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Abstract	  2	  

Agro-‐Land	  Surface	  Models	  (agro-‐LSM)	  have	  been	  developed	  from	  the	  integration	  3	  

of	  specific	  crop	  processes	  into	  large-‐scale	  generic	  land	  surface	  models	  that	  allow	  4	  

calculating	   the	   spatial	   distribution	   and	   variability	   of	   energy,	  water	   and	   carbon	  5	  

fluxes	  within	  the	  soil-‐vegetation-‐atmosphere	  continuum.	  When	  developing	  agro-‐6	  

LSM	  models,	  a	  particular	  attention	  must	  be	  given	  to	  the	  effects	  of	  crop	  phenology	  7	  

and	  management	   on	   the	   turbulent	   fluxes	   exchanged	  with	   the	   atmosphere,	   and	  8	  

the	   underlying	  water	   and	   carbon	  pools.	   A	   part	   of	   the	   uncertainty	   of	   Agro-‐LSM	  9	  

models	  is	  related	  to	  their	  usually	  large	  number	  of	  parameters.	  In	  this	  study,	  we	  10	  

quantify	   the	   parameter-‐values	   uncertainty	   in	   the	   simulation	   of	   sugar	   cane	  11	  

biomass	  production	  with	  the	  agro-‐LSM	  ORCHIDEE-‐STICS,	  using	  a	  multi-‐regional	  12	  

approach	  with	  data	  from	  sites	  in	  Australia,	  La	  Réunion	  and	  Brazil.	  In	  ORCHIDEE-‐13	  

STICS,	   two	   models	   are	   chained:	   STICS,	   an	   agronomy	   model	   that	   calculates	  14	  

phenology	  and	  management,	  and	  ORCHIDEE,	  a	  land	  surface	  model	  that	  calculates	  15	  

biomass	   and	   other	   ecosystem	   variables	   forced	   by	   STICS	   phenology.	   First,	   the	  16	  

parameters	  that	  dominate	  the	  uncertainty	  of	  simulated	  biomass	  at	  harvest	  date	  17	  

are	  determined	  through	  a	  screening	  of	  67	  different	  parameters	  of	  both	  STICS	  and	  18	  

ORCHIDEE	  on	  a	  multi-‐site	  basis.	  Secondly,	  the	  uncertainty	  of	  harvested	  biomass	  19	  

attributable	   to	   those	   most	   sensitive	   parameters	   is	   quantified	   and	   specifically	  20	  

attributed	   to	   either	   STICS	   (phenology,	   management)	   or	   to	   ORCHIDEE	   (other	  21	  

ecosystem	  variables	   including	  biomass)	   through	  distinct	  Monte-‐Carlo	  runs.	  The	  22	  

uncertainty	  on	  parameter	  values	  is	  constrained	  using	  observations	  by	  calibrating	  23	  

the	  model	   independently	  at	   seven	  sites.	   In	  a	   third	  step,	  a	   sensitivity	  analysis	   is	  24	  

carried	  out	  by	  varying	  the	  most	  sensitive	  parameters	  to	  investigate	  their	  effects	  25	  

at	   continental	   scale.	   A	   Monte-‐Carlo	   sampling	   method	   associated	   with	   the	  26	  

calculation	   of	   Partial	   Ranked	   Correlation	   Coefficients	   is	   used	   to	   quantify	   the	  27	  

sensitivity	   of	   harvested	   biomass	   to	   input	   parameters	   on	   a	   continental	   scale	  28	  

across	   the	   large	   regions	   of	   intensive	   sugar	   cane	   cultivation	   in	   Australia	   and	  29	  

Brazil.	  Ten	  parameters	  driving	  most	  of	   the	  uncertainty	   in	   the	  ORCHIDEE-‐STICS	  30	  

modeled	   biomass	   at	   the	   7	   sites	   are	   identified	   by	   the	   screening	   procedure.	  We	  31	  

found	  that	  the	  10	  most	  sensitive	  parameters	  control	  phenology	  (maximum	  rate	  32	  
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of	  increase	  of	  LAI)	  and	  root	  uptake	  of	  water	  and	  nitrogen	  (root	  profile	  and	  root	  1	  

growth	   rate,	   nitrogen	   stress	   threshold)	   in	   STICS,	   and	   photosynthesis	   (optimal	  2	  

temperature	   of	   photosynthesis,	   optimal	   carboxylation	   rate),	   radiation	  3	  

interception	  (extinction	  coefficient),	  and	  transpiration	  and	  respiration	  (stomatal	  4	  

conductance,	   growth	   and	   maintenance	   respiration	   coefficients)	   in	   ORCHIDEE.	  5	  

We	   find	   that	   the	   optimal	   carboxylation	   rate	   and	   photosynthesis	   temperature	  6	  

parameters	  contribute	  most	  to	  the	  uncertainty	  in	  harvested	  biomass	  simulations	  7	  

at	   site	   scale.	   The	   spatial	   variation	   of	   the	   ranked	   correlation	   between	   input	  8	  

parameters	   and	   modeled	   biomass	   at	   harvest	   is	   well	   explained	   by	   rain	   and	  9	  

temperature	   drivers,	   suggesting	   climate-‐mediated	   different	   sensitivities	   of	  10	  

modeled	  sugar	  cane	  yield	  to	  the	  model	  parameters,	  for	  Australia	  and	  Brazil.	  This	  11	  

study	   reveals	   the	   spatial	   and	   temporal	   patterns	   of	   uncertainty	   variability	   for	   a	  12	  

highly	   parameterized	   agro-‐LSM	   and	   calls	   for	   more	   systematic	   uncertainty	  13	  

analyses	  of	  such	  models.	  14	  

	  15	  

1 Introduction	  16	  

	  17	  

In the recent years, many governments have set targets in terms of biofuels 18	  

consumption for transportation fuel (Sorda et al., 2010), resulting in a large increase 19	  

in bioenergy cropping area around the world. Concerns about energy shortage, policy 20	  

to reduce CO2 emissions, and the search for new income for farmers can explain why 21	  

energy policies have considered biofuels as a serious alternative to fossil fuel in many 22	  

countries (Demirbas, 2008). Yet, the claimed benefits of biofuels for fossil fuel 23	  

substitution have been questioned in terms of their net effect on atmospheric CO2 and 24	  

climate, and even of their economic return (Doornbosch and Steenblik; Naylor et al., 25	  

2007). In particular, the conditions of biofuel cultivation, such as the type of crop, 26	  

practice, previous land use, and local climate, have emerged as key factors that 27	  

determine the effectiveness of their carbon emissions reduction (Fargione et al., 2008; 28	  

Hill et al., 2006; Searchinger et al., 2008). At the heart of biofuel cultivation is ethanol 29	  

that represents today 74% of the energy content of the world production of liquid 30	  

biofuels (Howarth et al., 2008) and whose production is expected to double between 31	  

2011 and 2021 (OECD, 2012), hence the urgency to better quantify and understand 32	  
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regional potentials of bioethanol crops. Based on recent life cycle analysis studies (de 1	  

Vries et al., 2010; Schubert, 2006; von Blottnitz and Curran, 2007), ethanol from 2	  

sugar cane is the most competitive in terms of energy use and net carbon balance and 3	  

the energy use projections from the International Energy Agency foresee that by 2050, 4	  

sugar cane is the only 1st generation biofuel that that will keep expanding (IEA, 2011). 5	  

	  6	  

The	   impact	   of	   sugar	   cane	   expansion	   on	   climate	   and	   carbon	   balance	   is	   under	  7	  

scrutiny	   with	   different	   approaches.	   Satellite observation data have been used to 8	  

study biophysical effects of sugar cane expansion on local temperature in the 9	  

Brazilian Cerrado (Loarie et al., 2011) Survey for agricultural and industrial 10	  

performances from sugar cane mills have allowed Macedo et al. (2008) to establish 11	  

the carbon balance of sugar cane ethanol production in the Center-South of Brazil. 12	  

Georgescu et al. (2013) simulate the hydroclimatic impacts of sugar cane expansion 13	  

by forcing sugar cane land cover characteristics into a regional climate model. All 14	  

approaches provide useful information on impacts and potentials but are impractical 15	  

to apply outside of the regions and conditions (climate, management) where they have 16	  

been conducted.	  17	  

	  18	  

In parallel with empirical approaches, significant progress has been made towards 19	  

mechanistic modeling of sugar cane yields using models. Crop models are generally 20	  

used to simulate sugar cane production at site scale, with specific parameters 21	  

(Cheeroo-Nayamuth et al., 2000). Land surface models (LSM) are rather used to 22	  

estimate the spatial distribution of crop productivity under different soil and climatic 23	  

conditions, over a region or even over the globe but with a simpler and generic 24	  

description of sugar cane plants (Black et al., 2012; Cuadra et al., 2012; Lapola et al., 25	  

2009). Agro-LSM models stand at the interface between plot-scale crop models and 26	  

global LSMs. Yet, as highlighted by Surendran Nair et al. (2012) if the development 27	  

of agro-LSM models for biofuels has been the subject of much interest recently, 28	  

detailed parameterization, validation and uncertainty quantification is still very 29	  

limited in regional and global applications, and efforts must be made in that direction. 30	  

