCHIDEE
alone and of both models together. We consider uncertainties starting from the time10

when biomass reaches 50 gC m−2 in order to discard the emergence phase during
which biomass is very low and uncertainties are therefore not significant.

At 100 DAP (Fig. 6a), the uncertainty distribution of biomass related to ORCHIDEE
parameters U(O) spans a slightly larger range than the distribution related to STICS,
U(S), and it has more extreme values. The U(O) distribution is symmetrical around the15

mean value, with a standard deviation of 86.9 gC m−2. The U(S) distribution is non-
symmetric, skewed towards larger values of biomass, and it has a slightly smaller
standard deviation (76.5 gC m−2) than that of U(O). Combining U(O) and U(S) in
Monte Carlo runs by varying the parameters of both models at the same time gives
the total uncertainty distribution, U(O+S), shown in brown in Fig. 6. This distribu-20

tion has more extreme values and a higher standard deviation (112.0 gC m−2), i.e.
U(O+S)>U(O)+U(S).

At 200 DAP (Fig. 6b), and later at 350 DAP (Fig. 6c), the picture has changed. First,
all uncertainties distributions are wider than at 100 DAP. Secondly, the means of U(O)
and U(S) are no longer in agreement, with the asymmetric U(S) distribution being even25

more shifted towards high values of the harvested biomass. The reason for this shift is
that among the variables transmitted from STICS to ORCHIDEE in the chain of models,
the only one that can act to increase the biomass calculated by ORCHIDEE in the later
phase of the growing season, near 350 DAP, is LAI. This is because a higher LAI will
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result into increased photosynthesis and therefore biomass in ORCHIDEE. However,
passed a certain threshold, the LAI impact saturates when the foliage is sufficient for
all incoming light to be captured, and therefore, uncertainty on the STICS parameters
that impact LAI will not increase the uncertainty of biomass any longer. Unlike LAI,
the nitrogen stress and root profile variables controlled by the parameters of STICS5

continue to act as limiting factors on biomass throughout the peak and late growing
season. The saturation of the biomass uncertainty associated with STICS parameters
is stronger at 200 DAP than at 300 DAP, when biomass increase has slowed down and
the role of LAI for driving biomass is less important.

On Fig. 6d, the total uncertainty U(O+S) is given for the reference simulation (with10

parameters at their maximum likelihood values, red line) and the uncertainty on har-
vested biomass can be defined as a percentage of the harvested biomass in the ref-
erence simulation. For the Grafton site, at harvest, the overall uncertainty is 26. %.
The relative contributions of ORCHIDEE and STICS to the total uncertainty, αO and
αS respectively, are defined by αO = U(O)

U(O+S) , αS = U(S)
U(O+S) . The evolution of these con-15

tributions to the total uncertainty is shown in Fig. 6e. We can see in this example that
U(O)>U(S) during the entire growing season, but with a decrease of U(S), and an
increase of U(O) such that the increase in biomass uncertainty seen on Fig. 6d be-
comes increasingly dominated by uncertain ORCHIDEE parameters. The progressive
increase in the weight of ORCHIDEE parameters uncertainties is due to the reduction20

in the role played by LAI for biomass increase along the growing season. Indeed, if
early in the season the foliage is crucial to allow photosynthesis and carbon alloca-
tion, later in the cycle, other processes become important as well and passed a certain
LAI for which all incoming light is captured, it might not even play a role anymore and
then the STICS parameters only impact biomass accumulation through nitrogen stress25

index and root depth.
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3.3 Uncertainty analysis: role of ORCHIDEE vs. STICS parameters in controlling
biomass uncertainty at 7 sites

Table 3 summarizes the results of the overall parametric uncertainty analysis at the
7 sites, including Grafton. The total uncertainty U(O+S) ranges between 25.5 % of
biomass at Piracicaba, Brazil during 2004–2005 and 44.26 % of harvested biomass5

at Tirano, La Réunion in 1998–1999 yielding an average uncertainty on biomass at
harvest due to uncertain parameter values of the chained model ORCHIDEE-STICS
of 34.0 % of harvested biomass across the 7 sites, in the order of previous results
on different variables in similar studies using process-based models such as (Dufrêne
et al., 2005) who found an uncertainty of 30 % on modeled NEE for a forest sites in10

France with the CASTANEA model.
As for the ORCHIDEE vs. STICS relative contributions to the uncertainty of simu-

lated biomass at all sites, the results at each site are not identical but display a similar
general pattern shown by Fig. 7. For all sites, the ORCHIDEE parameters contribution
to total uncertainty increases during the cycle, or remains approximately constant for15

