

1 Quick Start Manual for ISOPOLIS 1.0

This Quick Start Manual is based on Greve (2008).

1.1 Licence

ISOPOLIS is based on SICOPOLIS 2.9 by Ralf Greve under the Creative Commons Attribution Share- Alike license version 3.0 and released under the same license.

1.1.1 License of SICOPOLIS 2.9

Copyright 2008 Ralf Greve

This file is part of SICOPOLIS

SICOPOLIS is free software, licensed under the Creative Commons Attribution Share- Alike license version 3.0 (CC-BY-SA V3.0), or any later version (at the user's option). In short: SICOPOLIS can be used, modified and redistributed freely, provided that the author (Ralf Greve) is credited, the SICOPOLIS web page (<http://sicopolis.net/>) is referenced and any redistributions are made under the same or a similar license. SICOPOLIS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1.1.2 License of ISOPOLIS 1.0

Copyright © of SICOPOLIS and SICOGRAPH, 2008 Ralf Greve

Copyright © of SICOTRACE and SICOSTRAT, 2010-2013 Thomas Gölles

Copyright © of universal architecture routines, 2010 Malte Thoma

ISOPOLIS and its subprograms SICOPOLIS, SICOGRAPH, SICOTRACE and SICOSTRAT is free software, licensed under the Creative Commons Attribution ShareAlike license version 3.0 (CC-BY-SA V3.0), or any later version (at the user's option). In short: SICOPOLIS and SICOGRAPH can be used, modified and redistributed freely, provided that the author Ralf Greve is credited, the SICOPOLIS web page (<http://sicopolis.net/>) is referenced and any redistributions are made under the same or a similar license.

SICOTRACE and SICOSTRAT can also be used, modified and modified and redistributed freely, provided that the author Thomas Gölles is credited.

ISOPOLIS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1.2 Installation Guide

ISOPOLIS has been tested under Linux and Mac OS 10.6.3. and above.

Besides standard Unix programs you need following software:

- the GNU build system
- the Subversion revision control system: <http://subversion.apache.org/>
- Fortran compiler such as gfortran or ifort
- netCDF (3.6.1 or higher) library compiled with your Fortran compiler:
<http://www.unidata.ucar.edu/software/netcdf/>
- the netCDF Operator (NCO): <http://nco.sourceforge.net/>
- a netCDF viewer such as Panoply: <http://www.giss.nasa.gov/tools/panoply/>
(optional but recommended)
- GMT for plotting: (<http://gmt.soest.hawaii.edu/>) (optional but recommended)

If you want to contribute to the development of ISOPOLIS you need to request to join the project at <http://aforge.awi.de>. There you will find all the necessary information to access the SVN-repository. If you just want to run the software with your model setups without altering the code you can follow the step-by-step guide.

Note that all the commands are for the *Bash* shell.

1. install all the above mentioned software
2. check out the latest version of ISOPOLIS with:
`svn co http://aforge.awi.de/svn/isopolis/tags/v1.0`
3. set the Fortran Compiler environment variable:
`export FC=gfortran` or `export FC=ifort`
4. run the install script *install.sh* with your path to the netcdf library: the general command is `./install.sh path-to-netcdf-installation`
for example `./install.sh /opt/local`

The install script will install SICOPOLIS, SICOGRAPH, SICOTRACE and SICOSTRAT using automake onto your computer.

1.3 Files and Directories

You will get the following three folders (in addition to `doc` which contains this document):

`sicopolis`
`sicograph`
`sicotrace`

The folder `sicotrace` contains SICOTRACE and SICOSTRAT, the subprograms needed for computation of trajectories and tracer transport.

SICOPOLIS

runs

The shell script *sico.sh* (bash) for running a single simulation under UNIX/LINUX. Shell script *mult_sico.sh* for running multiple simulations by repeated calls of *sico.sh*

Subdirectories **headers** specification files *sico_specs_runname.h* (*runname* : name of the run).

