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Abstract

We describe development and validation of a tangent linear model for the High-Order
Method Modelling Environment, the default dynamical core in the Community Atmo-
sphere Model and the Community Earth System Model that solves a primitive hydro-
static equation using a spectral element. A tangent linear model is primarily intended to5

approximate the evolution of perturbations generated by a nonlinear model, provides
a computationally efficient way to calculate a nonlinear model trajectory for a short
time range, and serves as an intermediate step to write and test adjoint models, as the
forward model in the incremental approach to 4-D-Var, and as a tool for stability anal-
ysis. Each module in the tangent linear model (version 1.0) is linearized by hands-on10

derivations, and is validated by the Taylor–Lagrange formula. The linearity checks con-
firm all modules correctly developed, and the field results of the tangent linear modules
converge to the difference field of two nonlinear modules as the magnitude of the ini-
tial perturbation is sequentially reduced. Also, experiments for stable integration of the
tangent linear model (version 1.0) show that the linear model is also suitable with an15

extended time step size compared to the time step of the nonlinear model without re-
ducing spatial resolution, or increasing further computational cost. Although the scope
of the current implementation leaves room for a set of natural extensions, the results
and diagnostic tools presented here should provide guidance for further development
of the next generation of the tangent linear model, the corresponding adjoint model,20

and 4-dimensional variational data assimilation, with respect to resolution changes and
improvements in linearized physics and dynamics.

1 Introduction

It has long been recognized that data assimilation (DA) schemes play a key role in
numerical weather prediction (NWP) systems to correctly forecast short-range predic-25

tions. Among those data assimilation schemes, 4 dimensional variational DA (4-D-Var)
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methods have shown superior forecasting results. In addition, a recent advent of fast
multiprocessor computers leads the full potential of 4-D-Var to be realized in more com-
plicated systems. 4-D-Var schemes such as Incremental 4-D-Var (Courtier et al., 1994),
Weak 4-D-Var (Yannick, 2007), and Direct/InDriect Representer methods (Bennett,
2002) generally all share the common components such as a tangent linear model5

(TLM), its adjoint model (ADM), a background error covariance, and minimization algo-
rithms as 4-D-Var drivers.

For operational NWP applications, the construction of a TLM is a very important,
intermediate step in the development of the 4-D-Var. The TLM serves as an intermedi-
ate step to write and test the ADM, as the forward model in the incremental approach10

to 4-D-Var, and as a tool for stability analysis (Zhu and Kamachi, 2000; Ehrendorfer
and Errico, 1995). It is essential for development of the 4-D-Var schemes to obtain
consistency between the nonlinear model and its corresponding TLM that leads to the
accurate development of its ADM, which plays a key role in finding a best initial condi-
tion by providing the gradient of the cost functional via minimization algorithms in the15

4-D-Var schemes. So, the TLM has been recognized as powerful tools for analysing
numerous aspects such as model sensitivity and the dynamics of flow fields, and the
evolution of perturbations.

The main focus of this study is the development of a TLM for a nonlinear dynamical
model that solves a primitive hydrostatic equation. The nonlinear model adopted here is20

the High Order Method Modeling Environment (HOMME). The HOMME is a high-order
method that utilizes fully unstructured quadrilateral based finite element meshes on
the sphere, and adopts a spectral element and discontinuous Galerkin method (Dennis
et al., 2012). For its scalability and efficiency, the HOMME is considered as a promising
dynamical core, and is the default dynamical core of the Community Atmosphere Model25

(CAM), and the community Earth System Model (CESM). Here, we developed a TLM
for the HOMME dynamical core that can describe well the evolution of perturbations
generated by the nonlinear model when the magnitude of perturbation becomes the
size of actual uncertainties (Errico and Raeder, 1999).
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The second section explains the TLM development for the HOMME model including
the description of the HOMME, time increment with management of temporal trajecto-
ries for the nonlinear model, and linearity checks. The third section shows the numerical
results of the linearity checks for all tangent linear modules, including full fields for baro-
clinic instabilities of time dependent zonal geostrophic flow, followed by a summary and5

discussion in the fourth section.