The importance of evaluating and communicating about global models uncertainty 31	  

was as well emphasized within the framework of the model inter-comparison project 32	  
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AgMIP - providing insights for IPCC AR5 report – in which crop models uncertainty 1	  

is identified as a key theme of interest that was only little explored so far (Rosenzweig 2	  

et al., 2013). ORCHIDEE-STICS (Gervois et al., 2004) is an agro-LSM model that 3	  

has been developed from the coupling of the agronomical model STICS (Brisson et 4	  

al., 1998) and the Land Surface Model ORCHIDEE (Krinner et al., 2005) and that has 5	  

been applied for studies from site to continent mainly for temperate crops in Europe 6	  

(Gervois et al., 2008) and has been recently adapted to sugar cane simulation (Valade 7	  

et al., 2013). 8	  

	  9	  

Four uncertainty sources affect the simulation of sugar cane biomass with 10	  

ORCHIDEE-STICS: 1) input uncertainty on boundary conditions used for climate 11	  

drivers and soil properties, 2) structure uncertainty related to model equations and 12	  

parameterizations, 3) parameters value uncertainty, and 4) uncertainty associated with 13	  

the measurements used for model evaluation or calibration.  Here we focus on 14	  

structure and parameters uncertainty and try to estimate how these two sources of 15	  

uncertainties affect the simulations of sugar cane harvest biomass. We want to 16	  

determine which parameters are responsible for most of the uncertainty in harvest 17	  

biomass (screening analysis) and to what extent this is related to the model’s structure 18	  

(uncertainty analysis). In addition, we want to quantify this uncertainty and examine 19	  

its temporal and spatial variability (sensitivity analysis). 20	  

 21	  

In the following, we first present the sites and regions considered in this study (section 22	  

2.1) and the main features of the ORCHIDEE-STICS model (section 2.2). We then 23	  

describe the screening algorithm used to sort the most important parameters (section 24	  

2.3), and the uncertainty and the sensitivity analyses (sections 2.4 and 2.5). Then we 25	  

discuss the results of the screening analysis, in terms of the parameters identified by 26	  

the screening as the most important for controlling harvested sugar cane biomass 27	  

(section 3.1). We describe the results for the measure of the uncertainty calculated for 28	  

7 sites in section 3.2 to 3.4 and present maps of the sensitivity of the model to its main 29	  

parameters in section 3.5. 	  30	  

	  31	  
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2 Materials	  and	  methods	  1	  

In this study, we aim to quantify the uncertainty related to the parameter values of a 2	  

chain of two process-based models (STICS-ORCHIDEE) to simulate sugar cane yield 3	  

(biomass at harvest date). This is a difficult task because this model is a detailed and 4	  

complex model that contains over 100 plant specific parameters within the primitive 5	  

equations of phenology, energy and water balance, photosynthesis and allocation. We 6	  

perform the uncertainty analysis in three steps, illustrated in Figure 1 and consisting 7	  

of screening, uncertainty and sensitivity analyses, all described in more details in 8	  

section 2. These three steps are sequential and complementary. The first step is a 9	  

screening to sort the most important parameters controlling yield, and to reduce the 10	  

dimension of the parameter space from a large number of parameters to few key 11	  

parameters, allowing a moderate number of sensitivity simulations. The screening 12	  

allows the restriction of the two further steps to a smaller parameter subset. The 13	  

second step is an uncertainty analysis that considers all retained parameters together 14	  

with their probability distributions and determines the probability distribution for the 15	  

output variable (biomass). The third step is a sensitivity analysis of the modeled 16	  

spatial distribution of sugar cane yield to the model parameters for two large regions, 17	  

in Brazil and Australia, at a spatial resolution of 0.7°. The sensitivity is established 18	  

from the spatial distribution of ranked correlations between each parameter and yield 19	  

in each grid point. Along the study steps, we address several problems inherent to 20	  

uncertainty and sensitivity evaluation such as the determination of the uncertainty on 21	  

the input parameters and the spatial (regional) differences of the sensitivity of the 22	  

model to its key parameters. 23	  

2.1 Sites	  and	  study	  areas	  24	  

This study is based on sugar cane field trials in three regions (figure 2) where sugar 25	  

cane is of economical importance, Brazil (1 site), Australia (4 sites), and La Reunion 26	  

Island (2 sites). These sites, already used by Valade et al. (2013) span different 27	  

climatic conditions and agricultural practices, as shown in Table 1, which makes them 28	  

useful for our purpose to provide continental-scale sugar cane yield uncertainty 29	  

estimates. More details about the four sites from Australia and La Réunion can be 30	  

found respectively in Keating et al. (1999); Muchow et al. (1994); Robertson et al. 31	  

(1996) and in Martiné (unpublished). The site from Brazil is described in(Marin et al., 32	  
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2011). The sensitivity analysis of the yield spatial distribution to the model parameters 1	  

is carried out for two continental-scale areas where sugar cane is cultivated at large 2	  

scale. In Brazil, we consider the region encompassing partly the Sao Paulo and Mato 3	  

Grosso states,and in Australia the sugar cane cultivation belt of the northeastern coast  4	  

(Figure 2).	  5	  

2.2 Model	  &	  parameters	  considered	  6	  

We use the agro-Land Surface Model ORCHIDEE-STICS (Gervois et al., 2004) in a 7	  

version that was already calibrated for sugar cane for Leaf Area Index at the same 8	  

sites than used here (Valade et al., 2013). This model chains the crop model STICS 9	  

with sugar cane specific phenology and management with the generic process-based 10	  

land surface model ORCHIDEE that can be applied either at a site, or on a grid for 11	  

regional runs. 12	  

STICS (Brisson et al., 1998) is an agronomical model designed for site-scale 13	  

operational applications, which describes in details the soil and crop processes 14	  

associated with specific crop varieties and with management practices, such as 15	  

aboveground biomass, and biomass nitrogen content, water and nitrogen content in 16	  

the soil, yield, root density. Yet, STICS is a generic crop model, because from a set of 17	  

common equations it can describe a large number of crop species through specific 18	  

parameterizations. Similarly, specific vectors of parameters define crop cultivars. 19	  

STICS has been validated for a variety of cropping situations (Brisson et al., 2003)	  20	  

ORCHIDEE (Krinner et al., 2005) is a land surface model developed for global 21	  

applications, standing now as the land surface model of the IPSL Earth System 22	  

Model. It has been developed from the association of a surface energy and water 23	  

balance scheme (SECHIBA) with a biogeochemistry module (STOMATE) and as 24	  

such simulates the short time scale exchanges of water and energy between the land 25	  

surface and the atmosphere, as well as the processes of the carbon cycle including 26	  

photosynthesis, respiration, carbon allocation, soil decomposition. The vegetation is 27	  

represented in ORCHIDEE with the Plant Functional Type (PFT) concept, by 28	  

grouping species into a few categories based on the similarities of their traits and 29	  

resulting in an average plant. For example, sugar cane would fall in the generic ‘C4 30	  

crop’ PFT in the standard version of ORCHIDEE, and this un-calibrated version of 31	  

model fails to reproduce site-level phenology, as shown by Valade et al. (2013)	  32	  
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The chaining of STICS with ORCHIDEE was performed to improve the ability of 1	  

ORCHIDEE to simulate specific crops, for which the PFT concept was not 2	  

appropriate, as it lacks representation of crop phenology and crop management 3	  

practices (Gervois et al., 2004). In the chain-like structure (Figure 3), STICS 4	  

calculates phenology, water and nitrogen requirements, and passes the key variables 5	  

of Leaf Area Index (LAI), root profile and nitrogen stress as well as the input data 6	  

concerning irrigation requirements to ORCHIDEE that uses them to calculate carbon 7	  

assimilation and allocation, water balance, and energy-related variables. The one-way 8	  

coupling between the two models can generate some inconsistencies, such as the soil 9	  

status that is different between ORCHIDEE and STICS. This type of inconsistencies, 10	  

inherent to the structure of the model is considered as part of the structural uncertainty 11	  

and is not covered in this study. However, this particular one-way structure will have 12	  

a consequence in the uncertainty that we are analyzing in this study.	  13	  

ORCHIDEE and STICS each have a large number of parameters involved at every 14	  

step of a simulation over the course of a growing season. The values of these 15	  

parameters - often empirically prescribed - are not easy to measure or are not 16	  

measurable at all, calling in many cases for expert judgment to set their values, when 17	  

it is impractical to find reference values. The uncertainty of these parameters is 18	  

propagated onto the output variables of ORCHIDEE STICS and has impacts which 19	  

strength depends on the structure of both STICS and ORCHIDEE. Because of the 20	  

chain-type structure of ORCHIDEE-STICS (fig.3), the parameters from STICS that 21	  

control LAI and nitrogen stress are expected to have a weaker and more indirect effect 22	  

on downstream variables such as biomass compared with parameters from 23	  

ORCHIDEE that directly control carbon assimilation processes and the development 24	  

of biomass to produce yield at the date of harvest. 	  25	  

2.3 Parameter	  screening	  26	  

In this section, we describe the screening step that allows us to select the most 27	  

influential parameters upon which the model uncertainty is investigated. An initial set 28	  

of 17 parameters from ORCHIDEE and 50 parameters from STICS is considered for 29	  

the screening, according to their influence on the simulation of biomass production, 30	  

based on expert knowledge and literature as listed in Table 2. The screening analysis 31	  

procedure is the same as described in (Valade et al., 2013). It is based	   upon the 32	  
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method of Morris (Campolongo et al., 2007; Morris, 1991; Pujol, 2009) often used to 1	  

explore the parameters space for complex models with a large number of parameters. 2	  

