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 Following the main point of the reviewer, many new calculations were done, and 

the text of the article was supplemented by new results. As attachment you will find 
the modified version of the article (RousselN_new.pdf) and also a pdf file where 
modifications and corrections between the two versions of the article are highlighted 
(RousselN_corrections.pdf). 

 

 
 
GENERAL COMMENTS 
 
The article is well written and illustrated, and tackles a topic of active development 
in the literature. On the other hand, I have contentions concerning the breadth 
versus depth in the subject coverage. The submission tries to tackle three separate 
issues in the simulation of GNSS reflection trajectories: - large-scale surface model 
- use of a detailed digital elevation model (DEM) - tropospheric refraction I believe 
any of these three topics individually would suffice, were it dealt with in a thorough 
and conclusive manner, which unfortunately does not seem to be the case.  
 
 Your point is relevant and we agree with the fact that we must be careful about the 

breadth versus depth in the subject coverage. The main purpose of the 
development presented here was to have an easy-to-use simulator able to give 
quickly precise coordinates of specular reflection points, with a known receiver and 
a given satellite constellation, which explains why different algorithms have been 
implemented and compared: the final aim being to choose, for given initial 
conditions, the relevant algorithm able to give well-enough results given the wanted 
accuracy.  
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Starting with the surface models, it fails to cover the simplest one, that of a planar 
horizontal surface (is the curvature of the Earth significant at the lighthouse 
scenario?);  
 
 A new subsection 3.1. Local plane reflection approximation was added in the new 

version of the article (page 4, line 321), and the results of such an approximation 
were compared to the sphere approximation (chosen as a reference).  see tables 
of results at the end of this document. 

 
3.1 Local plane reflection approximation 
 
Let us consider the projection of the receiver R0 on an osculating sphere approximation (figure 3). We 
define the local plane P as the plane tangent to the sphere at R0. Let T0 be the projection of the satellite 
on P and R’ the symmetry of R0 relative to P. We look for the positions of the specular reflection points 
on P. Considering the Thales theorem in the triangles R’ S R0 and S T T0, we have (see figure 3): 
 

𝑋𝑆
𝑋𝑇𝑂 − 𝑥𝑆

=
ℎ

𝐻
 

And so: 
 

𝑋𝑆 =
ℎ𝑋𝑇0
𝑋𝑇0 + ℎ

 

 
 
 

 
Figure 3. Determination of the specular reflection point in a local plane approximation and local difference with the sphere 
and ellipsoid approximations and DEM integration. 
S: specular reflection point position. R: receiver position. T: transmitter/satellite position. h: height of the receiver above the 
ground surface. 
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The spherical model needs to distinguish between a geocentric sphere and an 
osculating sphere (also: how does the iterative procedure compares closed-form 
solutions reported in the literature?); the ellipsoidal model lacks further 
development towards a closed-form solution (after all, the ray/ellipsoid intersection 
has well-known solution in the computer-graphics literature);  
 
 
 The spherical model used is osculating, with the Gaussian radius of curvature. 
 The spherical model algorithm (analytical with an iterative procedure based on the 

Newton method to determine the roots of a fourth order polynomial) is compared to 
the ellipsoid algorithm (in the new subsection 4.2), which is a pure iterative 
procedure (close to the algorithm presented in (Kostelechy et al 2005)). By putting 
the semi-major and –minor axis of the ellipsoid equal to the radius of the sphere, 
differences are sub-millimetric. See the new subsection 4.2 Validation of the 
surface models (page 7, line 611). 

 
 
 
 
4.2 Validation of the surface models 
 
Simulations have been performed in the case of the Geneva  Lake shore, for a 24-hour experiment, on 
the 4th October 2012. 
 
4.2.1 Cross-validation between sphere and ellipsoid approximations 
 
Local sphere and ellipsoid approximation algorithms have  been compared by putting the ellipsoid semi- 
major and minor axis equal to the sphere radius. Planimetric and altimetric differences between both 
are below 6.10-5

 m for a receiver height above reflecting surface between 5 and 300 m and are then 
negligible. The two algorithms we compare are totally  different: the first is analytical and the second is 
based on a iterative scheme and both results are very similar, which confirms their validity. 
 
 See also the new paragraph added to subsection 3.2 Local sphere reflection 

approximation, page 4 line 332. 
 
J. Kostelecky and C. Wagner already suggested an algorithm to retrieve the specular reflection point 
positions by approximating the Earth as a sphere in (Kostelecky J. et al., 2005; Wagner C., Klokocnik 
J., 2003). Their algorithm is based on an optimized iterative scheme which is equivalent to make the 
position of a fictive specular point vary until verifying the first law of Snell-Descartes. A similar approach 
will be used in this paper in the subsection 3.3 with the ellipsoid approximation. Here we chose to adopt 
a more analytical algorithm, first proposed by (Helm A., 2008). In order to validate this algorithm, 
comparisons between it and the iterative one developed for the ellipsoid approach will be done, by 
setting the minor and major axis of the ellipsoid equal to the sphere  radius (see part 4.2.1). 

 
 The ellipsoid approximation algorithm has been slightly modified by adopting a 

dichotomous process in order to increase the speed of convergence. See 
subsection 3.3 Ellipsoid reflection approximation page 5, line 406. 