2 Development of tangent linear model

There are a couple of different ways to develop a TLM for a given dynamical model such
as (1) a perturbation forecasting approach in which the TLM is discretized from the lin-
earization of the given nonlinear dynamical equation, and (2) a line-by-line approach in10

which the TLM is linearized directly from the numerical codes of the given dynamical
model. The advantage of the former is that the approach can easily deal with numeri-
cal instability than the latter, but the TLM can be more conveniently developed by the
latter approach. Here, the line-by-line approach for the TLM development is adopted
because of its straightforwardness of linearization for the set of the discretized non-15

linear equations. The complete source codes of the described modules are available
from the authors upon request.

2.1 HOMME dynamical core

The HOMME is a high-order element-based method to build scalable, accurate, and
conservative atmospheric general circulation models that numerically solves the 3-20

dimensional primitive equations (Nair and Tufo, 2007). HOMME employs advanced
time stepping, adaptive mesh refinement and several domain decomposition strategies
along with the continuous/discontinuous Galerkin (CG/DG) and spectral element (SE)
(Thomas and Loft, 2002; Dennis et al., 2012). Also, HOMME guarantees conservation
and to maintain all the attractive computational features of the SE.25
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Here, we briefly describe the numerical configuration for HOMME and its TLM,
both of which share the same numerical configuration. HOMME can be configured
to solve the shallow water or the dry/moist primitive equations. The baroclinic test case
(Jablonowski and Williamson, 2006) configured in HOMME is utilized to appraise the
evolution of baroclinic waves in the Northern Hemisphere using quasi-realistic initial5

conditions, and employs the second order explicit Runge–Kutta time integration and
DG method of the prognostic variables. The computational domain is the global sphere
that is covered by six identical regions by an equiangular central projection of the faces
of an inscribed cube. Each face of the cubed-sphere is free of singularities, and is par-
titioned into Ne by Ne rectangular non-overlapping elements (so, the total number of10

elements is 6×N2
e). For each element of the computational domain, an approximate

solution is expanded by a tensor-product of Lagrange basis function of order Np de-
fined at the Gauss–Lobatto–Legendre (GLL) points. For this study, the conservative 3
dimensional DG model is configured for the global sphere with Ne = 16, Np = 4, and
the horizontal resolution of 26 Lagrangian surfaces (i.e., the number of vertical levels15

Nlev = 26). Then, the total number of the elements is Nelem = 1536, and the grid resolu-
tion over the equatorial nodes is about 220 km, on average. A 4th order hyper-viscosity
filter is used for spatial filtering, and the time increment is ∆t = 150s. MPI domain de-
composition through the space-filling curve approach is used for parallelism (Nair et
al., 2009).20

The evolution of the baroclinic wave is very slow from integration day 0 to day 4. So,
Fig. 1 only shows the triggering baroclinic waves and corresponding surface pressure
Ps and temperature field T at 850 hPa (Nlev = 23) from day 6 to day 10. At days 6 and
7 the surface pressure shows few weak high and low pressure systems with shad-
ings and also temperature field exhibits the growth of very small-amplitude waves with25

contours (Fig. 1a and b). At day 8 the baroclinic instability waves are well developed
in surface pressure, and the temperature waves are also clearly observed (Fig. 1c).
The baroclinic pressure waves become strong at days 9 and 10. And, the waves in
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the temperature field are almost peaked and are beginning to wrap around the trailing
fronts (Fig. 1d and e).

2.2 Line-by-line approach

The line-by-line approach is the easiest way to construct a TLM in that each line of the
nonlinear code is rewritten to the corresponding tangent linear code via the chain rule of5

the implicit derivative. In general, we follow the steps below for the model linearization
(Zou et al., 1997; Giering and Kaminski, 1998).

1. Determine input and output for variables and constants in the nonlinear codes.

2. Distinguish the variables for the tangent linear codes from those coefficients for
nonlinear results by adding prefix “tl_”.10

3. Linearize the nonlinear codes via the chain rule of the implicit derivative (or cal-
culus of variation).

4. Check and clean up input and output variables in the module name.

In Fig. 2, input and output for the variables in both nonlinear (NL) and tangent linear
(TL) codes are distinguished by I and O. The variables for the NL code are a(I), b(I)15

and tens(O), while the variables for the TL code are appended with prefix “tl_” and the
variables a(I) and b(I) in the NL code are used as the coefficients in the TL code. The
coefficients are generally called time varying basic states in the TL code.