Like all screening methods, the Morris method gives qualitative information on the 3	  

sensitivity of the output variables to the parameters, since it only discriminates 4	  

parameters based on their importance, but does not provide information on the relative 5	  

difference of importance (Cariboni et al., 2007). Its aim is to reduce the 6	  

dimensionality of the problem for further use of quantitative, computationally heavier 7	  

methods (Saltelli et al., 2004).	  8	  

The advantage of the Morris method is that it is computationally efficient and easy to 9	  

implement and interpret. It is based on a one-at-a-time approach, in which only one 10	  

parameter is changed between two runs, allowing for the calculation of a local partial 11	  

derivative of the output variable with respect to the input parameter, called an 12	  

elementary effect. The Morris method is considered to be a “global” screening 13	  

method, because the algorithm is repeated several times to calculate the elementary 14	  

effects of each parameter in several locations of the parameters space so that the 15	  

average and standard deviation of all elementary effects associated with each 16	  

parameter are representative of the behavior of this parameter in its whole range of 17	  

variation. The results of the Morris screening algorithm can be represented by a 2-D 18	  

plot of standard deviation versus mean value of the elementary effects on the output 19	  

variable (here harvested biomass) of each parameter. A parameter with a high mean 20	  

elementary effect (called µ, or µ* for mean of absolute values) is interpreted as a 21	  

parameter with high influence on the output harvested biomass variable. A parameter 22	  

with a high standard deviation of its elementary effects (σ) is interpreted as inducing 23	  

non-linearities in the model output, and/or as having interactions with other 24	  

parameters. 	  25	  

Here, we apply the Morris method as implemented in the R 'sensitivity' package 26	  

(Pujol et al., 2013) using site-scale simulations of ORCHIDEE STICS across the 7 27	  

field trial sites listed in Table 1. For each site, we identify the most influential 28	  

parameters for the output variable harvested biomass. The parameters identified as 29	  

important at least at two sites are selected for the rest of the study.	  30	  

	  31	  
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2.4 Uncertainty	  analysis	  (UA)	  1	  

The goal of the UA is to quantify the overall uncertainty in the harvested biomass 2	  

output variable that results from uncertain input parameter values. Firstly, based on 3	  

the a priori probability of each parameter’s value, a Probability Density Function is 4	  

assigned to each parameter in order to generate sample parameter sets according to the 5	  

Latin Hypercube Sampling (LHS) method. Secondly, an ensemble of model runs is 6	  

performed using those samples. Thirdly, the uncertainty on the output variables is 7	  

obtained from the statistical properties of the distribution of simulated harvested 8	  

biomass from the ensemble runs by defining the uncertainty as one standard deviation 9	  

of the distribution.	  10	  

The first step is thus to generate parameters samples constrained with prior parameters 11	  

ranges and statistical distributions that are then used as inputs for ensemble 12	  

simulations. 	  13	  

The parameters considered for the uncertainty (UA) for both STICS and ORCHIDEE 14	  

are those selected by the screening analysis, allowing a reduction in the parameters 15	  

space hypercube dimensionality and therefore in the required computing resources. 16	  

Starting from the initial set of 17 and 50 parameters respectively for the screening of 17	  

ORCHIDEE and STICS parameters, the Morris algorithm result (see Section 3.1) 18	  

allows us to reduce the parameter numbers to 8 and 3 parameters for ORCHIDEE and 19	  

STICS, respectively.	  20	  

For the UA, we use Monte-Carlo methods, which are less computationally expensive 21	  

than variance-based approaches (Marino et al., 2008), making them a frequent choice 22	  

in environmental sciences (Poulter et al., 2010; Verbeeck et al., 2006; Zaehle et al., 23	  

2005). The Monte-Carlo sampling scheme used here is the stratified LHS, which is an 24	  

efficient scheme for generation of multivariate samples of statistical distributions 25	  

(McKay et al., 1979) In LHS, the range of each of the k parameters X1,X2, …Xk 26	  

included in the study is divided into N intervals of equal probability. One value is 27	  

randomly selected from each interval. The N values obtained for the X1 parameter are 28	  

then paired at random, without replacement, with the N values obtained for the X2 29	  

parameter, then to the N values obtained for the X3 parameter and so on until the kth 30	  

parameter. The procedure results in N sets of k parameters, or samples, that can be 31	  

used for input to the model. In this study, from the 11 parameters identified by the 32	  
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screening, the N value is set to 250 resulting in 250 simulations for exploring the 1	  

uncertainty around modeled biomass for each site.	  2	  

	  3	  

In order to get insights on the part of the uncertainty attributable to each of the two 4	  

models chained together, STICS and ORCHIDEE (fig.1), first, only the uncertainty 5	  

coming from ORCHIDEE parameters is evaluated (fig.1), secondly, only the 6	  

uncertainty propagated from STICS parameters (fig.1), and last, uncertainties 7	  

propagated from both ORCHIDEE and STICS parameters are considered together 8	  

through the chained model ORCHIDEE-STICS. 	  9	  

An important difficulty in the utilization of sampling-based UA methods is the lack of 10	  

literature about a priori probability distribution of most parameters, given the 11	  

dependency of output upon a priori assigned values (Marino et al., 2008) If most 12	  

studies rely on a thorough literature search and expert judgment (Medlyn et al., 2005; 13	  

Verbeeck et al., 2006; Wang et al., 2005), this approach might result in an 14	  

overestimation of the model output uncertainty due to combinations of extreme 15	  

parameters values that are not realistic and therefore excessively decrease the 16	  

estimated reliability of the models. Some studies have addressed this issue by trying 17	  

to rationalize the parameters ranges through benchmarking outputs (removing 18	  

parameter sets resulting in values for output variables outside of a given benchmark 19	  

range) or by prescribing hypothesized correlations between parameters (Poulter et al., 20	  

2010; Zaehle et al., 2005). Here, after a first estimation of uncertainty based on expert 21	  

opinion for the a priori parameters range (overestimation of uncertainty), we propose 22	  

a second approach to overcome the scarcity of information about parameters reference 23	  

distributions by reducing the parameters a priori range based on site-optimized values, 24	  

thus providing narrower and more realistic a priori ranges that are constrained by 25	  

observations (likely underestimation of uncertainty).	  26	  

For the first a priori estimation of parameters range, ranges and distributions are 27	  

assigned to parameters based on expert knowledge and previous parameterization 28	  

studies (Kuppel et al., 2012) and centered on their a priori values. The a priori ranges 29	  

prescribed using this approach are considered as overestimations of the likely ranges 30	  

for parameters’ values for sugar cane because they are adapted from studies in which 31	  

parameters’ ranges were assigned for plant functional types instead of a single crop as 32	  



	   12	  

is the case here and sometimes used for optimization studies therefore requiring wide 1	  

enough ranges within the model’s domain of applicability (Groenendijk et al., 2011; 2	  

Kuppel et al., 2012).  By using overestimated ranges for input parameters, we estimate 3	  

an upper bound for the value of the uncertainty on output variables.	  4	  

The second (site-constrained) a priori estimation is a refinement of the uncertainty 5	  

estimation based on the idea that the ‘real’ probability distribution of the parameters 6	  

can be approached by the distribution of optimal parameters over all the possible case 7	  

studies (sites, weather, management). It is of course not possible to determine the 8	  

model’s optimal parameters for an infinite number of eco-climatic and land-9	  

management conditions, but a sample of representative case studies can provide a 10	  

rough estimate of the parameters plausible range. Building on this hypothesis, the 11	  

model is calibrated independently at 7 sites using an iterative method, seeking to 12	  

constrain the uncertainty analysis with observation-based parameters ranges. For this, 13	  

we performed a Bayesian calibration of the model parameters, using a standard 14	  

variational method based on the iterative minimization of a cost function that 15	  

measures both the model data misfit as well as the parameters’ deviations from a prior 16	  

knowledge. The iterative scheme is described in (Tarantola, 1987) with the hypothesis 17	  

of Gaussian error on the observations and the parameters. At each site, parameter 18	  

values are varied iteratively until the best match between simulation and observation 19	  

is found. More details on the calibration results can be found in the Supporting 20	  

Information. We are aware that the optimization of the parameters at 7 sites only to 21	  

obtain a representative a priori range of the parameters distributions likely results into 22	  

an optimistic estimate of this range even though the sites chosen cover different 23	  

climatic, edaphic and management conditions making them well suited for applying 24	  

our method. This observations-constrained range is highly dependent on growing 25	  

conditions. When the model is applied to the context of climate change, these ranges 26	  

may then be out of their domain of significance and the first wider estimate of prior 27	  

parameters distribution, based on literature, must be preferred. 28	  

	  29	  

For both a priori parameters range estimations (expert judgment vs. site constrained), 30	  

when no parameter value appears to be more likely than another, a uniform a priori 31	  

uncertainty distribution is prescribed. When there is some level of confidence that the 32	  