 
3.3 Ellipsoid reflection approximation 
 
By knowing the locations of the transmitter and the receiver on the local ellipsoid included in the plane 
defined by the centre of the Earth, the receiver and the transmitter, let us consider the two normalized 
anti-incident rt and scattering rr vectors. When the Snell-Descartes law is verified, the sum of the two 
vectors (bisecting vector dr) coincides with the local vertical rs (figure 5). The determination of the 
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location of the reflection point is based on iterative process proposed earlier by (Gleason S. et al. , 
2009), and enhanced with a dichotomy process. Let us consider three points on the ellipsoid: 
– S1 the projection of the receiver on the ellipsoid 
– S3 the projection of the transmitter on the ellipsoid 
– S2 the projection of the middle of [S1S3] on the ellipsoid 
 
We calculate dr, the correction in direction, for each of the three points: 

 
We consider then the direction of the correction dr. If the correction is in the satellite direction, the sign 
is considered as positive, and negative if the correction is in the receiver direction. If the signs of drS1 and 
drS2 are different, it means that the specular reflection point is located between S1 and S2.We thus 
consider a new iteration with S1 = S1, S3 = S2 and S2 the projection on the ellipsoid of the middle of 
the new S1 and S3 points. We thus eliminate the part between the initial S2 and S3 points. Else if the 
signs of drS2 and drS3 are different, we consider a new iteration with S1 = S2 and S3 = S3 (and S2 the 
projection on the ellipsoid of the middle of the new S1 and S3 points). The iterative process stops when 
the difference between incident and reflected angle (with respect to the local vertical) is close to zero 
with a fixed tolerance of 1e-7°. 
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Finally, there is little verification and validation reported here – authors could use 
the simpler models to check on the more complicated ones, forcing the latter to 
artificially degenerate into the former (e.g., an ellipsoid with equal major and minor 
axes, a sphere with near-infinite radius, etc.) 
 
 A new subsection 4.2 Validation of the surface models was added in the new 

version of the article (page 7, line 611), with a cross-validation between sphere and 
ellipsoid approximations (sub-millimetric differences) and a cross-validation 
between ellipsoid approximation and DEM integration (centimetric differences).  

 
4.2 Validation of the surface models 
 
Simulations have been performed in the case of the Geneva  Lake shore, for a 24-hour experiment, on 
the 4th October 2012. 
 
4.2.1 Cross-validation between sphere and ellipsoid approximations 
 
Local sphere and ellipsoid approximation algorithms have  been compared by putting the ellipsoid semi- 
major and minor axis equal to the sphere radius. Planimetric and altimetric differences between both 
are below 6.10-5

 m for a receiver height above reflecting surface between 5 and 300 m and are then 
negligible. The two algorithms we compare are totally  different: the first is analytical and the second is 
based on a iterative scheme and both results are very similar, which confirms their validity. 
 
4.2.2 Cross-validation between ellipsoid approximation and DEM integration 
 
The algorithm integrating a DEM has been compared to the ellipsoid approximation algorithm by putting 
a flat DEM as input (i.e. a DEM with orthometric altitude equal to the geoid undulation). Results for 
satellite elevation angles above 5° are presented in table 1. As we can see in table 1, planimetric and 
altimetric mean differences are subcentimetric for a 5 and 50 m receiver height and centimetric for a 
300 m receiver height. However, some punctual planimetric differences reach 70 cm in the worst 
conditions (reflection occurring at 3408 m from the receiver corresponding to a satellite with a low 
elevation angle), which can be explained with the chosen tolerance parameters but mainly because due 
to the DEM resolution, the algorithm taking a DEM into account approximating the ellipsoid as a broken 
straight line, causing inaccuracies. For  a 50 m receiver height, planimetric differences are below 10 cm 
(reflections occurring until 573 meters from the receiver). With regards to the altimetric differences, even 
for reflections occurring far from the receiver, the differences are negligible (submillimetric). 
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The use of the DEM consists of two main parts: visibility masking and surface slope 
variations. The first part seems reasonable and indeed is useful in the scenarios 
demonstrated; it does not seem to address, though, the issue of visibility of the 
satellite and of the receiver, both from the specular point (only the visibility of the 
satellite from the receiver). 
 
 
 It was maybe not explained sufficiently clearly in the first version of the article, but 

the issue of visibility of the satellite and of the receiver from the specular point is 
addressed. The main steps of the algorithm are : 

o Check the visibility of the satellite from the receiver 
o If the satellite is visible, we find the location of the specular reflection point 

on the DEM. 
o Once the position of the specular reflection point is found, we check its 

visibility from the receiver and the satellite. 
See subsection 3.4 Ellipsoid reflection approximation combined with a DEM page 
6, line 440. 
 
 

3.4 Ellipsoid reflection approximation combined with a  DEM  
 
The two first approaches presented above are well adapted in the case of an isolated receiver, located 
on the top of a light house, for instance. In most of the cases, the receiver is located on a cliff, a sand 
dune, or a building overhanging the sea surface or a lake. It can however be really appropriate and 
necessary to incorporate a Digital Elevation Model (DEM) into the simulations, in order not to only take 
the mask effects (e.g., a mountain occulting a GNSS satellite) into account, but also to get more accurate 
and realistic positions of specular reflection points. The method we propose here consists of three steps 
later detailed in subsections 3.4.1, 3.4.2 and 3.4.3. 
 

1. A ”visibility” determination approach to determine if the receiver is in sight of each GNSS 
satellite. 

2. A determination of the specular reflection point position. 
3. A ”visibility” determination approach to determine if the determined specular point is sight 

from both receiver and satellite. 
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The second part is more contentious: I do not think the heuristics employed in its 
derivation (e.g., reflection assumed to occur along a planar cross section, Snell law 
being applied with no due consideration for the DEM resolution vis-a-vis the Fresnel 
zone area) should be trusted before they are proven correct upon comparison to a 
more rigorous formulation, such as geometrical-optics ray-tracing or physical-
optics integration. 
 