Ingham in 1992–1993, and increases during the growing cycle to dominate entirely the
total uncertainty at the end of the cycle compared to STICS parameters. The STICS
contribution to overall uncertainty decreases during the growing season to reach a min-
imum by the end of the growing season. For sites Piracicaba during 2004–2005, Tirano
in 1998–1999 and Colimaçons during 1994–95, during the beginning of the cycle the20

U(S) is even larger than U(O). The results for Ayr in 1991–1992 display a less clear
pattern. Indeed, at the end of the cycle, the contributions of ORCHIDEE and STICS
to the total uncertainty are almost equal, due to an increase in STICS contribution
during the second half of the cycle. This result confirms a hypothesis made in Valade
et al. (2013) where the difficult calibration of LAI at this site was attributed to the sim-25

ulation by STICS of an important stress. Indeed if a large stress is simulated by the
phenological module, this can impede ORCHIDEE processes of biomass growth and
therefore increases the weight of STICS parameters with respect to ORCHIDEE ones.
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3.4 Uncertainty analysis: constraining uncertainty from sites optimization

Optimizing the 11 ORCHIDEE-STICS parameters selected from the screening analy-
sis at 7 sites leads to a reduction of the width of the a priori uncertainty distribution of
the parameters (Table 2). Carrying out the same uncertainty analysis with a narrower
uncertainty range of parameters (thanks to their site calibration) leads to an important5

reduction of uncertainties of biomass both for the STICS and ORCHIDEE components
of uncertainty. This can be seen by comparing Fig. 6 (initial range of parameters) with
Fig. 8 (narrower range after parameters calibration at the sites). For site Grafton dur-
ing 1994–1995 for example, U(O+S) gets reduced from 26 % to 17 % of the reference
harvested biomass, U(O) from 24 % to 15 % and U(S) from 14 % to 10 %. Figure 9 and10

Table 3 (bottom section) show the uncertainty contributions and overall uncertainty
estimates for the 7 sites after observation-based reduction of the a priori uncertainty
on parameters. The overall parametric uncertainty of biomass defined as the 1-sigma
standard deviation of the (O+S) distribution has thus been reduced to 21 % in aver-
age, to 11.48 % when attributed to STICS alone, and to 17.15 % when attributed to15

ORCHIDEE alone, (Table 3).
The ORCHIDEE and STICS contributions to the total uncertainty keep the same

general pattern as with the initial parameters uncertainty distribution, with a domination
of ORCHIDEE parameters in the uncertainty towards the end of the growing season
(Fig. 9). Compared with the first uncertainty budget with expert-based parameters un-20

certainties (Fig. 8), there is generally a slight decrease in the STICS contribution at the
end of the season.

We have thus established full uncertainty budgets for the two components of the
ORCHIDEE-STICS chain of models, which has revealed variations in the uncertainty
in the biomass simulation from site to site. The next step is to discriminate between the25

different parameters the ones that contribute most to the overall uncertainty through
a sensitivity analysis at regional scale.
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3.5 Spatial sensitivity analysis: sensitivity of sugar cane yields to the model
parameters for Brazil and Australia

The overall parametric uncertainties have been quantified at 7 sites and attributed to
either STICS or ORCHIDEE. The sensitivity analysis (SA) in this section will go a step
further and leads to discriminate the different parameters that contribute to the spatial5

distribution of uncertainty over the two regions considered. This sensitivity analysis is
performed at regional scale because from the previous section, we have seen that the
uncertainty in the biomass simulation varies from site to site.

Ensemble runs at regional scale were realized over Brazil and Australia each with dif-
ferent value combinations for the 11 parameters previously selected through the Morris10

screening analysis (Table 1). The Partial Rank Correlation Coefficients (PRCC) were
then calculated for each pixel in each of the two regions (see Sect. 2.5), and the SA
results are discussed for two dates during the growing season, 200 and 350 days after
planting (DAP). The SA results express the strength of the relationship between an
uncertain parameter and the simulated biomass at harvest at each pixel. The statisti-15

cal significance of the PRCC calculated for each grid cell is tested with the associated
p values, and non-significant PRCC are removed (p value< 0.05). The first date 100
DAP examined for site scale UA studies (Sect. 2.3) is not shown here, because no
statistical significance was found in the correlations between the parameters and the
harvested biomass at 100 DAP. Then, the pixels statistically significant PRCC calcu-20