	   13	  

a priori value is more likely, we use a beta distribution. This type of distribution is 1	  

often used for uncertainty analyses, because of its adjustable shape (parameterized 2	  

equation) yet having the advantage of bounded tails (Monod et al., 2006; Wyss and 3	  

Jorgensen, 1998). The successive analysis of both techniques provides an 4	  

improvement in the estimation of the uncertainty from the first (expert-judgment 5	  

based, likely too pessimistic) to the second (observation-based, perhaps too 6	  

optimistic) approach.	  7	  

	  8	  

2.5 Spatial	  sensitivity	  analysis	  (SA)	  9	  

The first step in the sensitivity analysis also consists in generating parameters 10	  

samples. The same parameters are considered for the SA as for the UA (section 2.4), 11	  

i.e. the 11 parameters (8 parameters from ORCHIDEE and 3 parameters from STICS) 12	  

selected by the screening analysis. 13	  

As opposed to the UA where all parameters are considered together for their effect on 14	  

the distribution of the harvested biomass output variable, the goal of the sensitivity 15	  

analysis is to rank the influence of parameters based on their impact on the biomass 16	  

and its spatial distribution obtained in the continental-scale 0.7° runs. The partial 17	  

correlation coefficient (PCC) measures the correlation between an output variable and 18	  

a parameter after the correlation with other parameters has been eliminated (Marino et 19	  

al., 2008). However, for monotonic but non-linear relationships, these measures 20	  

perform poorly and a rank transformation needs to be applied to the data first to 21	  

linearize the relationship. The correlation calculated between the rank-transformed 22	  

data is then called partial rank correlation coefficients (PRCC). PRCC has been found 23	  

to be an efficient indicator for the influence of parameters, because it is a measure of 24	  

the sensitivity of the output to parameters (Saltelli and Marivoet, 1990). The larger the 25	  

PRCC, the more important the parameter is with respect to the output variable. Here, 26	  

the relationship between modeled biomass on a grid, and parameters is diagnosed 27	  

through the calculation of the Partial Ranked Correlation Coefficients (PRCC) on 28	  

each grid point between the output and parameter assuming a monotonic behavior of 29	  

the model.	  30	  

The SA is implemented from the results of the 0.7° simulations over Brazil and 31	  

Australia (see fig.1 and section 3.5). In this regional sensitivity analysis, ORCHIDEE-32	  
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STICS is run for each region on a grid of 20 by 15 grid points and 13 by 20 grid 1	  

points respectively, driven by gridded climate forcing fields from the reanalysis 2	  

products ERA-Interim (Dee et al., 2011), with varying parameter values from a 3	  

sampling where only bounds and no distributions were assigned to the parameters. 4	  

The management information (date of planting, date of harvest, fertilization, 5	  

irrigation) and the soil properties (as described in Valade et al. (2013)) are assumed to 6	  

be uniform across each region and were defined as typical of each area. The a priori 7	  

bounds used for the parameters in the SA correspond to the first version of the 8	  

parameters ranges considered in the uncertainty analysis (i.e. derived from expert 9	  

knowledge). As cited by Wang et al. (2005), for sensitivity analyses, Bouman (1994) 10	  

advises to use parameters ranges as broad as possible within the limits of the model 11	  

validity domain. Once the parameters’ a priori bounds have been set, ensemble runs 12	  

are performed with all the parameter sets. From the distributions of input parameters 13	  

and output variables obtained at each pixel, a spatial distribution of PRCC is obtained, 14	  

which is interpreted in section 3.5 in terms of regional differences of each parameter 15	  

on modeled sugar cane yield.	  16	  

The interest of carrying out such a regional sensitivity analysis is that it provides maps 17	  

of the geographic patterns of the importance of each parameter, leading to a better 18	  

comprehension of the mechanisms behind the parameter-related model sensitivity. 19	  

These results can be very useful for planning purposes, for instance to quantify what 20	  

are the different factors that control sugar cane yield and ethanol production over a 21	  

large region under future climatic conditions as compared to present-day conditions.	  22	  

3 Results	  and	  discussion	  23	  

	  24	  

3.1 Screening	  25	  

From the Morris screening method, we obtain for each parameter two indices µ* and 26	  

σ, that measure the influence of each parameter and its degree of involvement in non-27	  

linearities and interactions with other parameters, respectively. We first made sure 28	  

that no parameter with a significant value for μ∗	  was above the line σ=2μ∗	  which 29	  

would imply that non-linearities and/or interactions would be so strong that the 30	  

uncertainty propagation from the parameter to the model output could not be clearly 31	  



	   15	  

established. None of our parameters selected for their significant values of μ∗	  was 1	  

above this line (Supporting information figure 2). From µ* and σ values, we establish 2	  

a ranking of the parameters by only considering parameters involved in limited 3	  

interactions and/or non-linearities (σ<2µ*) and then we rank the remaining parameters 4	  

based on their µ* index, a larger µ* being interpreted as a more influential parameter. 5	  

The Morris parameters ranks for ORCHIDEE and STICS are respectively shown in 6	  

Figure 5a and 5b where each radar plot corresponds to one model. The axes refer to 7	  

the parameters and the line colors to the sites. For STICS, for the sake of readability, 8	  

not all of the initially selected 50 parameters are represented on the radar plot but only 9	  

those parameters that pertain to the 10 top-ranked parameters at least at one site. The 10	  

maximum number of 10 parameters was fixed based on examination of Morris indices 11	  

µ* and σ at individual sites that only revealed 3 to 5 sensitive parameters each time. 12	  

The positions and roles in the model of the parameters identified as most important 13	  

are shown in Figure 3. Figure 4 gives more details, with the main equations through 14	  

which these parameters affect the output variables of STICS and of ORCHIDEE.	  15	  

	  16	  

The 3 most influential parameters of STICS (fig.3a) reflect the way STICS and 17	  

ORCHIDEE are chained (fig.3). Indeed, from the chained model structure, the 18	  

indirect impact of STICS parameters on harvested biomass occurs through their effect 19	  

on processes related to LAI, root growth and nitrogen stress, the only STICS variables 20	  

passed to ORCHIDEE for calculating biomass. This chaining of the models through 21	  

three variables is reflected in the identification of the 3 most important STICS 22	  

parameters, which control the daily maximum rate of foliage production 𝛿!"#!"#, the 23	  

growth rate of the root front,𝜅!""#  and the threshold of nitrogen nutrition index 24	  

𝐼𝑁𝑁!"#. 𝛿!"#!"# and 𝐼𝑁𝑁!"#parameters are both involved in LAI calculation. Indeed, 25	  

the LAI equation has four members describing four processes of the sugar cane 26	  

foliage development. First, the LAI-development (∆!"#!"#  in fig.4) describes the 27	  

potential LAI increase through the scaling of the daily maximum rate of foliage 28	  

production by a function of the development stage (𝑘!"#), and is logically directly 29	  

controlled by the value of parameter 𝛿!"#!"# . The second member in equation (*) 30	  

represents the temperature effect on LAI growth through the accumulation of degrees 31	  

above a temperature threshold (𝑇!"# in fig.3). The last two members of the equation 32	  

represent processes that can limit LAI development, competition for light between 33	  
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plants due to planting density (∆!"#!"#$in fig.4) and a limitation from trophic stress 1	  

emerging from competition between plant components for nitrogen based in 2	  

calculation of a nitrogen nutrition index limited by parameter 𝐼𝑁𝑁!"# . The root 3	  

growth rate 𝜅!""#has a less direct impact on LAI since it intervenes in the calculation 4	  

of the root front depth, which then impacts the availability of nitrogen and water and 5	  

therefore the stress status of the crop (impact on 𝐶!
!"#$% and 𝑊!in fig.4).	  6	  

	  7	  

The 8 most influential parameters that control harvested biomass in ORCHIDEE, are 8	  

identical for all sites except at the Colimaçons site (where only 7 parameters are 9	  

identified as influential by the Morris method). The Morris top ranked parameters of 10	  

ORCHIDEE control photosynthesis and water budget equations as well as respiration 11	  

processes (fig.4). Three of those (the minimum and optimal temperatures for 12	  

photosynthesis,  𝑇!"#, 𝑇!"# , the maximum rate of carboxylation 𝑉!"#$
!"# ) affect directly 13	  

the rate of carboxylation 𝑉! that is calculated from the maximum rate of carboxylation 14	  

weighted by a mean leaf efficiency and scaled by a limiting factor depending on the 15	  

optimum and minimum temperatures for photosynthesis. The stomatal conductance 16	  

𝑔! that links assimilation and transpiration is defined by the Ball-Berry equation (Ball 17	  

et al., 1987) as a function of assimilation and depends on the air relative humidity and 18	  

CO2 concentration, scaled by a slope factor, called the Ball-Berry slope (𝛽). The root 19	  

profile constant (𝜅!!") describes the exponential distribution of root density in the 20	  

soil and is involved in the definition of available water and root temperature. Finally, 21	  

the extinction coefficient (𝑘!"#) intervenes in an equation derived by Monsi and Saeki 22	  