 
 Indeed, the algorithm we proposed was based on the assumption that reflections 

occur along a planar cross section, which is not relevant when integrating a DEM 
(as you commented it in the annotated PDF). That is why we adopted a new 
approach as presented in this new version of the article. We only consider the 
reflections occurring in the plane containing the receiver, the satellite and the center 
of the Earth. It’s true, that when we take a DEM into account, reflections can also 
occur out of this plane, but we only consider those contained in the plane: first 
because considering all the potential reflections would take a huge calculation time, 
and secondly because I consider the DEM integration as a way to have positions 
closer to reality w.r.t the sphere, plane or ellipsoid approximations, i.e. as a 
correction to the other algorithms, where reflections occur only within the plane. 
 
See page 4, line 312: 
 
In the plane, sphere and ellipsoid approximations, the specular reflection point of a given 
satellite is contained within the plane defined by the satellite, the receiver and the center of the 
Earth. With regards to the DEM integration, reflection can occur everywhere. In order to be able 
to compare the specular reflection point positions obtained by integrating a DEM, and to simplify 
the problem, we will only consider the reflections occurring within the plane, even while 
integrating a DEM. 

 
And see subsection 3.4 Ellipsoid reflection approximation combined with a DEM, 
page 6, line 440. 

 
3.4 Ellipsoid reflection approximation combined with a  DEM 
 
The two first approaches presented above are well adapted in the case of an isolated receiver, located 
on the top of a light house, for instance. In most of the cases, the receiver is located on a cliff, a sand 
dune, or a building overhanging the sea surface or a lake. It can however be really appropriate and 
necessary to incorporate a Digital Elevation Model (DEM) into the simulations, in order not to only take 
the mask effects (e.g., a mountain occulting a GNSS satellite) into account, but also to get more accurate 
and realistic positions of specular reflection points. The method we propose here consists of three steps 
later detailed in subsections 3.4.1, 3.4.2 and 3.4.3. 

1. A ”visibility” determination approach to determine if the receiver is in sight of each GNSS 
satellite. 

 2. A determination of the specular reflection point position. 
3. A ”visibility” determination approach to determine if the determined specular point is in plane 

of sight receiver/satellite. 
 

We have to keep in mind that a DEM gives altitudes above a reference geoid. For consistency purpose, 
the positions of the receiver and the transmitter, and the DEM grid points have all to be in the same 
reference system. So it is absolutely mandatory to convert the altitudes of the DEM grid points into 
ellipsoidal heights by adding the geoid undulation. To do so, a global grid from the EGM96 geoid 
undulation model with respect to the WGS84 ellipsoid was removed from SRTM DEM grid points. 
 
3.4.1 Visibility of the GNSS satellite from the receiver 
 



8 
 

This algorithm aims to determine the presence of mask between the receiver and the satellite. The 
visibility of the satellite and of the receiver, both from the specular point will be checked once the 
potential specular point position will be found. 
Let R, S, and T be the locations of the receiver, the specular point and the satellite/transmitter on the 
ellipsoid. We interpolate the ellipsoidal heights along the path [TSR] with a step equal to the DEM 
resolution, with a bivariate cubic or bilinear interpolation. Cubic interpolation is used when 480 the gradient 
is big, linear interpolation otherwise. Tests show millimetric differences between cubic and linear 
interpolation for flat zones but can reach one meter for mountainous areas. We thus obtain a topographic 
profile from R to T. For each segment of this topographic profile, we check if it intersects the path [TR]. 
If it does, it means that the satellite is not visible from the receiver. If not, we check the next topographic 
segment, until reaching the end of the path (i.e. T). 
 
3.4.2 Position of the specular point 
 
Once the satellite visibility from the receiver is confirmed, the next step consists in determining the 
location of the specular reflection point S along the broken line defined as in subsection 3.4.1. In order 
to simplify the process, we only consider the specular points located into the plane formed 495 by the 
satellite, the receiver and the center of the Earth. The algorithm is similar to the one used for the ellipsoid 
approximation and is based on a dichotomous iterative process. The segments formed by the points of 
the 2D DEM (see figure 6) are all considered susceptible to contain a specular reflection point. For each 
of this segment, we check the sign of the correction to apply for the two extremities of the segment with 
the same principle that for the ellipsoid approximation (see subsection 3.3), but with a local vertical 
component defined as the normal of the considered segment. If  the signs are equal, no reflection is 
possible on this segment. Otherwise, we apply the dichotomous iterative method presented in 
subsection 3.3 until convergence with respect to the tolerance parameter (fixed to 1e-7°). 
 
3.4.3 Visibility of the determined specular reflection point from the satellite and the receiver 
 
Once the position of the specular reflection point is determined, we check if it is visible from the satellite 
and the receiver thanks to the algorithm presented in subsection 3.4.1. 
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The treatment of tropospheric refraction must be disentangled. On the one hand, 
there is the angular or directional refraction, which changes the signal direction of 
arrival (primarily the elevation angle, secondarily also its azimuth). On the other 
hand, there is the refraction range or delay. It remains unclear the relative 
contribution of the two types with varying satellite direction – it’d seem that angular 
refraction is greatest near grazing incidence while ranging refraction seems 
greatest near normal incidence (considering reflected minus direct paths). The latter 
effect would need a zenith delay model, which is not normally part of a mapping as 
the AMF employed. Besides these main issues, there are secondary ones, such as 
the need for a bulky numerical weather model vs. a leaner climatology, and whether 
or not azimuthal asymmetries are significant. These issues are all touched in the 
article though only in an inconclusive manner. 
  
 The AMF tropospheric corrections used in this study are a final product computed 

following (Gegout P. et al, 2011) and provided by GRGS (Groupe de Rercherche 
en Géodésie Spatiale). They are not properly “mapping functions” as used by the 
community. AMF are constituted in two parts:  
- a scale factor which has the same role in AMF than the zenithal delay in 

classical mapping functions;  
- a successive fraction to rely the scale factor and the tropospheric delay at any 

elevation and azimuth angles. 
See: 
Gegout P., Biancale R., Soudarin L.: Adaptive Mapping Functions to the azimuthal 
anisotropy of the neutral atmosphere. J. Geodesy., 85, 661-667, 2011. 
 