Shell script *compare.sh* to compare model output with reference run, in order to see if SICOPOLIS is still working correctly.

- Files included for runs *grl40_tes_wre1000*, *grl20_test_wre1000* and *grl10_test_wre1000*
→ Greenland ice sheet, resolution 40 / 20 / 10 km, $t = 1990 \text{ CE}..2350\text{CE}$ (similar to the WRE1000 run by Greve (2004) and run #11 by Greve and Otsu (2007)).
- File included for run *eismint_tm*
→ EISMINT Phase 2 Simplified Geometry Experiment K, resolution 25 km, $t=0\text{ka}...300\text{ka}$ Payne and others (2000)
- Files included for runs *ant80_paleo04_init*, *ant80_paleo04*, *ant40_paleo04_init* and *ant40_paleo04*
→ Antarctic ice sheet, resolution 80 and 40 km. $t = -522\text{ky} ... -422\text{ka}$ for spin-up runs (...init), $t=-422\text{ka} ... 0\text{ka}$ for the main runs (see Greve (2006) and Greve (2005))
- Files included for runs *grl40_paleo01_init*, *grl40_paleo01*, *grl20_paleo01_init* and *grl20_paleo01*
→ Greenland ice sheet, resolution 40 km for *grl40...*, 20 km for *grl20...*, $t = -422 \text{ ka} ... -250 \text{ ka}$ for the spin-up runs (... init), $t = -250 \text{ ka} ... 0 \text{ ka}$ for the main runs [similar to run *hf_pmod2* by Greve (2005)]
- File included for run *nhem80_nt012_new*
→ northern hemisphere, resolution 80 km, $t = -250 \text{ ka} ... 0 \text{ ka}$ [similar to run *nt012* by Greve and others (1999)].
- File *ntest.h* included for run *ntest*, only for testing purpose if netcdf is running correctly

src

Directory which contains the main program file *sicopolis.F90*.

- Subdirectory **subroutines/general**: general subroutines, for any modelled domain.
- Subdirectory **subroutines/ant**: subroutines specific for the Antarctic ice sheet.
- Subdirectory **subroutines/emtp2sge**: subroutines specific for the EISMINT Phase 2 Simplified Geometry Experiments.
- Subdirectory **subroutines/grl**: subroutines specific for the Greenland ice sheet.
- Subdirectory **subroutines/nhem**: subroutines specific for the northern hemisphere.

- Subdirectoryds **scans,tibet,heino,nmars,smars** for Scandinavia, Tibet, ISMIP HEINO, and the north and south polar caps of Mars.

sico_in

Directory which contains input data files for SICOPOLIS.

- Subdirectory **general**: general input files, for any modelled domain. Subdirectory **ant**: input files specific for the Antarctic ice sheet.
- Subdirectory **emtp2sgc**: input files specific for the EISMINT Phase 2 Simplified Geometry Experiments.
- Subdirectory **grl**: input files specific for the Greenland ice sheet.
- Subdirectory **nhem**: input files specific for the northern hemisphere.
- Subdirectorys **scans,tibet,heino,nmars,smars** for Scandinavia, Tibet, ISMIP HEINO, and the north and south polar caps of Mars.

sico_out

Directory into which output files of SICOPOLIS simulations are written. It already contains a subdirectory with the name **R_grl40_test_wre1000** with contains the reference run. The run-script *sico.sh* will create a subdirectory with the name **F_runname** and all belonging files are stored therein.

tools

This directory contains the subdirectory **netcdf** with a tool to convert ASCII input files into a single netCDF file per model-setup.

SICOTRACE

This directory contains the two subprograms **SICOTRACE** and **SICOSTRAT**.

The directory **trace** contains **SICOTRACE** and has the following subdirectories:

input

This directory contains the subdirectory input files for forward trajectories (Lagrange)

matlab

This directory contains the subdirectory **forward** which contains the Matlab plotting routines for forward directory. This is not maintained anymore and may be deleted in future versions.

src

Directory which contains the main program file sicotrace.F90 and the subdirectory **subroutines** which contains the general subroutines.