(1953), similar to Beer’s law, which describes the attenuation of light with depth in 23	  

the canopy.	  24	  

	  25	  

Two ORCHIDEE parameters controlling autotrophic respiration also stand out, with 26	  

the maintenance respiration coefficient (𝛼!"#$%) and the fraction of biomass allocated 27	  

to growth respiration (𝑓!"#$%). The 𝑙𝑒𝑎𝑓!"#!"#$ parameter that is involved in the biomass 28	  

allocation also ranked high (5th most important) but only for one site and is therefore 29	  

not retained for the rest of the study.	  30	  

	  31	  
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For the chained model STICS-ORCHIDEE, the 11 most influential parameters show a 1	  

good agreement between sites for the most important parameters as seen on fig.5 2	  

where ranking lines overlap for most of the parameters. Building on the results of the 3	  

Morris screening analysis, we select the 8 top ranked parameters for ORCHIDEE and 4	  

3 for STICS that were revealed as influential for biomass for further uncertainty and 5	  

sensitivity analysis.	  6	  

	  7	  

	  8	  

	  9	  

	  10	  

3.2 Uncertainty	  analysis:	  Parameters	  controlling	  biomass	  11	  

uncertainty	  at	  a	  typical	  site	  	  12	  

In this section, we attribute the harvested biomass uncertainty to the uncertainty of the 13	  

ORCHIDEE vs. STICS parameters. The simulated biomass uncertainty is a function 14	  

of time during the growing season, and it differs between sites. In Figure 6, we show 15	  

the contributions of ORCHIDEE and STICS parameters respectively to the total 16	  

uncertainty for one typical site, Grafton, Australia, during the 1994-95 growing 17	  

season, which has climate conditions within the range of other sites. Fig.6 a-c displays 18	  

the normalized frequency distributions of simulated biomass obtained from ensemble 19	  

runs for three times in the growing season: 1) very early in the cycle in fig.6a, at 100 20	  

days after planting (DAP), 2) during the peak growing season in fig.6b, at 200 DAP 21	  

and 3) short before harvest in fig.6c, at 350 DAP. We distinguish between the 22	  

normalized frequency distributions of simulated biomass when considering the 23	  

uncertainty propagated from STICS parameters alone (green), ORCHIDEE 24	  

parameters alone (yellow), and from ORCHIDEE and STICS parameters together 25	  

(brown), along with their best-fit normal distributions overlaid. These distributions 26	  

were obtained by Monte Carlo LHS ensemble runs (section 2.4) with a sampling of 27	  

parameters of STICS alone, ORCHIDEE alone and of both models together. We 28	  

consider uncertainties starting from the time when biomass reaches 50 gC.m-2 in order 29	  

to discard the emergence phase during which biomass is very low and uncertainties 30	  

are therefore not significant.	  31	  
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	  1	  

At 100 DAP (Fig 6a), the uncertainty distribution of biomass related to ORCHIDEE 2	  

parameters U(O) spans a slightly larger range than the distribution related to STICS, 3	  

U(S), and it has more extreme values. The U(O) distribution is symmetrical around 4	  

the mean value, with a standard deviation of 86.9 gC.m-2. The U(S) distribution is 5	  

non-symmetric, skewed towards larger values of biomass, and it has a slightly smaller 6	  

standard deviation (76.5 gC.m-2) than that of U(O). Combining U(O) and U(S) in 7	  

Monte Carlo runs by varying the parameters of both models at the same time gives the 8	  

total uncertainty distribution, U(O+S), shown in brown in fig.6. This distribution has 9	  

more extreme values and a higher standard deviation (112.0 gC.m-2), i.e. U(O+S) > 10	  

U(O) + U(S).	  11	  

	  12	  

At 200 DAP (Fig 6b), and later at 350 DAP (Fig 6c), the picture has changed. First, all 13	  

uncertainties distributions are wider than at 100 DAP. Secondly, the means of U(O) 14	  

and U(S) are no longer in agreement, with the asymmetric U(S) distribution being 15	  

even more shifted towards high values of the harvested biomass. The reason for this 16	  

shift is that among the variables transmitted from STICS to ORCHIDEE in the chain 17	  

of models, the only one that can act to increase the biomass calculated by ORCHIDEE 18	  

in the later phase of the growing season, near 350 DAP, is LAI. This is because a 19	  

higher LAI will result into increased photosynthesis and therefore biomass in 20	  

ORCHIDEE. However, passed a certain threshold, the LAI impact saturates when the 21	  

foliage is sufficient for all incoming light to be captured, and therefore, uncertainty on 22	  

the STICS parameters that impact LAI will not increase the uncertainty of biomass 23	  

any longer. Unlike LAI, the nitrogen stress and root profile variables controlled by the 24	  

parameters of STICS continue to act as limiting factors on biomass throughout the 25	  

peak and late growing season. The saturation of the biomass uncertainty associated 26	  

with STICS parameters is stronger at 200 DAP than at 300 DAP, when biomass 27	  

increase has slowed down and the role of LAI for driving biomass is less important. 	  28	  

	  29	  

On fig.6d, the total uncertainty U(O+S) is given for the reference simulation (with 30	  

parameters at their maximum likelihood values, red line) and the uncertainty on 31	  

harvested biomass can be defined as a percentage of the harvested biomass in the 32	  
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reference simulation. For the Grafton site, at harvest, the overall uncertainty is 26.%. 1	  

The relative contributions of ORCHIDEE and STICS to the total uncertainty, 𝛼! and 2	  

𝛼! respectively, are defined by 𝛼! =
!(!)
!(!!!)

,,	  𝛼! =
!(!)

!(!!!)
. The evolution of these 3	  

contributions to the total uncertainty is shown in fig.6e. We can see in this example 4	  

that 𝑈(𝑂) > 𝑈(𝑆) during the entire growing season, but with a decrease of 𝑈(𝑆), and 5	  

an increase of   𝑈(𝑂) such that the increase in biomass uncertainty seen on fig.6d 6	  

becomes increasingly dominated by uncertain ORCHIDEE parameters. The 7	  

progressive increase in the weight of ORCHIDEE parameters uncertainties is due to 8	  

the reduction in the role played by LAI for biomass increase along the growing 9	  

season. Indeed, if early in the season the foliage is crucial to allow photosynthesis and 10	  

carbon allocation, later in the cycle, other processes become important as well and 11	  

passed a certain LAI for which all incoming light is captured, it might not even play a 12	  

role anymore and then the STICS parameters only impact biomass accumulation 13	  

through nitrogen stress index and root depth.	  14	  

 	  15	  

3.3 Uncertainty	  analysis:	  role	  of	  ORCHIDEE	  vs.	  STICS	  parameters	  in	  16	  

controlling	  biomass	  uncertainty	  at	  7	  sites	  	  17	  

Table 3 summarizes the results of the overall parametric uncertainty analysis at the 7 18	  

sites, including Grafton. The total uncertainty U(O+S) ranges between 25.5% of 19	  

biomass at Piracicaba, Brazil during 2004-05 and 44.26% of harvested biomass at 20	  

Tirano, La Réunion in 1998-99 yielding an average uncertainty on biomass at harvest 21	  

due to uncertain parameter values of the chained model ORCHIDEE-STICS of 34.0% 22	  

of harvested biomass across the 7 sites, in the order of previous results on different 23	  

variables in similar studies using process-based models such as (Dufrêne et al., 2005) 24	  

who found an uncertainty of 30% on modeled NEE for a forest sites in France with 25	  

the CASTANEA model. 	  26	  

	  27	  

As for the ORCHIDEE vs. STICS relative contributions to the uncertainty of 28	  

simulated biomass at all sites, the results at each site are not identical but display a 29	  

similar general pattern shown by figure 7. For all sites, the ORCHIDEE parameters 30	  

contribution to total uncertainty increases during the cycle, or remains approximately 31	  
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constant for Ingham in 1992-93, and increases during the growing cycle to dominate 1	  

entirely the total uncertainty at the end of the cycle compared to STICS parameters. 2	  

The STICS contribution to overall uncertainty decreases during the growing season to 3	  

reach a minimum by the end of the growing season. For sites Piracicaba during 2004-4	  

05, Tirano in 1998-99 and Colimaçons during 1994-95, during the beginning of the 5	  

cycle the U(S) is even larger than U(O). The results for Ayr in 1991-92 display a less 6	  

clear pattern. Indeed, at the end of the cycle, the contributions of ORCHIDEE and 7	  

STICS to the total uncertainty are almost equal,due to an increase in STICS 8	  

contribution during the second half of the cycle. This result confirms a hypothesis 9	  

made in Valade et al. (2013) where the difficult calibration of LAI at this site was 10	  

attributed to the simulation by STICS of an important stress. Indeed if a large stress is 11	  

simulated by the phenological module, this can impede ORCHIDEE processes of 12	  

biomass growth and therefore increases the weight of STICS parameters with respect 13	  

to ORCHIDEE ones.	  14	  

	  15	  

3.4 Uncertainty	  analysis:	  constraining	  uncertainty	  from	  sites	  16	  

optimization	  	  17	  

Optimizing the 11 ORCHIDEE-STICS parameters selected from the screening 18	  

analysis at 7 sites leads to a reduction of the width of the a priori uncertainty 19	  

distribution of the parameters (Table 2). Carrying out the same uncertainty analysis 20	  

with a narrower uncertainty range of parameters (thanks to their site calibration) leads 21	  

to an important reduction of uncertainties of biomass both for the STICS and 22	  

ORCHIDEE components of uncertainty. This can be seen by comparing Figure 6 23	  

(initial range of parameters) with figure 8 (narrower range after parameters calibration 24	  

at the sites). For site Grafton during 1994-95 for example, U(O+S) gets reduced from 25	  