 Answer to your specific comment about the convergence process p 1018 – 11. 
It appears that I must not have been clear enough about my method. Here are the 
main steps: 
- I consider the position of the specular reflection point without any correction of 

the tropospheric errors. 
- I calculate the corrections to apply to this specular point knowing the incident 

and reflecting angle corresponding to the considered reflection point. I obtain a 
corrected incident angle. Figure 7 in the paper shows the correction to apply as 
a function of the elevation angle. 

- With the corrected incident angle, I calculate a corrected position of the specular 
point (making the reflecting angle equal to this corrected incident angle).  

- With the new position of the specular point, I do a second iteration calculating 
the corrections to apply to the new incident angle. These new corrections are 
really small as plotted in the following figure (which is the same than the figure 
7, but for the second iteration): 
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- More iterations are useless because the corrections to apply becomes 

negligible, but only one iteration is not enough, because the first corrections we 
calculate are based on a point whose position is “far” from the one after 
integrating the troposphere influence.  

 
 Subsection 2.5 Adaptive Mapping Function, page 3, line 217 has been slightly 

modified to make it clearer: 
 
2.5 Adaptive Mapping Functions  
 
The neutral atmosphere bends the propagation path of the GNSS signal and retards the speed of 
propagation. The range between the satellite and the tracking site is neither the geometric distance nor 
the length of the propagation path, but the radio range of the propagation path (Marini J.W. , 1972). 
For GNSS-R measurements, the tropospheric effects induced by the neutral part of the atmosphere are 
an important source of error. Indeed, GNSS-R measurements are often done at low elevation angle 
where the bending effects are maximal. Accurate models have to be used to mitigate signal speed 
decrease and path bending. It is commonly accepted to model tropospheric delays by calculating the 
zenith tropospheric delay and obtaining the slant tropospheric delays with a mapping function. New 
mapping functions have been developed in the 2000’s (Boehm J. et al, 2006; Niell A., 2001) and 
significantly improve the geodetic positioning. Although modern mapping functions like VMF1 (Boehm 
J. et al , 2006b) and GPT2/VMF1 (Lagler K. et al. , 2013) are derived from Numerical Weather Models 
(NWM), most of these mapping functions ignore the azimuth dependency which is usually introduced 
by two horizontal gradient parameters - in north-south and east-west directions – estimated  directly from 
observations (Chen G. et al. , 1997). More recently, the use of ray-traced delays through NWM directly 
at observation level has shown an improvement on geodetic results (Hobiger T. et al , 2008; Nafisi V. et 
al , 2012; Zus F., et al , 2012). The Adaptive Mapping Functions (AMF) are designed to fit the most 
information available in NWM – especially the azimuth dependency - preserving the classical mapping 
function strategy. AMF are thus used to approximate thousands of atmospheric ray-traced delays using 
a few tens of coefficients with millimetre accuracy at low elevation  (Gegout P. et al. , 2011).  
AMF have a classical form with terms which are function of the elevation. But, they also include 
coefficients which depend on the azimuth to represent the azimuthal dependency of ray-traced delays. 
In addition, AMF are suitable to adapt to complex weather by changing the truncation of the successive 
fractions. Therefore, the AMF are especially suited to correct propagation of low elevation GNSS-R 
signals. In our study we use AMF directly provided by GRGS (Groupe de Recherche en G´eod´esie 
Spatiale) and computed following (Gegout P. et al., 2011). 
 

 And also subsection 3.5 Tropospheric corrections, page 6, line 515 
 
3.5 Tropospheric corrections 
 
In order to correct the anisotropy of propagation of radio waves used by the GNSS satellites, we use 
AMF calculated from the 3-hourly delayed cut-off in model levels computed by the ECMWF (European 
Centre for Medium  Range Weather Forecasts). AMF tropospheric corrections were computed following 
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(Gegout P. et al., 2011) and provided by GRGS for this study. Given the geometric specificities of the 
specular reflection point, two paths have to be checked for propagation error: the first one from the 
satellite  to the surface, and the second from the surface to the receiver. The main steps of the process 
are the following: 
 

1 We consider the position of the specular reflection point without any correction of the 
tropospheric errors; 

2 We calculate the corrections to apply to this specular point knowing the incident and reflecting 
angle corresponding to the considered reflection point. We thus obtain a corrected incident angle. Figure 
7 shows the correction to apply as a function of the elevation angle; 

3 With the corrected incident angle, a corrected position of the specular point is calculated, 
making the reflecting angle being equal to the corrected incident angle; 

4 With the new position of the specular point and to reach a better accuracy of the point position, 
a second iteration is done calculating the corrections to apply to this new  incident angle. 

 
3.5.1 Correction of the satellite-surface path 
 
First and foremost, we solve the parallax problem for the wave emitted by a known GNSS satellite. At 
first sight, we consider the position of the specular reflection point calculated without any tropospheric 
correction, given by the algorithm approximating the Earth’s shape as a sphere given in paragraph 
3.2.We use here AMF calculated from the projection of the receiver on the surface, considering that the 
AMF planimetric variations are negligible for ground-based observations (i.e. we consider that we can 
use the same AMF for every specular reflection points, which is valid only if the specular reflection points 
are less than few tens of kilometres from the receiver and that the specular points lie on an equal height 
surface). We thus obtain the corrected incident angle of the incident wave. Considering the law of Snell-
Descartes, the reflecting angle must be equal to the corrected incident angle, for the specular reflection 
point position. 
 