The directory **strat** contains **SICOSTRAT** and has the following subdirectories:

plots

Empty folder where all the plots are stored in subfolders with the name **runname**

src

Directory which contains the main program file sicostrat.F90 and the shell script *dev.sh* and the subdirectories:

- Subdirectory **subroutine**: contains the general subroutines
- Subdirectory **gmt**: contains the GMT scripts and cpt files for plotting

SICOGRAPH

This directory contains SICOGRAPH a plotting tool to visualize SICOPOLIS model outputs and reads netCDF files.

plots

Empty folder where all the plots are stored in subfolders with the name **F_runname**

src

Directory which contains the main program file *sicograph.F90* and the shell script *sicograph.sh* and all subroutines.

- Subdirectory **paramter_files**: contains the general subroutines
- Subdirectory **gmt_scripts**: contains the GMT scripts and cpt files for plotting

1.4 How to run a Simulation

Now there are three possible ways to run a simulation, depending what you want:

1. Ice sheet dynamics only
2. Semi-Lagrangian transport of tracers
3. Calculate forward trajectories

1.4.1 1. Ice sheet dynamics only

In the first and second case you have to run *sico.sh* in the subdirectory *runs* in SICOPOLIS. The help of *./sico.sh -h* looks like this:

```
Usage: sico.sh -m<model>
[-a]          => running SICOPOLIS and SICOTRACE
[-c]          => continuing a previous run
[-e<endtime>]  => if -a; endtime of simulation
[-n]          => skip make clean
[-d<dir>]     => append <dir> to output dir
[-f]          => overwrites output-directory
                  if it allready exists
[-i<intervall>] => if -a; intervall of sequentially running
                  the programms
[-k]          => if -a; keep SICOPOLIS netcdf outputfiles
[-o<save_step>] => saving every save_step step or prov_arch
[-s<starttime>] => if -a; starttime of simulation
```

To get an overview of the available runs: *./sico.sh -m?*

```
ant40_paleo04
ant40_paleo04_init
ant40_tm
ant80_paleo04
ant80_paleo04_init
eismint_tm
grl10_test_wre1000
grl20_paleo01
grl20_paleo01_init
grl20_test_wre1000
grl20_tm
grl40_paleo01
grl40_paleo01_init
grl40_test_wre1000
nctest
nhem80_nt012_nc2
nhem80_nt012_new
```

To run the netcdf test-run: *./sico.sh -m nctest*. This will run SICOPOLIS with the header file *sico_specs_nctest.h* in the subdirectory *headers*. This is a short run (about 10 seconds computational time).

If you want to run the same model setup again and you want to overwrite the results you have to use the *-f* option.

1.4.2 Output

Output files of simulations are written to directory **sico_out/F_nctest/**.

```

nctest.log
nctest.ser
nctest01.erg
nctest_1.nc
nctest_nsteps.txt
out_sicopolis_nctest.dat
sico_specs.h

```

nctest.log lists the main specifications of simulation

nctest.ser is the time-series file which contains global parameters:

- Time, t
- Surface-temperature anomaly, D_Ts, or glacial index, glac_ind (forcing)
- Sea level, z_sl (forcing)
- Maximum ice thickness, H_max
- Maximum ice elevation, zs_max
- Ice volume, V_g
- Volume of the temperate ice, V_t
- Freshwater production due to melting and calving, V_fw
- Sea-level equivalent of ice volume, z_sle
- Ice area, Aib
- Area covered by temperate ice, Atb
- Water drainage due to basal melting, V_bm
- Water drainage from the temperate layer, V_tld
- Maximum thickness of the temperate layer, H_t_max
- Maximum surface velocity, vs_max

nctest01.erg binary file with all fields needed if the computation is continued later on.

nctest_1.nc the netCDF file with all output fields and also some input parameters. The netCDF file is complied with the CF-1.4 conventions. The file has a maximum size of 10Gb if the output is bigger then a this limit a new file with name **nctest_2.nc** is created.