lated for each parameter can be analyzed both in a geographical projection (latitude,
longitude) (Figs. 11 and 12, columns 1–2 and 4–5) and in a (Temperature, Precipitation)
climatic space projection (Figs. 11 and 12, columns 3 and 6). The regional sensitivity
analysis thus carried out for sugar cane growing areas in Brazil and Australia shows
the magnitude, spatial distribution and climatic dependency of the sensitivity of har-25

vested biomass to the 11 parameters previously selected through the Morris screening
analysis (Table 2).
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Across both regions in Brazil and Australia, we find that the sensitivity of biomass
to the model parameters is not uniformly distributed. This means that the simulated
yield depends on different parameters within different parts of the same region. This
result shows that applying a model at one site to determine the most important param-
eters, and generalizing its conclusion across a region generates biased conclusions.5

Considering only the first most important parameter in each pixel (Fig. 10), we can
see that early in the cycle (200 DAP, Fig. 10a) four parameters dominate the spatial
distribution of the U(O+S) uncertainty of biomass at 200 DAP, both over Brazil and
Australia. These parameters are three ORCHIDEE parameters involved in the pho-
tosynthesis process, the minimum and optimum temperature for photosynthesis Tmin,10

Topt, and the maximum rate of carboxylation V opt
Cmax

, and one parameter from STICS
δmax

LAI , defining the maximum rate of increase of LAI and only appearing in the Aus-

tralian region. In Brazil, the parameter V opt
Cmax

is the first most important parameter for
93 % of the area, whereas the optimum and minimum photosynthesis temperatures
parameters only dominate in respectively 3 and 4 % of the area. In Australia, the pa-15

rameters’ domination is more balanced with 37.5 % for each of V opt
Cmax

and δmax
LAI and

25 % for Tmin.
Later in the growing season (350 DAP, Fig. 10b), consistently with the results of

the site-scale uncertainty analysis, the influence of the STICS parameters decreases
until no STICS parameters appear any longer as a dominant parameter in any of the20

regions. At this later stage in the season, two parameters stand out as explaining most
of the uncertainty in most pixels of both regions, V opt

Cmax
and Tmin. In Brazil, V opt

Cmax
is still

the most sensitive parameter for most of the region, but Topt disappeared and the area
dominated by Tmin expanded and now covers the cooler area of the southeast coastal
zone. In Australia, the area dominated by V opt

Cmax
expanded into most of the region and25

now covers 83 % of the area. In the coolest pixels, the soil-related parameters appear
with the two root profile parameters from STICS and from ORCHIDEE, κroot and κhum.

1219

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1197–1244, 2014

Modeling sugar cane
yield

A. Valade et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figures 11 and 12 focus on the values of the PRCC for each parameter as well
as their spatial distribution. Their projection in a Temperature-Precipitation space for
a given time (Fig. 11 for 200 DAP, Fig. 12 for 350 DAP) give more insights on the
dependency of the sensitivity to the climatic conditions along the growing cycle. As
an example, the sensitivity of the simulated biomass to Topt is highly sensitive to the5

average temperature of the location. At low-temperature sites, where temperature is
a limiting factor for crop growth (below 17 ◦C), the PRCC is higher than 0.8, whereas at
high-temperature sites (above 22 ◦C) the PRCC is below 0.3. Sites with temperatures
above 25 ◦C do not even show significant correlations (grey symbols on the scatter
plot).10

For the parameter κhum, which describes the root profile of the cane (inverse of root
depth), the dependency is most obvious on precipitation amount. For annual precipita-
tions above 2500 mm, no significant correlation is found.

Comparing the regional sensitivities at two times in the growing season shows again
the decrease in the importance of STICS parameters whereas all of most important15

ORCHIDEE parameters have larger RPCC than earlier in the season.

4 Concluding remarks

In the perspective of applying spatially explicit mechanistic vegetation models such
as ORCHIDEE-STICS to biofuel yield simulations we have sought the quantification
and understanding of parametric uncertainty propagation in the model, both at site20

level and at continental scale over two large regions, Australia and Brazil. For this,
a rigorous analysis of the uncertainty budget of simulated sugar cane biomass has
been established, using a step by step tracking of uncertainty in the model.