3.5.2 Correction of the surface-receiver path  
 
The aim here is to adjust the surface-receiver path to accommodate for the consequences of angular 
refraction. With the corrected reflection angle, we can deduce the corrected geometric distance between 
the reflection point and the receiver, using this time AMF calculated from the receiver, assuming that 
the AMF altimetric variations are non-negligible (i.e. the part of the troposphere corresponding to the 
receiver height will have a non-negligible impact on the AMF). Considering the corrected geometric 
distance between the reflection point and the receiver, the corrected position of the reflection point is 
obviously determined. It is indeed obtained by intersection  between a circle whose radius is equal to 
the correct geometric distance, and the surface of the Earth assimilated as a sphere, an ellipsoid, or 
with a DEM, depending on which approximation of the Earth is taken into account. We iterate the whole 
process a second time to reach a better accuracy of the reflection point position. In fact, the first 
corrections were not perfectly exact since calculated from an initially false reflection point position, and 
the second iteration brings the point closer to the correct position. More iterations are useless 
(corrections to apply are no significant).  Figure 7 shows an example of elevation corrections to apply as 
a function of the satellite elevations. This figure has been computed from simulations done on a receiver 
placed on the Geneva Lake shore (46°24’30N” ; 6°43’6”E ; 471m): see subsection 4.1 page 7. 
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For the above-mentioned reasons, I find the coverage of the subject to be too broad 
at the risk of being shallow; I’d prefer to see a narrower scope and deeper treatment. 
May I suggest authors focus on the surface model part, as it the one requiring the 
least modifications to produce an acceptable article. There is an opportunity for the 
authors to offer guidelines to fellow scientists concerning when it is no longer 
acceptable to employ the simplified models. Yet, to reap these benefits, the 
reporting of results also should be improved. In addition to the observation 
conditions (essentially satellite elevation angle and receiver height above the 
surface), also the reflection characteristics need clarification: instead of a combined 
three-dimensional position, please report vertical position separately from 
horizontal position (Cartesian or geodesic arc-length), as well as slant distance or 
propagation range. It’d be useful to emphasize whether these systematic errors 
translate into, e.g., over- or under-estimated reflector height, etc.  
 
 We took your comments into account in the new version of the paper, mainly in the 

last part: 4.4 Results and in the conclusion, but also in the abstract and in the body 
of the article. 

 
Influence of the receiver height above the reflecting surface 
 
It appears that both planimetric and altimetric differences between the method used increase with the 
receiver height above the reflecting surface. This is explainable by the fact that the higher the receiver 
is, the farther the reflection points will be from the receiver, and the bigger the impact of the Earth 
approximation will be. For a 5-meter receiver height, reflection occurs until approximately 60 meters 
from the receiver, whereas for a 300-meter receiver height, it occurs until 3400 meters (6700 m when 
integrating the DEM). It means that, in the second case, reflections occur in the mountains in the South 
of the receiver hence big differences between the sphere algorithm and the algorithm taking the DEM 
into account. For a 5 m receiver height above the reflecting surface and considering satellites with 
elevation angles above 5°, mean planimetric (resp. altimetric) differences are below 11 cm (resp. 2 cm) 
between the local sphere and ellipsoid approximation and are negligible between the sphere and plane 
approximations. With a 300 m receiver height above the reflecting surface, mean planimetric (resp. 
altimetric) differences reach 7.70 m (resp. 1.19 m) between the local  sphere and ellipsoid approximation 
and 2.1 m (resp. 8 cm) between the local sphere and plane approximations. 
 
Influence of the satellite elevation angle 
 
Secondly, by plotting the differences as functions of the satellite elevation angles, we can observe that 
the lapses between  the different algorithms vary in an inversely proportional way than the satellite 
elevation angle (and so, proportionally to the point distance from the receiver). That is why we re-ran 
the simulations, putting a more restrictive mask of visibility, tolerating only satellites whose elevation 
angle is between 10° and 90°. Tables 5, 6, 7 show results we obtain by applying such a mask. The lower 
the satellite elevation angle is, the farther the specular reflection points from the receiver and the bigger 
the impact of the Earth approximation is. The choice of the algorithm used to perform the simulations 
becomes  thus really important for the farthest reflection points (i.e for low satellite elevation angles, and 
high receiver height above the reflecting surface). For example, mean planimetric (resp. altimetric) 
differences between the local sphere and ellipsoid approximation with a 50 m receiver height are about 
1.20 m (resp. 19 cm) considering satellites with elevation angles above 5° and are about 64 cm (resp. 
13 cm) considering only satellites with elevation angles above 10°. Mean planimetric differences 
between the local sphere and plane approximation with a 50 m receiver height are about 6 cm 
considering the satellites with elevation angles above 5° and are about 2 cm considering only the 
satellites with elevation angles above 10°. Altimetric differences are negligible in both cases. 
 
Influence of the DEM integration 
 
Integrating a DEM has deleted 245 specular reflection points out of the 905 points determined during 
24 hours the 4th of October 2012 with the sphere approximation algorithm (figure 15a). These 245 points 
came from a wave emitted by a satellite hidden by a mountain located in the south part of the area. In 
the north part, any reflection point is valid when taking a DEM into account, because in that direction, 
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the relief is flat over the Geneva Lake, and so, satellites are all visible and reflections are possible (figure 
15b). Moreover, the points positions have been rectified while taking a DEM into account, since the 
others algorithms consider that reflections occur (in first approximation) in a plane around the projection 
of the receiver and without integrating the problem of the presence of relief. 
 