In the NL code, the intrinsic sine function with independent variable a(I) can be dif-
ferentiated with respect to the variable a(I) via the chain rule of the implicit derivative.20

Then, the sine function is differentiated to be the cosine function and its variable a(I)
becomes tl_a(I), the variables of the tangent linear code. To complete changes from
the NL code to the TL, the output variable tens(O) in the NL code also needs to be
linearized with respect to the variables b(I) and tmp which depends on the variable a(I)
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such that the corresponding term tl_tens(O) in the TL code is composed of the vari-
ables tl_b(I) and tl_tmp, and constants b(I) and tmp. Note that the input coefficients a(I)
and b(I) in the TL code should be previously read in outside of the TL code while the
constant tmp must be calculated inside of the TL code by other NL variables from out-
side of the TL code. In certain cases, it is very important to put the tangent linear term5

(tl_tmp) before the basic state term (tmp), and the basic state term is not necessary if
it is not associated with the nonlinear coefficient.

2.3 Linearization tests

The practical version of a TLM should be considered reasonably good enough if the
TLM is to correctly describe time-evolving perturbations of the nonlinear model as the10

perturbation magnitude increases to the actual uncertainty size. The main goal in this
study is to develop a TLM asymptotically yields a similar solution as the difference
between nonlinear solutions when the magnitude of perturbation approaches toward
zero. So, the developed TLM can be used for various tools for the evolution of pertur-
bations, stability analysis, and the forward model in the incremental 4-D-Var. We follow15

the method of Navon et al. (1992) below for a linearity check for the developed tangent
linear model.

Assume that N(x) and M(x) be the nonlinear module and its corresponding tangent
linear module, respectively. Then, the correctness of the tangent linear module can be
described as follows. The Taylor–Lagrange expansion of the nonlinear model is20

N(x+ah) = N(x)+ahTM(x)+O(a2), (1)

where x is a vector of all the input variables, h is a state vector for perturbation, and
the superscript T is matrix transpose. The constant a is a small scalar such that the
magnitude of initial perturbations is controlled by this scaling factor a. And, the Taylor–25

Lagrange formula in Eq. (1) can be rewritten as

t(a) = ‖N(x+ah)−N(x)‖/‖ahTM(x)‖ = 1+O(a), (2)
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where O(a) is the residual for the ratio of norms. When the tangent linear module is
correctly developed, the above relationship t(a) should hold within machine precision
as the values of a become small. The relationship indicates that the norm of tangent
linear module in denominator in Eq. (2) should approach to the norm of difference
field between the two nonlinear models in numerator in Eq. (2) as the magnitude of5

perturbations approaches zero.
We designed a practical linearity test setting, where individual variables are sepa-

rately linearity-checked since the variables in the module have different magnitudes.
We integrated the nonlinear model with both perturbed and unperturbed initial condi-
tions, and the tangent linear model with the initial perturbation. Here, the constant a in10

Eqs. (1) and (2) serves as the perturbation scaling factor of the initial perturbation and
is sequentially reduced by the factor of 10 such that the magnitude of the perturbation
becomes smaller by the factor.

2.4 Temporal increment

During the TLM time integration, the TLM requires the time-varying basic states that15

are provided by the nonlinear dynamical system. If the TLM requires to read these
basic states every time step, then it may require huge overheads to retrieve those
coefficients during input/output (I/O) due to the high dimensionality of O(107) or higher.
This might lead the time integration of the TLM to the excess of normal NWP model
integration. So, the temporal increment for the TLM is one of the critical factors for the20

TLM development along with linearity check in Sect. 2.3.
In the first development of the TLM, the time step of the TLM (version 0.1) is the

same as that of the nonlinear model, and the time-varying basic states are calculated
by the nonlinear model at every time step during the TLM time evolution (Fig. 3a). In
this approach, the tangent linear model resolves the perturbation growth very well due25

to the sufficiently high frequency of a solution trajectory, and no cost related to I/O
due to the storage of the trajectory in memory. In this approach, the period of time
integration can extend with order of O(10) without any instability or technical issues. It

1182

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1175/2014/gmdd-7-1175-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1175/2014/gmdd-7-1175-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 1175–1196, 2014

Development of
a tangent linear

model

S. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is worth to note that when compared to the results of a further approximated version of
TLM, it can be used as a reference solution. However, this first development still may
not be practical in the operational NWP applications because of the high computational
cost is extremely burdensome. So, alternate strategies for practical implementation of
a TLM are required.5

As seen in previous studies, many applications show the impact of less frequently
updating trajectory on TLM integration, and suggest that the basic states do not have
to be stored at every time step for an effective TLM (Errico et al., 1993; Yannick, 2004).
One of alternate strategies is that the infrequently saved basic states are interpolated
whenever the TLM requires the coefficients between the saved time steps. The strategy10

chosen here is first to increase the time step of the tangent linear model and second to
store the nonlinear trajectory on files at the extended time. We obtained a best saving
frequency of nonlinear solutions for the TLM in terms of efficiency and performance as
long as the computational cost such as I/O and storage is manageable (Fig. 3b).