You can open the file with the recommended viewer Panoply and immediately make some plots for example of the surface topography, velocities and so on.

nctest_nsteps.txt a temporary file.

out_sicopolis_nctest.dat the terminal output of sicopolis.

sico_specs.h a copy of the header-file.

1.4.3 2. Semi-Lagrangian transport of tracers

This is also done with the same script *sico.sh*. The script runs SICOPOLIS and SICO-TRACE by turns and deletes unnecessary variables in order to save disk-space. If you want to keep the original SICOPOLIS output use the *-k* option.

An example for this would be:

```
$ ./sico.sh -m eismint_tm -a -s0 -e300000 -i50000 -o10.
```

I will explain this in detail. As before *-m eismint_tm* defines the used header-file, this time the EISMINT phase 2 experiment. The option *-a* defines the subsequent use of SICOPOLIS and SICOTRACE. The option *-s* is followed by the initial year, in this example 0 and *-e* followed by the number 300000 is the last year of the simulation.

The option *-i* is followed by the years when SICOPOLIS is stopped and SICOTRACE does the post-processing of the output. So in this example in total two runs of both programs are performed. Be aware not to chose the interval to high so that the data-files are bigger than 10Gb and the interval has to be an even multiple of the time-step. If you use a NCO version without 64bit support you may also chose the interval so that the data-files are not bigger than 2Gb.

The option *-o* is followed by the number of time-steps where the full date-set is stored. In this example only every 10th time-step the full depositional archive is stored. So later on the post processing with SICOSTRAT can also only be done with for every 10th time step.

1.4.4 Output

Output files of simulations are written to directory **sico_out/F_eismint_tm/**.

```
dep_arch_0.nc
eismint_tm.cont
eismint_tm.core
eismint_tm.log
eismint_tm.ser
eismint_tm01.erg
eismint_tm_1.core
eismint_tm_1.ser
eismint_tm_nsteps.txt
eismint_tm_prov_arch_1.nc
eismint_tm_prov_arch_2.nc
eismint_tm_prov_arch_3.nc
eismint_tm_prov_arch_4.nc
eismint_tm_prov_arch_5.nc
eismint_tm_prov_arch_6.nc
endtime.txt
intervall.txt
log_1.txt
log_2.txt
log_3.txt
log_4.txt
```

```

log_5.txt
log_6.txt
n_dep.txt
nlabel.txt
out_sicopolis_eismint_tm_1.dat
out_sicopolis_eismint_tm_2.dat
out_sicopolis_eismint_tm_3.dat
out_sicopolis_eismint_tm_4.dat
out_sicopolis_eismint_tm_5.dat
out_sicopolis_eismint_tm_6.dat
out_sicotrace_eismint_tm_1.dat
out_sicotrace_eismint_tm_2.dat
out_sicotrace_eismint_tm_3.dat
out_sicotrace_eismint_tm_4.dat
out_sicotrace_eismint_tm_5.dat
out_sicotrace_eismint_tm_6.dat
run.txt
saves_step.txt
sico_specs.h

```

This time you have more files resulting from the subsequent runs of SICOPOLIS and SICOTRACE. So the files ending with the number 1 are the one from the first run. I will describe now the additional files you get compared to if you run SICOPOLIS alone.

dep_arch_0.nc is the depositional archive needed for the post-processing with SICOTRACE

eismint_tm.cont binary file with all fields needed if the computation with SICOTRACE is continued later on.

endtime.txt a temporary file, needed if the computation is continued later on.

intervall.txt a temporary file, needed if the computation is continued later on.

n_dep.txt a temporary file, needed if the computation is continued later on.

nlabel.txt a temporary file, needed if the computation is continued later on.

run.txt a temporary file, needed if the computation is continued later on.