Comparison between algorithms 
 
For a 5-meter receiver height, and for satellite elevations greater than 10°, the mean planimetric 
difference (resp. altimetric) between the ellipsoid and the sphere algorithm is equal to 5 cm (resp. 1 cm) 
whereas for a 300-meter receiver height it is equal to 3.81 m (resp. 75 cm). The approximation  done by 
considering the Earth as a sphere or as an ellipsoid does not really affect the precision of the specular 
reflection point determination when reflection does not occur too far from the receiver (maximum equal 
to 48 cm (resp. 9 cm) for a distance inferior to 28 m) i.e. for low receiver height and high satellite 
elevation. When reflections occur far from the receiver, the choice of the approximation begins to be 
important. Concerning the algorithm taking the DEM into account, the differences obtained with respect 
to the sphere or ellipsoid algorithms are quite big even if the specular reflection point is close enough 
from the receiver. For instance, the mean difference between the sphere algorithm and the one 
integrating the DEM is bigger than 2.3 m (resp. 9.22 m) for a 5-meter receiver height, and bigger than 
92 m (resp. 37 m)  for a 300-meter receiver height, and with satellite elevation angle above 5°. 
 
[…] 
 
5 Conclusions 
 
[…] 

- the DEM integration is really important for mountainous areas: planimetric differences as 
arc length (resp. altimetric differences as ellipsoid height) can reach 5.4 km (resp. 1.0 km) 
for a 300-meter receiver height, considering satellite with elevation angle greater than 10°. 

- differences between sphere and ellipsoid approximation are negligible for specular 
reflection points close from the receiver (closer than 40-50 meters) i.e. small receiver height 
and/or high satellites elevations. For instance, planimetric differences (resp. altimetric) are 
smaller than 50 cm (resp. 10 cm) for a 5-meter receiver-height, considering satellites with 
elevation angle greater than 10°. 

 
[…] 
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SPECIFIC COMMENTS 
Here I highlight some of the intermediary-level issues; please see comments on 
body of the text for details. Authors need to spell out upfront and use consistently 
the various vertical position and direction coordinates utilized, amongst which: 
receiver height (above reflecting surface), satellite elevation (angle w.r.t. horizon), 
and altitudes (ellipsoidal and orthometic). Unqualified usage (e.g., “elevation” by 
itself) is confusing. Also the grazing angle, w.r.t. the surface tangent, needs to be 
introduced for non-horizontal surfaces, as a generalization of the elevation angle. 
 
 Corrections (list not exhaustive): 

 

Page Line Before correction After correction 

1 27 With a 50-meter receiver height 50 meters above the 
reflecting surface 

1 29 Altitude up to 2000 m Orthometric altitude 
up to 2000 m 

1 30 Altitude of 370 m  Orthometric altitude 
of 370 m 

1 52 Increase with the receiver height Increase with the 
receiver height above 
the reflecting surface 

3 186 An elevation or azimuthal mask An elevation or 
azimuthal angles 
mask 

3 187 To avoid low elevation satellites To avoid satellites 
with low elevation 
angle 

3 188 The elevation mask The elevation angle 
mask 

5 373 Considering the elevation angle of 
the satellite  

Considering the 
elevation angle of the 
satellite (considering 
zenith angle 
reckoned from the 
ellipsoidal normal 
direction) 

5 410 The two normalized vectors 
between the specular reflection 
point and the transmitter, and the 
specular reflection point and the 
receiver 

 The two normalized 
anti-incident and 
scattering vectors. 

5 411 The sum of the two vectors The bisecting vector 

7 554 We thus obtain the corrected 
elevation of the incoming wave 

We thus obtain the 
corrected incident 
angle of the incident 
wave 

7 556 The corrected elevation  The corrected 
incident angle 

8 681 Of the satellite elevation  Of the satellite 
elevation angle 
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8 682 The receiver height The receiver height 
above the reflecting 
surface 

8 687 An important receiver height A big receiver height 
above the reflecting 
surface 

8 696 The receiver height The receiver height 
above the sea 
surface 

8 699 For low elevation satellites For satellites with low 
elevation angles 

9 730 Influence of the receiver height Influence of the 
receiver height above 
the reflecting surface 

9 732 Increase with the receiver height Increase with the 
receiver height above 
the reflecting surface 

9 754 Satellite elevations Satellites elevation 
angles 

9 757 Satellite elevation Satellites elevation 
angle 

9 760 Whose elevation is between Whose elevation 
angle is between 

9 762 The lower the satellite elevation is The lower the satellite 
elevation angle is 

9 805 i.e. for low satellite elevations and 
high receiver height 

i.e. for low satellite 
elevation angles and 
high receiver height 
above the reflecting 
surface 

10 816 And with satellite elevation above 5° And with satellite 
elevation angle 
above 5° 

10 821 To the receiver height To the receiver height 
above the reflecting 
surface 

10 824 A big receiver height  A big receiver height 
above the reflecting 
surface 

10 825 For the same elevation  For the same 
elevation angle 

10 832 For low satellite elevation  Low satellite 
elevation angle 

10 836 Satellites elevation inferior to 10° Satellites elevation 
angle lower than 10° 
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The original SRTM was provided as orthometric heights w.r.t. the older EMG96 
geoid. Using geoidal undulations from the newer EGM08 would be inconsistent with 
the way SRTM was generated. Please check. 
 
 You are right. I corrected it by using a EGM96 grid instead of the EGM08 and 

simulations have been recomputed. See subsection 2.4 Earth Gravitational Model 
EGM96, page 3, line 204. 

 
2.4 Earth Gravitational Model EGM96 
 
In order to be able to convert between ellipsoidal heights  (with respect to the WGS84 ellipsoid) and 
altitudes (with respect to the EGM96 geoid model) when producing KML files or when integrating a DEM, 
the knowledge of the geoid undulation is mandatory. In this study, we interpolate a 15 x 15-Minute Geoid 
Undulation Grid file derived from EGM96  model in a tide-free system released by the U.S. National 
Geospatial-Intelligence Agency (NGA) EGM Development Team:  
http://earth-info.nga.mil/GandG/wgs84/gravitymod/. The error on the interpolation is lower than 2 cm 
(NASA and NIMA , 1998). 
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The Gaussian radius of curvature should be preferred over the meridional radius of 
curvature used. I believe the spherical approximation is osculating rather than 
geocentric as stated in the text; this is a consequence of the type of elevation angle 
employed, whose complement is reckoned from the ellipsoidal normal direction 
rather than the geocentric radial direction. 
 Corrected, in particular in page 5, line 368: 

With the Gaussian radius of curvature at the latitude of the receiver 
𝜑r  
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Glistening zone and Fresnel zone are confounded in the text. 
Formulas given for first Fresnel zone are not valid for near-surface receivers. 
 