3 Numerical results15

3.1 Module linearity checks

Many studies employed perturbation magnitudes for wind, temperature, and surface
pressure from 0.1 ms−1, 1 K and 1 hPa to 1 ms−1, 10 K and 10 hPa respectively for the
strong and the weak perturbations (Courtier and Talagrand, 1987; Lacarra and Tala-
grand, 1988; Rabier and Courtier, 1992). The magnitude of perturbations changes from20

the strong perturbations to the weak perturbations by reducing the scaling factor a by
10. For weak perturbations, the tangent linear modules are expected well to approx-
imate the behaviour of perturbation for the nonlinear forward model and the relative
error remains small, but when the scale factor becomes too small, the residual O(a) for
the ratio of norms in Eq. (2) is expected to be worse due to the numerical truncation25

error.
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In order to have various linearity tests for each module, we configured the different
perturbations by choosing the nonlinear model states at day 0, 1 and until day 8. These
perturbations are initial conditions for the tangent linear model, and reduced by the
factor of 10 by multiplying the scaling factor a. The unperturbed nonlinear model has
initial conditions at given days and the perturbed nonlinear model has initial conditions5

by summing the initial conditions of unperturbed nonlinear model and the perturbations
(initial conditions for the tangent linear model).

There are two main modules to be linearized for the TLM, one that com-
pute_and_apply_rhs that calculates the dynamical tendency, and the other that
advance_hypervis that is spatial filtering using 4th order hyper viscosity. The10

module compute_and_apply_rhs consists of various subroutines and functions
such as divergence_sphere, gradient_sphere, vorticity_sphere, preq_hydrostatic,
preq_omega_ps, and preq_vertadv. Also, the advance_hypervis includes bihar-
monic_wk, laplace_sphere_wk, and vlaplace_sphere_wk. Before testing two main
modules, those subroutines and functions has been directly linearized, and checked15

individually by the linearity test in Eq. (2).
Figure 4 shows the results of the ratio of norms for two major modules. The horizon-

tal and vertical axes are respectively the values of the scaling factor a and the residual
O(a) for the ratio of norms in Eq. (2). The slopes with different colors show the resid-
ual O(a) calculated at different days. The numerical results show that for all cases, the20

slopes are decreased as the scaling factor a is decreased, even if there are small dif-
ferences of the magnitude between the slopes. As expected, when the scaling factor
gets smaller, the perturbation reaches the machine precision and the slopes do not de-
crease anymore. With variously different perturbations and initial conditions, the similar
pattern described as in Fig. 4 shows the residual O(a) for all other modules, including25

the main time stepping loop module, prim_run_subcycle that is composed of the time
stepping module prim_advance_exp, along with two major modules shown in Fig. 4.
This implies that the linearization for all nonlinear modules is performed properly and
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completely. The TLM is verified to be accurate, and its solutions are therefore expected
to be truly asymptotically correct.

3.2 Field checks

Further to verify the correctness of the TLM, we plotted the full field of V-wind compo-
nents for the TLM and the corresponding difference fields between the two nonlinear5

model forecasts. In general, an increment produced by assimilating any DA systems
is believed to represent a typical analysis error and treated as a reasonable initial per-
turbation, or the increment can be constructed by a difference field between two full
states in different forecast ranging (Ehrendorder and Errico, 1995). Because the mag-
nitudes of the latter method is similar to those of the nonlinear model results at day 610

with reduced magnitude of 10 % or 1 %, initial perturbations are obtained by choosing
nonlinear model results with 10 % or 1 % reduced magnitude. The initial perturbations
are used as the initial condition for the tangent linear model, and two parallel nonlinear
models are also integrated over time, one with the perturbations added to the initial
condition and the other without the initial perturbation.15