If you want to continue a previous run you can now do this without changing the headerfile by running the shell script *sico.sh* again.

```
\$ ./sico.sh -m eismint_tm -c -a -e400000
```

This will use the output from the previous example and start in the year 300000 and end in the year 400000. The interval and -o options are read from files.

1.4.5 3. Calculate forward trajectories

First you need to run SICOPOLIS and then run SICOTRACE in Lagrangian mode. Start a run of SICOPOLIS and go to **sicotrace/trace/src**.

You need to compile SICOTRACE once with:

```

make clean
make
make sicotrace

```

or alternatively run the *dev.sh* script used for development.

Start SICOTRACE with for example:

```
./sicotrace eismint_tm eismint_AK_1> tracer.log
```

This will calculate forward trajectories for the model-run "eismint_tm" which has to be performed with SICOPOLIS beforehand. The details about the particle-distribution is the file **input/eismint_AK_1.txt**. The log-file stores the terminal-output into the text-file tracer.log

Example for the eismint_AK_1.txt inputfile:

```
% this is the configuration file for forward tracers
% The particles are released at the surface
% time_start at which the particles are deposited (years)
6000
% coordinate point "i" : as integer
30
% numbers of particles in positive x direction
1
% coordinate point "j" : as integer
0
% numbers of particles in positive y direction
60
% numbers of particles in between "i" grid points
0
% numbers of particles in between "j" grid points
3
```

Explanation: Start of deposition in the year 6000 at position i=30 with 60 particles in y-direction on the grid-points and 3 in between every grid-point = 220 particles.

1.4.6 Output

Output-files are written to directory **sico_out/F_eismint_tm/** in the subdirectory **eismint_AK_1** as ASCII files. The file name has to following pattern; **i.j_is_js.tracer** with i and j being the grid-points and is, js the points in between grid-points.

1.5 Plotting with SICOGRAPH

The output described in section 1.4 can be visualized with any netCDF plotting tool at the user's preference. One possibility is to use SICOGRAPH, based on the Generic Mapping Tools GMT.

To see which runs are available go to **sicograph/src** and run `./sicograph.sh -m?` If you know the runname `./sicograph.sh -m runname` and you'll get a menu which allows to choose the type of plot you wish to produce. For example, try the option:

(1) Iso-surface topography

and enter desired time (from 0 with timestep is : 200) > 30000

Plot (1) with or (2) without colour bar? > 1

Plot (1) with or (2) without contour labels? > 1

You will find the plot as an EPS file in the subdirectory
sicograph/plots/F_runname

1.6 Stratigraphy and ice cores with SICOSTRAT

SICOSTRAT can do three things, plot cross-sections and ice cores and store the $\delta^{18}\text{O}$ field as a netCDF. The plots are stored in **sicotrace/strat/plots** and the $\delta^{18}\text{O}$ field in **sicopolis/sico_out/F_runname**.

To get an overview of the command-line program SICOSTRAT go to **sicotrace/strat/src** and compile (only once) SICOSTRAT with:

```
make clean
make
make sicostrat
```

and run SICOSTRAT in the shell `./sicostrat -h` you will get this help:

```
SICOSTRAT v1.0 to calculate and plot stratigraphy from SICOTRACE
outputs three different modes:plotting of ice cores,
plotting of cross-sections and writing the d180 field as netCDF
----- CORE MODE -----
./sicostrat core <model> <time> <y> <x> <variable> [-d] [-o] [-g]
<model> the SICOPOLIS runname, required
<time> time for plotting in years, required
<y> y location of core in meters, required
<x> x location of core in meters, required
<variable> x, y, t or 0 the plotting variable, 0 means delta180
example: ./sicostrat core eztracer_cm 200000 750000 750000 0
example 2: Vostok location with degrees
input in N E with at least one digit after the comma, (max. 3)
./sicostrat core ant40 -200000 -78.464 106.837 0 -g
----- CROSS MODE -----
./sicostrat cross <model> <time> <i/j> <loc> <variable> [-b] [-c] [-d]
[-l] [-o] [-g]
<model> the SICOPOLIS runname, required
<time> time for plotting in years, required
<i/j> cut along i or j, required
<loc> index for cutting, required
<variable> x, y, t or 0 the plotting variable, 0 means delta018
example: ./sicostrat cross eztracer_cm 200000 i 30 x -d
----- d180 OUTPUT MODE -----
./sicostrat <model> <time>
----- OPTIONS -----
[-b] for cross-mode, plotting of color-bar
[-c] for cross-mode, plotting of contour lines
[-d] for draft plots, with additional text on the plot
[-g] for core-mode, for input and output in degrees
[-l] for cross-mode, only plot the lower region (max. zb +500m)
[-o] for manually produced output with SICOTRACE
```