26% to 17% of the reference harvested biomass, U(O) from 24% to 15% and U(S) 26	  

from 14% to 10%. Figure 9 and Table 3 (bottom section) show the uncertainty 27	  

contributions and overall uncertainty estimates for the 7 sites after observation-based 28	  

reduction of the a priori uncertainty on parameters. The overall parametric uncertainty 29	  

of biomass defined as the 1-sigma standard deviation of the (O+S) distribution has 30	  

thus been reduced to 21% in average, to 11.48% when attributed to STICS alone, and 31	  

to 17.15% when attributed to ORCHIDEE alone, (Table 3).	  32	  
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	  1	  

The ORCHIDEE and STICS contributions to the total uncertainty keep the same 2	  

general pattern as with the initial parameters uncertainty distribution, with a 3	  

domination of ORCHIDEE parameters in the uncertainty towards the end of the 4	  

growing season (fig.9). Compared with the first uncertainty budget with expert-based 5	  

parameters uncertainties (fig.8), there is generally a slight decrease in the STICS 6	  

contribution at the end of the season.  7	  

	  8	  

We have thus established full uncertainty budgets for the two components of the 9	  

ORCHIDEE-STICS chain of models, which has revealed variations in the uncertainty 10	  

in the biomass simulation from site to site. The next step is to discriminate between 11	  

the different parameters the ones that contribute most to the overall uncertainty 12	  

through a sensitivity analysis at regional scale. 	  13	  

3.5 Spatial	  sensitivity	  analysis:	  sensitivity	  of	  sugar	  cane	  yields	  to	  the	  14	  

model	  parameters	  for	  Brazil	  and	  Australia	  15	  

The overall parametric uncertainties have been quantified at 7 sites and attributed to 16	  

either STICS or ORCHIDEE. The sensitivity analysis (SA) in this section will go a 17	  

step further and leads to discriminate the different parameters that contribute to the 18	  

spatial distribution of uncertainty over the two regions considered. This sensitivity 19	  

analysis is performed at regional scale because from the previous section, we have 20	  

seen that the uncertainty in the biomass simulation varies from site to site. 	  21	  

	  22	  

Ensemble runs at regional scale were realized over Brazil and Australia each with 23	  

different value combinations for the 11 parameters previously selected through the 24	  

Morris screening analysis (Table 1). The Partial Rank Correlation Coefficients 25	  

(PRCC) were then calculated for each pixel in each of the two regions (see section 26	  

2.5), and the SA results are discussed for two dates during the growing season, 200 27	  

and 350 days after planting (DAP). The SA results express the strength of the 28	  

relationship between an uncertain parameter and the simulated biomass at harvest at 29	  

each pixel. The statistical significance of the PRCC calculated for each grid cell is 30	  

tested with the associated p-values, and non-significant PRCC are removed (p-31	  
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value<0.05). The first date 100 DAP examined for site scale UA studies (section 2.3) 1	  

is not shown here, because no statistical significance was found in the correlations 2	  

between the parameters and the harvested biomass at 100 DAP. Then, the pixels 3	  

statistically significant PRCC calculated for each parameter can be analyzed both in a 4	  

geographical projection (latitude, longitude) (fig. 11 & 12, columns 1-2 and 4-5) and 5	  

in a (Temperature, Precipitation) climatic space projection (fig 11 & 12, columns 3 6	  

and 6). The regional sensitivity analysis thus carried out for sugar cane growing areas 7	  

in Brazil and Australia shows the magnitude, spatial distribution and climatic 8	  

dependency of the sensitivity of harvested biomass to the 11 parameters previously 9	  

selected through the Morris screening analysis (Table 2).	  10	  

	  11	  

Across both regions in Brazil and Australia, we find that the sensitivity of biomass to 12	  

the model parameters is not uniformly distributed. This means that the simulated yield 13	  

depends on different parameters within different parts of the same region. This result 14	  

shows that applying a model at one site to determine the most important parameters, 15	  

and generalizing its conclusion across a region generates biased conclusions. 16	  

Considering only the first most important parameter in each pixel (fig. 10), we can see 17	  

that early in the cycle (200 DAP, Figure 10a) four parameters dominate the spatial 18	  

distribution of the U(O+S) uncertainty of biomass at 200 DAP, both over Brazil and 19	  

Australia. These parameters are three ORCHIDEE parameters involved in the 20	  

photosynthesis process, the minimum and optimum temperature for photosynthesis 21	  

𝑇!"#, 𝑇!"# , and the maximum rate of carboxylation  𝑉!"#$
!"#  , and one parameter from 22	  

STICS  𝛿!"#
!"#, defining the maximum rate of increase of LAI and only appearing in 23	  

the Australian region. In Brazil, the parameter 𝑉!"#$
!"# is the first most important 24	  

parameter for 93% of the area, whereas the optimum and minimum photosynthesis 25	  

temperatures parameters only dominate in respectively 3 and 4% of the area. In 26	  

Australia, the parameters’ domination is more balanced with 37.5% for each of 27	  

𝑉!"#$
!"# and 𝛿!"#!"#and 25% for 𝑇!"#.	  28	  

Later in the growing season (350DAP, fig.10b), consistently with the results of the 29	  

site-scale uncertainty analysis, the influence of the STICS parameters  decreases until 30	  

no STICS parameters appear any longer as a dominant parameter in any of the 31	  

regions. At this later stage in the season, two parameters stand out as explaining most 32	  
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of the uncertainty in most pixels of both regions,  𝑉!"#$
!"#  and 𝑇!"#. In Brazil, 𝑉!"#$

!"# is 1	  

still the most sensitive parameter for most of the region, but 𝑇!"#disappeared and the 2	  

area dominated by 𝑇!"#expanded and now covers the cooler area of the southeast 3	  

coastal zone, which is likely to result from the growing calendar of sugarcane in 4	  

Brazil since the later part of the growing season takes place during winter in this 5	  

region. In Australia, the area dominated by  𝑉!"#$
!"# expanded into most of the region 6	  

and now covers 83% of the area. In the coolest pixels, the soil-related parameters 7	  

appear with the two root profile parameters from STICS and from ORCHIDEE, 𝜅!""# 8	  

and 𝜅!!". 9	  

	  10	  

Figures 11 and 12 focus on the values of the PRCC for each parameter as well as their 11	  

spatial distribution. Their projection in a Temperature-Precipitation space for a given 12	  

time (fig.11 for 200 DAP, fig.12 for 350 DAP) give more insights on the dependency 13	  

of the sensitivity to the climatic conditions along the growing cycle. As an example, 14	  

the sensitivity of the simulated biomass to 𝑇!"#is highly sensitive to the average 15	  

temperature of the location. At low-temperature sites, where temperature is a limiting 16	  

factor for crop growth (below 17˚C), the PRCC is higher than 0.8, whereas at high-17	  

temperature sites (above 22˚C) the PRCC is below 0.3. Sites with temperatures above 18	  

25˚C do not even show significant correlations (grey symbols on the scatter plot).	  19	  

	  20	  

For the parameter  𝜅!!", which describes the root profile of the cane (inverse of root 21	  

depth), the dependency is most obvious on precipitation amount. For annual 22	  

precipitations above 2500mm, no significant correlation is found..	  23	  

	  24	  

Comparing the regional sensitivities at two times in the growing season shows again 25	  

the decrease in the importance of STICS parameters whereas all of most important 26	  

ORCHIDEE parameters have larger RPCC than earlier in the season.	  27	  

	  28	  



	   24	  

4 Concluding	  remarks	  1	  

In the perspective of applying spatially explicit mechanistic vegetation models such as 2	  

ORCHIDEE-STICS to biofuel yield simulations we have sought the quantification 3	  

and understanding of parametric uncertainty propagation in the model, both at site 4	  

level and at sub-continental scale over two large regions, Australia and Brazil. For 5	  

this, a rigorous analysis of the uncertainty budget of simulated sugar cane biomass has 6	  

been established, using a step by step tracking of uncertainty in the model.	  7	  

The main parameters from the two chain components of the model responsible for 8	  

most of the uncertainty propagation have been identified through a Morris screening 9	  

analysis. For the ORCHIDEE carbon, water and energy model, the most influential 10	  

parameters are those involved in photosynthesis equations, 𝑇!"#, 𝑇!"#,   𝑉!"#$
!"# , the 11	  

radiation interception parameter 𝑘!"#, the root profile constant  𝜅!!", the parameters 12	  

for respiration, slope of the Ball-Berry relation   𝛽 , maintenance and growth 13	  

respiration parameters 𝑓!"#$% and 𝛼!"#$%. For the STICS model, the most influential 14	  

parameters are those responsible for simulation of phenology, nitrogen and water 15	  

stress. The parameters describing the maximum rate of carboxylation, the maximum 16	  

growth rate of the root front and the threshold for nitrogen stress have been found to 17	  

have the greatest role. The parameters identified are closely related to the structure of 18	  

the coupling since the key variables transmitted from STICS to ORCHIDEE each 19	  

convey one key parameter.	  20	  

We used two approaches for estimating the total uncertainty propagated from the 21	  

parameters into the model by assigning uncertainties on parameters with two methods, 22	  

one ‘pessimistic’, in which a-priori parameter uncertainty bounds are set based on 23	  

expert judgment, and one optimistic where smaller uncertainty is derived by an 24	  

optimization of the model parameters at several sites thus providing a smaller, 25	  

arguably more realistic, a-priori uncertainty range.	  26	  

We found that all these parameters together contribute to an overall uncertainty of 27	  