 Corrected. Figure 15 showing the first Fresnel zones with respect to the receiver 
height above reflecting surface and satellite elevation angle has been re-done 
taking the correct formulas (w.r.t. the receiver height). See subsection 3.6 Footprint 
size of the reflected signal, page 7, line 585. 

 
3.6 Footprint size of the reflected signal 
 
The signal power received is mostly due to coherent reflection and most of scattering is coming from 
the first Fresnel  zone (Beckmann P. and Spizzichino A. , 1987). The first Fresnel zone can be described 
as an ellipse of semi-minor axis (a) and semi-major axis (b) equal to (Larson K.M. and Nievinski F.G. , 
2013): 

  
 
With 𝜆 the wave length (m), h the receiver height (m) and ε’ the satellite elevation seen from the specular 
reflection point (rad) (i.e. corresponds to the reflection angle). 
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TECHNICAL CORRECTIONS 
  
Please see annotated PDF. 
 
 Corrections, particularly (list not exhaustive): 

 

Page Line Before correction After correction 

1 1 Simulations of direct and reflected 
waves trajectories for in situ GNSS-
R experiments 

Simulations of direct 
and reflected waves 
trajectories for 
ground-based GNSS-
R experiments 

1 25 The first one at the top of the 
Cordouan lighthouse (45°35’11”N ; 
1°10”24”W ; 65 m) and the second 
one in the shore of the Geneva lake 
(46°24’30”N ; 6°43’6”E, with a 50-
meter receiver height) 

The first one at the 
top of the 65 meters 
Cordouan lighthouse 
in the Gironde 
estuary, France, and 
the second one in the 
shore of the Geneva 
lake 

1 61 Fresnel first surfaces First Fresnel zones 

1 62 For a convenient use For visualizing with 
Google Earth 

2 95 On-board aircraft antennas Airborne antennas 

2 118 These reflected waves will change 
their polarization from RHCP to 
LHCP by reflecting. 

These reflected 
waves will mostly 
change their 
polarization from 
RHCP to LHCP by 
reflecting at near-
normal incidence. 

3 181 These products are available on the 
IGS website. 

Ephemeris products 
are available on the 
IGS website (…) and 
Keplerian parameters 
e.g. on (…). 

3 189 The elevation mask commonly used 
is set to (10°;90°)  

The elevation angle 
mask commonly used 
is set to 10° min and 
90° max 

3 256 Especially especially 

3 260 Data used for validation Data used for 
assessment 

4 277 Simple difference Single difference 

4 353  WGS84 has Z polar 
and X,Y equatorial 

5 406 Local ellipsoid approximation  Ellipsoid reflection 
approximation 

6 525 To the ground To the surface 

6 525 From the ground From the surface 

7 541 Satellite-ground path Satellite-surface path 
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7 558 The ground-receiver path The surface-receiver 
path 

10 886 Inferior to Smaller than 

10 888 Superior to  Greater than 

 
As suggested, some references have been added: 
 
- Beckmann P., Spizzichino A.: Scattering of Electromagnetic Waves from Rough Surfaces. Artech 

House Publishers. 1987. ISBN 0-89006-238-2. 
- Kostelecky J., Klokocnik J., Wagner C.A.: Geometry and accuracy of reflecting points in bistatic 

satellite altimetry. J Geod (2005) 79: 421-430. DOI: 10.1007/s00190-005-0485-7, 2005. 
- Lagler K., Schindelegger M., Boehm J., Krsn H., Nilsson T. GPT2: Empirical slant delay model for 

radio space geodetic techniques. Geophysical Research Letters 40(6):1069–1073, 
doi:10.1002/grl.50288. 2013. 

- Larson K.M., Nievinski F.G.: GPS snow sensing: results from the EarthScope Plate Boundary 
Observatory. GPS Solut. 17:41-52, DOI 10.1007/s10291-012-0259-7, 2013. 

- NASA and NIMA: The Development of the Joint NASA GSFC and the National Imagery and 
Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861. 1998. 

- Nievinski F.G.: Ray-tracing options to mitigate the neutral atmosphere delay in GPS, thesis (Ph.D.), 
255 p., 2009. 

- Wagner C., Klokocnik C.: The value of ocean reflections of GPS signals to enhance satellite 
altimetry: data distribution and error analysis. Journal of Geodesy (2003) 77: 128-138. DOI: 
10.1007/s00190-002-0307-0, 2003. 

 

And some references have been removed: 
 
- Ferrazzoli P., Guerriero L., Pierdicca N., Rahmoune R.: Forest biomass monitoring with GNSS-R: 

Theoretical simulations. ADV SPACE RES, Vol. 47, 1823-1832, DOI: 10.1016/j.asr.2010.04.025, 
2010. 

- Park H., Marchan-Hernandez J.F., Rodriguez-Alvarez N., Valencia E., Ramos-Perez I., Bosch-Lluis 
X., Camps A.: End-to-end Simulator for Global Navigation Satellite System Reflectometry Space 
Mission. IEEE International Geoscience and Remote Sensing Symposium IGARSS 2010, Honolulu, 
Hawaii, USA, 2010. 