Figure 5 shows the snapshots of V-wind fields as comparison of the difference of two
nonlinear models and the linear model evolution at 0, 24, and 48 h. The initial perturba-
tions of 10 % and 1 % magnitudes of V-wind components for the TLM are respectively
displayed in Fig. 5a and d (first column) with contours, and their TLM forecasts are
shown with contours at day 1 (second column) and day 2 (third column). Similarly,20

the nonlinear evolution of the initial perturbations are evaluated by the difference fields
between two nonlinear model forecasts and displayed by shadings. In Fig. 5, both am-
plitudes and patterns from the TLM solutions and the differences of the two nonlinear
forecasts are very similar. The amplitudes of the TLM results for both day 1 and day
2 also show linear trends between 10 % and 1 % magnitudes of initial perturbations,25

and the pattern correlation with 1 % magnitude is much higher than that with 10 %
magnitude. These results confirm that the initial evolution is well represented by the
developed TLM (version 1.0) up to at least 48 h for the resolution of 220 km (Ne = 16).
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The similar numerical results were obtained for different model configurations with dif-
ferent model resolutions, initial conditions, and perturbations (figures are not shown).
These results confirm that the TLM (version 1.0) for the HOMME dynamical core is
correctly developed and reasonably well represents the initial perturbation evolution.

3.3 Temporal increment5

A time step size in tangent linear models plays an important role in numerical stability
and computational cost, so it is important to choose a suitable time step size to balance
between the numerical stability and computational cost. Too short time step makes the
TLM too expensive due to the I/O as seen in Sect. 2.4, and too long time step makes
the model numerically instable. There are a couple of ways to determine a proper time10

step size for stable integration of a TLM. One is to try different time step sizes for the
TLM and the other can check stability conditions for given numerical schemes.

Here, various time steps are applied to the TLM and empirically tested for numerical
instabilities. Figure 6 shows snapshots of V-wind fields at time 6 h for the results of the
TLM with different time step sizes from ∆t = 150s to ∆t = 600 increased by 150. With15

the time step of ∆t = 300 the TLM result shows the stable time integration up to 48 h,
the TLM with ∆t = 450 holds the numerical stability for 11 h, and the TLM with time
step of ∆t = 600 shows the instability after 5 h. For a given 6 h assimilation window that
is usually used for 4DVAR schemes in many NWP centres, the TLM results with time
step sizes less than ∆t = 450 is very similar to that with default time step of ∆t = 150,20

and yields stable integration results. Thus, the expanded time step size of ∆t = 450
for the TLM could be appropriate for a best temporal increment. Although the TLM
(version 1.0) still needs further improvement for its performance, the current version
of the TLM (version 1.0, available upon the request) is practical in that a reasonable
compromise has been made between linearity, computational efficiency and a realistic25

way to achieve the best analysis and forecast performance.
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4 Summary and discussion

In this study, modules to calculate tangent linear trajectories have been implemented
into the HOMME dynamical core. The TLM can describe the evolution of perturbations
about time varying basic states that are provided by the nonlinear dynamical system.
The TLM accommodates a Jacobian of the dynamical operator that is tangential to5

a solution trajectory of the nonlinear system, and also provides a computationally effi-
cient way to calculate the model trajectory. Since the TLM is primarily intended to ap-
proximate the evolution of perturbations in a corresponding nonlinear model, accuracy
of the TLM is considered to be a measure of the model performance. In that regard,
the developed codes for the TLM are checked by the Taylor–Lagrange formula and10

by comparing time-evolved perturbation fields for the TLM with the difference fields be-
tween two controlled nonlinear model runs. And, the overall verification of the numerical
results indicates that the tangent linear model is correctly developed.

Generally, there are some major inaccuracy issues in developing TLMs (Errico et al.,
1993) due to the finite magnitude of the perturbations in initial/boundary conditions or15

model parameters, the strong nonlinearities, discontinuities in nonlinear models, and
numerical instabilities in some TLMs. Those obstacles make difficult the development
of efficient and well-behaving tangent linear codes. During the development of the tan-
gent linear codes for the HOMME dynamical core, however, we have not experienced
any significant difficulty such as a tendency to suddenly grow small perturbations due20

to some unintended discontinuities or ill-conditioning in the HOMME model. We be-
lieve that it is because the dynamics has good computational properties such as no
singularity on both poles (Dennis et al., 2012).