21% on sugar cane biomass simulations with an agro-LSM model and that this 28	  

amount is variable among sites with different climatic, edaphic and management 29	  

situations. We also analyzed this uncertainty separately for each component of the 30	  

model and found that whatever estimate chosen for the parameters uncertainty, by the 31	  

end of the growing season, the uncertainty propagated from the phenology module 32	  
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STICS decreases and the overall uncertainty is almost totally explained by the 1	  

ORCHIDEE uncertainty. The lower uncertainty from STICS parameters compared to 2	  

ORCHIDEE ones is likely related with the lower number of processes solved by 3	  

STICS in its configuration with ORCHIDEE, and to some extent to the lower number 4	  

of parameters propagating their uncertainties. The decrease in the weight of the 5	  

STICS’ parameters to the overall uncertainty is linked to the canopy closure (LAI 6	  

sufficient to capture all incoming light) and would therefore probably happen at a 7	  

different timing in the growing season for different crops. For example, soybean 8	  

experiences a later canopy closure and would probably show a later diminution of the 9	  

STICS contribution to overall uncertainty, therefore remaining relatively high by the 10	  

end of the cycle. 	  11	  

The overall origin of uncertainty has then been diagnosed in even more detail through 12	  

a regional sensitivity analysis allowing the identification of the parameter for which 13	  

harvested biomass is most sensitive for each pixel within regions of Australia and 14	  

Brazil. We revealed a strong heterogeneity of the results based on climatic conditions 15	  

and also variability in time that confirms the results of the uncertainty analysis, by 16	  

showing a decrease in the importance of the STICS parameters along the growing 17	  

season. 	  18	  

We believe that our results for the sugar cane crop simulated with the model 19	  

ORCHIDEE-STICS are relevant to other agro-LSM with different crops. All these 20	  

results prove the importance of establishing clear uncertainty budgets for highly 21	  

parameterized models such as agro-LSM, especially when applying these models to 22	  

answer questions related to political decisions such as biofuels burning topics.	  23	  

As an example, combining our optimistic uncertainty estimation with the estimations 24	  

from (Lapola et al., 2009) for irrigated sugar cane (obtained with the model LPJml, 25	  

very similar to ORCHIDEE-STICS), we can evaluate the range assorted with their 26	  

estimation of land requirements to fulfill the demand in ethanol in Brazil. Similarly to 27	  

our study they use a multi-continental approach, focusing on Brazil and India. They 28	  

simulate with a single parameterization the sugarcane productivity over both 29	  

considered countries, spanning a wide range of climatic conditions. They found a 30	  

mean yield of 68.8 t/ha over Brazil and 73.3 t/ha over India, and conclude that to 31	  

fulfill government targets, the sugar cane areas would need to expand by 2.8 million 32	  

hectares in Brazil and 1 million hectare in India. Because the yield estimates derived 33	  
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in (Lapola et al., 2009) are retrieved with an global agro-LSM parameterized for 1	  

global applications and used in a range of climatic conditions (whole Brazil and 2	  

India), we make the hypothesis that our uncertainty calculation is applicable to the 3	  

LPJml results. We can then take into account the parametric uncertainty of the model 4	  

and translate the potential mean production into a range of [54-83t/ha] for Brazil and 5	  

[58-89t/ha] for India. The land requirements when including parameters uncertainty 6	  

would then becomes [2.6– 3.9 million hectares],for Brazil and [0.9 – 1.4 million 7	  

hectares] for India. To go further in the application of this result, and assuming that 8	  

sugar cane expansion results in deforestation through direct or indirect land use 9	  

change, we can translate the land expansion of sugar cane for biofuels into carbon 10	  

emissions from deforestation. Several estimates of carbon emissions associated with 11	  

conversion of tropical forest to croplands have been published and their results span a 12	  

large range revealing the large uncertainties in this area (BSI, 2008; Cederberg et al., 13	  

2011; Searchinger et al., 2008) Discussing the uncertainty on this estimate is beyond 14	  

the scope of this paper so we will only consider the value from (Searchinger et al., 15	  

2008), of 604tCO2eq/ha. Using this conversion factor, the expansion of sugar cane 16	  

calculated by (Lapola et al., 2009) would result in CO2eq emissions of 1,68GtCO2eq 17	  

whereas including the parametric uncertainty of the model we obtain a range of 1,6 to 18	  

2,4 GtCO2eq provoked by Brazilian government's ethanol targets with our calculation 19	  

of uncertainty.	  20	  

With the choice of the study from Lapola et al. (2009) to apply our uncertainty 21	  

estimates on, we favored the closeness of the models over the full consistency of the 22	  

methodologies. If the primary goal had been to calculate estimates of uncertainty of 23	  

land requirements in the specific region of Brazil, we would have constrained our 24	  

parameters ranges for conditions of this region, which would have resulted in lower 25	  

uncertainty ranges for area requirements. However, we want to stress that agro-LSMs 26	  

like ORCHIDEE-STICS or LPJml are designed for global studies and their 27	  

parameters are therefore supposed to cover the full range of climatic conditions even 28	  

when they are used for regional applications. This quick application of our uncertainty 29	  

calculation proves how important it is to consider the uncertainty when addressing 30	  

issues aimed at decision-makers.	  31	  
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Figure 1: flowchart of the analysis carried out in this study. The first step is the 1	  

separate screening for 7 sites of the STICS and ORCHIDEE parameters. The selection 2	  

of parameters obtained from the screening are then used for two uncertainty analysis, 3	  

one with the same parameters ranges of variation as for the screening, the other with 4	  

parameters ranges of variation constrained by the optimization of the model at 7 sites. 5	  

Each uncertainty analysis is decomposed in three parts, one including only 6	  

ORCHIDEE parameters, one including only STICS parameters and one including 7	  

parameters from both ORCHIDEE and STICS. Finally a sensitivity analysis is carried 8	  

out for two small regions in Australia in Brazil for all parameters together. 9	  

10	  
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 1	  

Figure 2: Spatial distribution of the sites (dots) and regions (dashed rectangles) used 2	  

in this study overlaid on a map of the distribution of sugar cane growing areas 3	  

indicated in green. 4	  

  5	  
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Figure 3: Structure of the ORCHIDEE-STICS chain model. STICS calculates the crop 1	  

phenology, water and nitrogen requirements and passes LAI, root profile, irrigation 2	  

and Nitrogen nutrition index to ORCHIDEE. ORCHIDEE consists in the coupling of 3	  

two module. SECHIBA simulates the photosynthesis process, water and energy 4	  

budgets, STOMATE is a carbon module and calculates carbon fluxes and to the 5	  

atmosphere (respiration) and carbon accumulation in the carbon pools (biomass 6	  

compartments, litter, soil).7	  

 8	  

 9	  

  10	  
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 1	  
Figure 4: Main parameters for simulation of sugar cane yield with ORCHIDEE-STICS 2	  

with the equations in which they are involved. 3	  

  4	  
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 1	  
Figure 5: Parameters rankings derived from the Morris screening analysis for STICS 2	  

parameters (a) and ORCHIDEE parameters (b) for 7 sites (color lines). Each axis of 3	  

the radar plot corresponds to the rank of a parameter, the lower the rank, the more 4	  

important the parameter. 5	  
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 1	  
Figure 6 : Uncertainty analysis for the site Grafton 94-95. (a-c) probability 2	  

distributions of harvested biomass simulated after parameters uncertainty (from 3	  

STICS:green, from ORCHIDEE: yellow, from ORCHIDEE+STICS: brown) has been 4	  

propagated into the model. (d) reference simulation of harvested biomass (red) and 5	  

uncertainty from ORCHIDEE, STICS, ORCHIDEE+STICS. (e) Contribution (%)of 6	  

ORCHIDEE (yellow) and STICS (green) to the total uncertainty (brown) over the 7	  

length of the growing season. 8	  

9	  
  10	  
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Figure 7 : Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total 1	  

uncertainty (brown) over the length of the growing season for 7 sites. 2	  

 3	  
 4	  

  5	  
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Figure 8: Uncertainty analysis for the site Grafton 94-95 after parameters uncertainty 1	  

ranges have been constrained through optimization at 7 sites. (a-c) probability 2	  

distributions of harvested biomass simulated after parameters un- certainty (from 3	  