The main parameters from the two chain components of the model responsible for
most of the uncertainty propagation have been identified through a Morris screening25

analysis. For the ORCHIDEE model, the most influential parameters are those involved
in photosynthesis equations, Tmin, Topt, V

opt
Cmax

, the radiation interception parameter kext,
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the root profile constant κhum, the parameters for respiration, slope of the Ball–Berry
relation β, maintenance and growth respiration parameters fGresp and αMresp for the
ORCHIDEE carbon, water and energy model. For the STICS model, the most influen-
tial parameters are those responsible for simulation of phenology, nitrogen and water
stress, the parameters describing the maximum rate of carboxylation, the maximum5

growth rate of the root front and the threshold for nitrogen stress have been found to
have the greatest role.

We used two approaches for estimating the total uncertainty propagated from the pa-
rameters into the model by assigning uncertainties on parameters with two methods,
one “pessimistic”, in which a priori parameter uncertainty bounds are set based on10

expert judgment, and one optimistic where smaller uncertainty are derived by an opti-
mization of the model parameters at several sites and this providing a smaller arguably
more realistic a priori uncertainty range.

We found that all these parameters together contribute to an overall uncertainty of
21 % on sugar cane biomass simulations with an agro-LSM model and that this amount15

is variable among sites with different climatic, edaphic and management situations. We
also analyzed this uncertainty separately for each component of the model and found
that whatever estimate chosen for the parameters uncertainty, by the end of the growing
season, the uncertainty propagated from the phenology module STICS decreases and
the overall uncertainty is almost totally explained by the ORCHIDEE uncertainty.20

The overall origin of uncertainty has then been diagnosed in even more detail through
a regional sensitivity analysis allowing the identification of the parameter for which
harvested biomass is most sensitive for each pixel within regions of Australia and Brazil.
We revealed a strong heterogeneity of the results based on climatic conditions and
also variability in time that confirms the results of the uncertainty analysis, by showing25

a decrease in the importance of the STICS parameters along the growing season.
We believe that our results for the sugar cane crop simulated with the model

ORCHIDEE-STICS are relevant to other agro-LSM with different crops. All these results
prove the importance of establishing clear uncertainty budgets for highly parameterized

1221

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1197–1244, 2014

Modeling sugar cane
yield

A. Valade et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

models such as agro-LSM, especially when applying these models to answer questions
related to political decisions such as biofuels burning topics.

As an example, combining our optimistic uncertainty estimation with the results from
(Lapola et al., 2009) for irrigated sugar cane (obtained with the model LPJml, very sim-
ilar to ORCHIDEE-STICS), we can evaluate the range assorted with their estimation5

of land requirements to fulfill the demand in ethanol in Brazil. They found a mean yield
of 74.36 tha−1, and conclude that to fulfill government targets, the sugar cane areas
would need to expand by 2.8 million hectares. With the hypothesis that our uncertainty
calculation is applicable to the LPJml results, we can translate the potential mean pro-
duction uncertainty as a range of (59–90 tha−1). The land requirements when including10

parameters uncertainty would then becomes (2.3–4 million ha), almost a 2 to 1 ratio. To
go further in the application of this result, and assuming that sugar cane expansion
results in deforestation through direct or indirect land use change, we can translate the
land expansion of sugar cane for biofuels into carbon emissions from deforestation.
Several estimates of carbon emissions associated with conversion of tropical forest15

to croplands have been published and their results span a large range revealing the
large uncertainties in this area (BSI, 2008; Cederberg et al., 2011; Searchinger et al.,
2008) Discussing the uncertainty on this estimate is beyond the scope of this paper so
we will only consider the value from (Searchinger et al., 2008), of 604 t CO2 eq ha−1.
Using this conversion factor, the expansion of sugar cane calculated by (Lapola et al.,20

2009) would result in CO2 eq emissions of 1.68 Gt CO2 eq whereas including the para-
metric uncertainty of the model we obtain a range of 1.2 to 2.4 Gt CO2 eq provoked by
Brazilian government’s ethanol targets with our calculation of uncertainty.

This quick application of our uncertainty calculation proves how important it is to
consider the uncertainty when addressing issues aimed at decision-makers.25

Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/7/1197/2014/
gmdd-7-1197-2014-supplement.pdf.
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Table 1. Description of climate and management for the sites used in this study in Australia
(Ayr, Ingham, Grafton), Brazil (Piracicaba) and La Réunion (Colimaons, Tirano).