1.6.1 Examples

1) ice core

```
./sicostrat core <model> <time> <y> <x> <variable> [-d] [-o] [-g]
```

```
./sicostrat core grl20_tm2 0 72.350 -37.380 x -g> strat.log
```

```
./sicostrat core grl20_tm2 0 72.350 -37.380 y -g> strat.log
```

```
./sicostrat core grl20_tm2 0 72.350 -37.380 t -g> strat.log
```

```
./sicostrat core grl20_tm2 0 72.350 -37.380 O -g> strat.log
```

This will generate plots in the folder **sicotrace/strat/plots** of the GRIP ice core. The first argument *core* is needed to launch sicostrat in core mode. The second argument is the runname. The third input is the desired year (0=Present day). Then there are the coordinates in degrees N and E. The 6. argument is either *x,y,t,O* for plotting the depositional x,y,t or the derived $\delta^{18}\text{O}$ profiles. The option *-g* means than input and output are in degrees.

Other options are: *-d* for draft mode with additional infos in the plots.

In the subdirectory **sicotrace/strat/src/gmt/cores** contains $\delta^{18}\text{O}$ data from ice-cores and an info file with references and coordinates.

2.) cross sections

```
./sicostrat cross <model> <time> <i/j> <loc> <variable> [-c] [-d] [-l] [-o] [-g]
```

```
./sicostrat cross grl20_tm2 0 i 36 x -c -b > strat.log
```

This will generate a plot of a cross section along *i*=36 of the depositional x-coordinate with contour-lines (-c) and a color-bar (-b)

3.) output of $\delta^{18}\text{O}$

```
./sicostrat <mode> <time> > strat.log
```

```
./sicostrat grl20_tm2 0 > strat.log
```

Will produce a netCDF output of the derived $\delta^{18}\text{O}$ 3D field at present-time *t*=0 in the **sicopolis/sico_out/grl20_tm2** folder.

References

Greve, R., 2004. Evolution and dynamics of the Greenland ice sheet over past glacial- interglacial cycles and in future climate-warming scenarios, Proceedings of the 5th International Workshop on Global Change: Connection to the Arctic (GCCA5), University of Tsukuba, Japan, 42–45.

Greve, R., 2005. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, *Annals of Glaciology*, **42**, 424–432.

Greve, R., 2006. Large-scale simulation of the Antarctic ice sheet over climate cycles, online, accessed 14.June.2010. URL <http://hdl.handle.net/2115/34433>.

Greve, R., 2008. SICOPOLIS V2.9 - Quick Start Manual, accessed 14.June.2010. URL sicopolis.greveweb.net/docu/SICOPOLIS_V29_Quick_Start.pdf.

Greve, R. and Otsu, S., 2007. The effect of the north-east ice stream on the Greenland ice sheet in changing climates, *The Cryosphere Discussions*, **1**(1), 41–76.

Greve, R., Wyrwoll, K. H., and Eisenhauer, A., 1999. Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene, *Annals of Glaciology*, **28**, 1–8.

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L., and Thomassen, M. P. A., 2000. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling, *Journal of Glaciology*, **46**(153), 227–238.