Since the TLM requires nonlinear solutions as coefficients, the I/O strategy is impor-
tant for the practical implication of the TLM. Two TLMs are developed with different I/O25

such as recalculating the basic state and storing the trajectory in file. The TLM with
recalculating the basic state at every time step is extremely burdensome, but the re-
sults of the TLM well represent the evolution of perturbations, and those results can
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be used for reference fields in comparison with those of the approximated TLM. The
extra burden leads to the alternate strategy for the TLM that is to store and read the
trajectories from the file. As the time-step of the TLM is increased, the burden of I/O
is decreased. Furthermore, given a time step size the instability during the TLM time
integration should be carefully studied. It is an accurately developed TLM is crucially5

important that is because the same time step is directly used for the time step of adjoint
model, and also influences on the performance of 4DVAR schemes.

It is also worth noting that the usage of automatic differentiation is also possible
because of the strict rules of tangent linear coding. There are some existing tools
such as TAF (TAMC http://www.autodiff.org), TAPENDDE (Odyssee, http://www-sop.10

inria.fr/tropics/tapenade.html) and so on. The tangent linear codes is generated by
TAPENDDE and compared with the codes developed by hands-on derivations. In the
automatic differentiation, there still seem to be unresolved issues, for example, it can-
not handle non-differentiable instructions such as IF statement. (In this case, the TL
code is mostly wrong.) Also, it can create huge arrays to store the trajectory and the15

codes often require to be cleaned-up and optimized.
Critical element in any operational prediction schemes such as 4-D-Var and 4 Di-

mensional Ensemble based Variational method (4-D-En-Var) will, of course, be the
initialization procedure. The issue that has not been addressed by the present devel-
opment is the analysis increments in the initialization procedure that generally develop20

gravity waves. To filter out high-frequency waves, an incremental analysis-updating
scheme (Polavarapu et al., 2004) is developed for the forecast model, and for 4-D-
En-Var and 4-D-Var. The developed TLM (version 1.0) can be another option for an
internal digital filtering initialization scheme such that the high frequency in the analy-
sis increments are filtered out by propagating the TLM forwards and backwards (with25

a negative time step), and then by forming a weighted average of the states in the com-
bined trajectory. Korea Institute of Atmospheric Prediction Systems (KIAPS) is a gov-
ernment funded non-profit research and development institute and currently developing
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a 4 Dimensional Ensemble-based Variational method (4-D-En-Var). KIAPS will test the
TLM (version 1.0) for the initialization procedure.

Acknowledgements. Authors would like to thank Adam Clayton at Met Office for his proof-
reading and precious comments on this manuscript.
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Fig. 1. Evolution of the baroclinic wave from time integration with different days. The shadings
and contours represents surface pressure (hPa) and temperature (K), respectively. (a) day 6,
(b) 7, (c) 8, (d) 9, (e) 10.
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 15 

 1 

 2 

Figure 2. Example of the tangent linear subroutine called TL based on the nonlinear 3 

subroutine called NL. The subroutines displays input and output with capital letters I and O in 4 

the argument variables.  5 

6 

Fig. 2. Example of the tangent linear subroutine called TL based on the nonlinear subroutine
called NL. The subroutines displays input and output with capital letters I and O in the argument
variables.
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Fig. 3. Nonlinear trajectory management for the tangent linear model. (a) Before the tangent
linear model (TLM with version 0.1) is integrated, the nonlinear model (NLM) is calculated every
time step ahead. (b) Nonlinear solutions are first saved during the time-integration of the NLM,
and then the TLM is integrated over time with coefficients from the NLM run.
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Fig. 4. Linearity test for the two major modules: (a) compute_and_apply_rhs, and (b) ad-
vance_hypervis. The horizontal and vertical axes are respectively the values of the scaling
factor a and the residual O(a) for the ratio of norms in Eq. (2). The slopes with different colors
show the residual O(a) calculated at different days.
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Fig. 5. Evolution of different initial perturbations for the V-wind fields (ms−1). Upper panel (a,
b, c) shows wind with 10 % perturbation of the initial state and lower panel (d, e, f) with 1 %
perturbation (see details in Sect. 3.2). The shadings represent the difference between the two
nonlinear models runs with perturbed and unperturbed initial conditions. The contours illustrate
the evolution of wind perturbation propagated by the tangent linear model at different times, the
initial time (left column), 24 h (middle), and 48 h (right).
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Fig. 6. V-wind fields (ms−1) of the tangent linear model with different time increments at 6 h
later. Time step size ∆t is (a) 150, (b) 300, (c) 450, (d) 600 s.
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