Planting and harvest dates Mean annual Average irrigation Fertilization
precipitation temperature

Australia

Ayr 19 Apr 1991 13 Aug 1992 964 23.4 irrigated no
Ayr 22 Apr 1992 13 Aug 1993 560 23.6 irrigated yes
Grafton 28 Sep 1994 19 Sep 1995 768 19.6 irrigated yes
Ingham 23 Jul 1992 21 Oct 1993 1294 24.2 irrigated yes

Brazil Piracicaba 29 Oct 2004 26 Sep 2005 1230 21.6 irrigated

La Réunion
Colimacons 3 Aug 1994 1 Dec 1995 989.5 19 rainfed yes
Tirano 26 Nov 1998 26 Nov 1999 813 22.34 irrigated yes
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Table 2. List of parameters from STICS and ORCHIDEE included in each step of the analysis
with their ranges of variation. All listed parameters are considered for the screening analysis.
Only parameters in bold are considered in the uncertainty and sensitivity analyses.

expert judgment Uncertainty Observations constrained
based ranges analysis ranges

distribution

STICS

Water budget psisto 5 15
psiturg 1 5
Hinitf1 11 22
Hinitf2 11 22
Hinitf3 10 21
Ninitf1 0 30
Ninitf2 0 30

Initial conditions Ninitf3 0 30
afpf 0.15 0.5
afruitpot 0.0015 0.2
allocamx 0.63 0.86
bfpf 1 10
coefb 0.0015 0.0815
dureefruit 2850 3000
efcroijuv 1.7 2.3
efcroirepro 2 6
efcroiveg 3.2 6
nboite 12 25
pgrainmaxi 1200 2000
ratiosen 0 1
remobil 0.728 0.92
sdrpnou 552.5 747.5
splaimin 0 0.3
stlevsenms 400 800
stpltger 50 200
teopt 15 34.4
teopt 35 50

Biomass conversion vitirazo 0.0085 0.0115
stamflax 1000 2100
stlevamf 50 400
stlevdrp 1000 1740
tdmax 28 40
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Table 2. Continued.

expert judgment Uncertainty Observations constrained
based ranges analysis ranges

distribution

Development stages tdmin 10 14
Radiation interception extin 0.424 0.699

adens −1 −0.2
bdens 2 10
dlaimax 0.0002 0.0015 uniform 0.00022 0.0011
sbv 127.5 172.5
tcmax 35 42
tcmin 10 14

Foliage tutressmin 0 1
Norg 0.05 0.2

Mineralization tref 15 27
croirac 0 0.2 uniform 0.07 0.092
zlabour 17 23
zpente 24 110

Roots zprlim 111 140
Soil epc3 5 60

absodrp 0 1
Water/Nitrogen stress INNmin 0 0.5 uniform 0.3 0.3

ORCHIDEE

f_ fruit 0.05 0.5
lai_ max 3 9
leaf_ age_ crit 30 200
max_ lto_ lsr 0.25 0.5
min_ lto_ lsr 0.05 0.24
R0 0.05 0.5

Allocation S0 0.05 0.5
ext_ coef 0.5 0.9 uniform 0.5 0.72
gsslope 7 11 beta(2,2) 7.7 9.5
tphoto_ max 30 45
tphoto_ min_ c 12 19 uniform 12 16.7
tphoto_ opt 24 36 uniform 24 36

Photosynthesis vcmax_ opt 40 100 beta(2,2) 64 81.3
frac_ growthresp 0.2 0.5 beta(2,2) 0.23 0.3

Respiration maint_ resp_ slope1 0.08 0.16 beta(2,2) 0.11 0.12
Water budget humcste 0.8 7.2 uniform 3.2 4.1

1231

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1197/2014/gmdd-7-1197-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1197–1244, 2014

Modeling sugar cane
yield

A. Valade et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Uncertainty associated with STICS, ORCHIDEE, or ORCHIDEE +STICS parameters
uncertainties expressed as percentage of the reference harvested biomass for each site and
for each of the two uncertainty analysis.