STICS: green, from ORCHIDEE: yellow, from ORCHIDEE+STICS: brown) has been 4	  

propagated into the model. (d) reference simulation of harvested biomass (red) and 5	  

uncertainty from ORCHIDEE, STICS, OR- CHIDEE+STICS. (e) Contribution (%) of 6	  

ORCHIDEE (yellow) and STICS (green) to the total uncertainty (brown) over the 7	  

length of the growing season. 8	  
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 1	  
Figure 9: Contribution (%) of ORCHIDEE (yellow) and STICS (green) to the total 2	  

uncertainty (brown) over the length of the growing season for 7 sites after parameters 3	  

uncertainty ranges have been constrained through optimization at 7 sites. 4	  

5	  
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 1	  
Figure 10: Spatial distribution of the most influential parameters for the simulation of 2	  

harvestable biomass for two milestones during the growing season, 200 days after 3	  

planting (DAP) and 350DAP 4	  

  5	  
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 1	  
Figure 11: Sensitivity of ORCHIDEE-STICS to its main parameters at 200 days after 2	  

planting, as measured with Partial Ranked Correlation Coefficients (PRCC). The 3	  

color indicates the strength of the relation between the parameter and the harvestable 4	  

biomass, which is represented spatially (columns 1,2,4,5) and in a (Temperature, 5	  

Precipitation) referential (columns 3,6). 6	  

7	  
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 1	  
  2	  
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Figure 12: Sensitivity of ORCHIDEE-STICS to its main parameters at 350 days after 1	  

planting, as measured with Partial Ranked Correlation Coefficients (PRCC). The 2	  

color indicates the strength of the relation between the parameter and the harvestable 3	  

biomass, which is represented spatially (columns 1,2,4,5) and in a (Temperature, 4	  

Precipitation) referential (columns 3,6). 5	  
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 1	  

Table 1: Description of climate and management for the sites used in this study in 2	  

Australia (Ayr, Ingham, Grafton), Brazil (Piracicaba) and La Runion (Colimaons, 3	  

Tirano). 4	  

 
Planting and harvest dates 

Mean annual 
precipitation 

Average 
temperature irrigation Fertilization 

Ayr  4/19/1991 8/13/1992 964 23.4 irrigated no 
Ayr 4/22/1992 8/13/1993 560 23.6 irrigated yes 
Grafton 9/28/1994 9/19/1995 768 19.6 irrigated yes 
Ingham 7/23/1992 10/21/1993 1294 24.2 irrigated yes 
Piracicaba 10/29/2004 9/26/2005 1230 21.6 irrigated   
Colimacons 8/3/1994 12/1/1995 989.5 19 rainfed yes 
Tirano 11/26/1998 11/26/1999 813 22.34 irrigated yes 
  5	  
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 1	  

Table 2: List of parameters from STICS and ORCHIDEE included in each step of the 2	  

analysis with their ranges of variation. 3	  

 

 

 

expert judgment 
based ranges 

Uncertain
ty 

analysis 
distributi

on 
Observations 

constrained ranges 
 STICS  

	  

Water 
budget 

absolute value for stomatic 
closure potential 

psisto 5 15       
Absolute value for start of 
reduction in cell expansion psiturg 1 5       

Initial 
condition

s 

Table of initial humidity 
levels in 5 soil horizons for 

fine soil, % weighted 

Hinitf1 11 22       
Hinitf2 11 22       
Hinitf3 10 21       

Table of initial quantities 
of nitrogen in the 5 siol 

horizons for fine soil 

Ninitf1 0 30       
Ninitf2 0 30       
Ninitf3 0 30       

Biomass 
conversio

n 

Relative age of fruit when 
rate of growth is maximum afpf 0.15 0.5       
Maximum number of set 

fruits per inflorescence and 
by degree.day afruitpot 0.0015 0.2       

Maximum daily allocation 
of assimilates towards 

fruits allocamx 0.63 0.86       
Rate of maximum growth 

as a proportion of 
maximum fruit weight bfpf 1 10       

Radiative effect on 
conversion efficiency coefb 0.0015 0.0815       

Duration of growth of a 
fruit from setting to 

physiological maturity dureefruit 2850 3000       
Maximum growth 

efficiency during juvenile 
phase efcroijuv 1.7 2.3       

Maximum growth 
efficiency during grain 

filling phase efcroirepro 2 6       
Maximum growth 
efficiency during 
vegetative phase efcroiveg 3.2 6       

Number of age groups of 
fruits for fruit growth nboite 12 25       
Maximum weight of a 

grain (% water) pgrainmaxi 1200 2000       
Fraction of senescent 

biomass ratiosen 0 1       
Quantity of biomass 

exploited during the cycle remobil 0.728 0.92       
Development range 

between DRP and NOU 
stages sdrpnou 552.5 747.5       

Threshold to calculate 
trophic stress on LAI splaimin 0 0.3       

Time between emergence 
and senescence stlevsenms 400 800       
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(degree.day) 
Cumulated development 

units allowing germination stpltger 50 200       
Optimum temperature for 

growth in biomass teopt 15 34.4       
Optimum temperature for 

growth in biomass if 
plateau teoptbis 35 50       

Rate of increase in the 
nitrogen harvest index vitirazo 0.0085 0.0115       

Develop
ment 
stages 

Cumulated development 
units between AMF and 

LAX stamflax 1000 2100       
Cumulated development 
units between LEV and 

AMF stlevamf 50 400       
Cumulated development 
units between LEV and 

DRP stlevdrp 1000 1740       
Maximum threshold 

temperature for 
development tdmax 28 40       

Minimum threshold 
temperature for 

development tdmin 10 14       
Radiation 
intercepti

on 

Coefficient of extinction of 
PAR in plant cover 

extin 0.424 0.699       

Foliage 

Compensation between 
number of stems and 

density of plants adens -1 -0.2       
Minimum density as from 
which there is competition 

between plants for leaf 
growth bdens 2 10       

Maximum rate of 
production of leaf surface 

area dlaimax 0.0002 0.0015 uniform 0.00022 0.0011 
Coefficient of sink strength 

of vegetative organs sbv 127.5 172.5       
Maximum temperature for 

growth tcmax 35 42       
Minimum temperature for 

growth tcmin 10 14       
Stress threshold from 

which there is an effect on 
the LAI tutressmin 0 1       

Mineraliz
ation 

Organic nitrogen content in 
moisture soil horizon Norg 0.05 0.2       

Reference temperature for 
soil mineralization tref 15 27       

Roots 

Growth rate of root front croirac 0 0.2 uniform 0.07 0.092 
Depth of tillage zlabour 17 23       

Depth at which root 
density is reduced by half 

compared with surface zpente 24 110       
Maximum depth of root 

profile zprlim 111 140       

Soil 
Thickness of third soil 

horizon epc3 5 60       

Water/Nit
rogen 
stress 

Nitrogen absorption rate by 
the plant’s roots absodrp 0 1       

Minimum INN value 
possible for the crop INNmin 0 0.5 uniform 0.3 0.3 
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 ORCHIDEE  
  

Allocatio
n 

 f_fruit 0.05 0.5       
Maximum LAI per PFT lai_max 3 9       
Average critical age for 

leaves leaf_age_crit 30 200       
Upper bounds for leaf 

allocation max_lto_lsr 0.25 0.5       
Lower bounds for leaf 

allocation min_lto_lsr 0.05 0.24       
Root allocation R0 0.05 0.5       

Sapwood allocation S0 0.05 0.5       

Photosynt
hesis 

Extinction coefficient ext_coef 0.5 0.9 uniform 0.5 0.72 
Slope of relationship 

between assimilation and 
stomatal conductance  gsslope 7 11 beta(2,2) 7.7 9.5 
Temperature at which 

photosynthesis is 
maximal tphoto_max 30 45       

Temperature at which 
photosynthesis is minimal 

tphoto_min_
c 12 19 uniform 12 16.7 

Temperature at which 
photosynthesis is optimal tphoto_opt 24 36 uniform 24 36 
Maximum carboxylation 

rate vcmax_opt 40 100 beta(2,2) 64 81.3 

Respirati
on 

Fraction of biomass 
available for growth 

respiration 
frac_growth

resp 0.2 0.5 beta(2,2) 0.23 0.3 
Slope of the relationship 

between temperature and 
maintenance respiration 

maint_resp_
slope1 0.08 0.16 beta(2,2) 0.11 0.12 

Water 
budget 

Root profile to determine 
soil moisture content 

available to plants humcste 0.8 7.2 uniform 3.2 4.1 
  1	  
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 1	  

Table 3: Uncertainty associated with STICS, ORCHIDEE, or ORCHIDEE+STICS 2	  

parameters uncertainties expressed as percentage of the reference harvested biomass 3	  

for each site and for each of the two uncertainty analysis. 4	  

 

 

Total 
Uncertainty             

(% of observed 
value) 

ORCHIDEE 
Uncertainty     

(% of observed 
value) 

STICS 
Uncertainty           

(% of observed 
value) 

Expert-based 
parameters' 

uncertainties 

Ayr 91-92 35.11 20.43 20.73 
Ayr 92-93 27.21 25.26 9.31 

Ingham 92-93 38.60 31.42 21.04 
Grafton 94-95 26.05 23.92 14.07 
Piracicaba 04-

05 25.49 23.36 14.00 
Colimacons 

94-95 41.21 41.87 18.61 
Tirano 98-99 44.26 36.80 30.61 

 
    

Optimization-based 
parameters' 

uncertainties 

Ayr 91-92 31.20 14.01 25.64 
Ayr 92-93 15.84 15.60 4.58 

Ingham 92-93 21.66 22.35 9.19 
Grafton 94-95 16.84 15.25 9.81 
Piracicaba 04-

05 14.67 14.80 5.84 
Colimacons 

94-95 21.31 20.01 10.28 
Tirano 98-99 22.26 18.06 15.03 

	  5	  
	  6	  