Total Uncertainty ORCHIDEE Uncertainty STICS Uncertainty
(% of observed value) (% of observed value) (% of observed value)

Expert-based parameters’ uncertainties Ayr 91–92 35.11 20.43 20.73
Ayr 92–93 27.21 25.26 9.31
Ingham 92–93 38.60 31.42 21.04
Grafton 94–95 26.05 23.92 14.07
Piracicaba 04–05 25.49 23.36 14.00
Colimacons 94–95 41.21 41.87 18.61
Tirano 98–99 44.26 36.80 30.61

Optimization-based parameters’ uncertainties Ayr 91–92 31.20 14.01 25.64
Ayr 92–93 15.84 15.60 4.58
Ingham 92–93 21.66 22.35 9.19
Grafton 94–95 16.84 15.25 9.81
Piracicaba 04–05 14.67 14.80 5.84
Colimacons 94–95 21.31 20.01 10.28
Tirano 98–99 22.26 18.06 15.03
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Fig. 1. Flowchart of the analysis carried out in this study. The first step is the separate screen-
ing for 7 sites of the STICS and ORCHIDEE parameters. The selection of parameters obtained
from the screening are then used for two uncertainty analysis, one with the same parameters
ranges of variation as for the screening, the other with parameters ranges of variation con-
strained by the optimization of the model at 7 sites. Each uncertainty analysis is decomposed
in three parts, one including only ORCHIDEE parameters, one including only STICS param-
eters and one including parameters from both ORCHIDEE and STICS. Finally a sensitivity
analysis is carried out for two small regions in Australia in Brazil for all parameters together.
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Fig. 2. Spatial distribution of the sites (dots) and regions (dashed rectangles) used in this study
overlaid on a map of the distribution of sugar cane growing areas indicated in green.
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Fig. 3. Structure of the ORCHIDEE-STICS chain model. STICS calculates the crop phenology,
water and nitrogen requirements and passes LAI, root profile, irrigation and Nitrogen nutrition
index to ORCHIDEE. ORCHIDEE consists in the coupling of two module. SECHIBA simulates
the photosynthesis process, water and energy budgets, STOMATE is a carbon module and
calculates carbon fluxes and to the atmosphere (respiration) and carbon accumulation in the
carbon pools (biomass compartments, litter, soil).
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Fig. 4. Main parameters for simulation of sugar cane yield with ORCHIDEE-STICS with the
equations in which they are involved.
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Fig. 5. Parameters rankings derived from the Morris screening analysis for STICS parameters
(a) and ORCHIDEE parameters (b) for 7 sites (color lines). Each axis of the radar plot corre-
sponds to the rank of a parameter, the lower the rank, the more important the parameter. The
parameters identified as most important from this analysis are highlighted with stars.
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Fig. 6. Uncertainty analysis for the site Grafton 94–95. (a–c) probability distributions of har-
vested biomass simulated after parameters uncertainty (from STICS:green, from ORCHIDEE :
yellow, from ORCHIDEE +STICS: brown) has been propagated into the model. (d) refer-
ence simulation of harvested biomass (red) and uncertainty from ORCHIDEE, STICS, OR-
CHIDEE +STICS. (e) Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total
uncertainty (brown) over the length of the growing season.
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Fig. 7. Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total uncertainty
(brown) over the length of the growing season for 7 sites.
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Fig. 8. Uncertainty analysis for the site Grafton 94–95 after parameters uncertainty ranges have
been constrained through optimization at 7 sites. (a–c) Probability distributions of harvested
biomass simulated after parameters un- certainty (from STICS: green, from ORCHIDEE :
yellow, from ORCHIDEE +STICS: brown) has been propagated into the model. (d) Refer-
ence simulation of harvested biomass (red) and uncertainty from ORCHIDEE, STICS, OR-
CHIDEE +STICS. (e) Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total
uncertainty (brown) over the length of the growing season.
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Fig. 9. Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total uncertainty
(brown) over the length of the growing season for 7 sites after parameters uncertainty ranges
have been constrained through optimization at 7 sites.
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Fig. 10. Spatial distribution of the most influential parameters for the simulation of harvestable
biomass for two milestones during the growing season, 200 days after planting (DAP) and 350
DAP.
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Fig. 11. Sensitivity of ORCHIDEE-STICS to its main parameters at 200 days after planting, as
measured with Partial Ranked Correlation Coefficients (PRCC). The color indicates the strength
of the relation between the parameter and the harvestable biomass, which is represented spa-
tially (columns 1, 2, 4, 5) and in a (Temperature, Precipitation) referential (columns 3, 6). PRCC
data points shown in grey are not statistically significant.
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Fig. 12. Sensitivity of ORCHIDEE-STICS to its main parameters at 350 days after planting, as
measured with Partial Ranked Correlation Coefficients (PRCC). The color indicates the strength
of the relation between the parameter and the harvestable biomass, which is represented spa-
tially (columns 1, 2, 4, 5) and in a (Temperature, Precipitation) referential (columns 3, 6). PRCC
data points shown in grey are not statistically significant.
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