- Pavlis N.K., Holmes S.A., Kenyon S., Factor J.K.: The Development and Evaluation of the Earth 
Gravitational Model 2008 (EGM2008). J. Geophys. Res., doi:10.1029/2011JB008916,2012. 

- Beckmann P., Spizzichino A.: Scattering of Electromagnetic Waves from Rough Surfaces. Artech 
House Publishers. 1987. ISBN 0-89006-238-2. 
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As suggested, some figures have been removed, and more text have been added under them in order to help the 
reader to understand the figures. Hereafter are the remaining figures with the new captions. 
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 Following the main point of the first reviewer, many new calculations were done, 

and the text of the article was supplemented by new results. As attachment you will 
find the modified version of the article (RousselN_new.pdf) and also a pdf file where 
modifications and corrections between the two versions of the article are highlighted 
(RousselN_corrections.pdf). 

 
SUMMARY 
 
The authors have developed a simulator to determine the locations of surface 
reflection points by modeling the transmissions from GNSS satellites. They 
investigate multiple approaches to modeling Earth’s surface, including a 
digital elevation model (with potential obscuration) and incorporate a 
troposphere model. The latter is shown to have significant impact. 
The work appears to be a very useful tool. However, some of the results are 
puzzling. 
Some assumptions are not fully worked out. In addition, no validations are 
performed against prior work. These issues must be addressed prior to 
publication. 
 
 Cross-comparisons have been performed between the algorithms approximating 

the Earth as a sphere or as an ellipsoid and between the algorithm approximating 
the Earth as an ellipsoid and the one integrating a DEM in a new subsection 4.2 
Validation of the surface models, page 7, line 611. 
The one with the ellipsoid approximation is based on an iterative scheme, while the 
one with the sphere approximation is based on an analytical determination. 
Differences between both of them are sub millimetric when putting the semi-major 
and minor axis of the ellipsoid equal to the Earth radius. 
 

4.2 Validation of the surface models 
 
Simulations have been performed in the case of the Geneva  Lake shore, for a 24-hour experiment, on 
the 4th October 2012. 
 
4.2.1 Cross-validation between sphere and ellipsoid approximations 
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Local sphere and ellipsoid approximation algorithms have  been compared by putting the ellipsoid semi- 
major and minor axis equal to the sphere radius. Planimetric and altimetric differences between both 
are below 6.10-5

 m for a receiver height above reflecting surface between 5 and 300 m and are then 
negligible. The two algorithms we compare are totally  different: the first is analytical and the second is 
based on a iterative scheme and both results are very similar, which confirms their validity. 
 
4.2.2 Cross-validation between ellipsoid approximation and DEM integration 
 
The algorithm integrating a DEM has been compared to the ellipsoid approximation algorithm by putting 
a flat DEM as input (i.e. a DEM with orthometric altitude equal to the geoid undulation). Results for 
satellite elevation angles above 5° are presented in table 1. As we can see in table 1, planimetric and 
altimetric mean differences are subcentimetric for a 5 and 50 m receiver height and centimetric for a 
300 m receiver height. However, some punctual planimetric differences reach 70 cm in the worst 
conditions (reflection occurring at 3408 m from the receiver corresponding to a satellite with a low 
elevation angle), which can be explained with the chosen tolerance parameters but mainly because due 
to the DEM resolution, the algorithm taking a DEM into account approximating the ellipsoid as a broken 
straight line, causing inaccuracies. For  a 50 m receiver height, planimetric differences are below 10 cm 
(reflections occurring until 573 meters from the receiver). With regards to the altimetric differences, even 
for reflections occurring far from the receiver, the differences are negligible (submillimetric). 
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DETAILED COMMENTS 
 
Abstract: “DEM” is used before it is defined 
 Corrected  page 1, line 43. 

 
 
p.1009, Line 23 (1009-23): This assumption is not justified, particular when a 
DEM is used. The authors should at least justify this assumption and have 
some quantitative estimate as to the error made by this assumption, and 
understand the implications of this assumption. 
 
 Indeed, this assumption is only relevant for the local plane, sphere or ellipsoid 

approximation and not when integrating a DEM.  
In the plane, sphere and ellipsoid approximations, the specular reflection point of a 
given satellite is contained within the plane defined by the satellite, the receiver and 
the center of the Earth. With regards to the DEM integration, reflection can occur 
everywhere, but I only consider those contained in the plane: first because 
considering all the potential reflections would take a huge calculation time, and 
secondly because I consider the DEM integration as a way to have positions closer 
to reality w.r.t the sphere, plane or ellipsoid approximations, i.e. as a correction to 
the other algorithms, where reflections occur only within the plane. 
Please see subsection 3.4 Ellipsoid reflection approximation combined with a DEM, 
page 6, line 440. 
 

3.4 Ellipsoid reflection approximation combined with a  DEM 
 
The two first approaches presented above are well adapted in the case of an isolated receiver, located 
on the top of a light house, for instance. In most of the cases, the receiver is located on a cliff, a sand 
dune, or a building overhanging the sea surface or a lake. It can however be really appropriate and 
necessary to incorporate a Digital Elevation Model (DEM) into the simulations, in order not to only take 
the mask effects (e.g., a mountain occulting a GNSS satellite) into account, but also to get more accurate 
and realistic positions of specular reflection points. The method we propose here consists of three steps 
later detailed in subsections 3.4.1, 3.4.2 and 3.4.3. 

1. A ”visibility” determination approach to determine if the receiver is in sight of each GNSS 
satellite. 

 2. A determination of the specular reflection point position. 
3. A ”visibility” determination approach to determine if the determined specular point is in plane 

of sight receiver/satellite. 
 

We have to keep in mind that a DEM gives altitudes above a reference geoid. For consistency purpose, 
the positions of the receiver and the transmitter, and the DEM grid points have all to be in the same 
reference system. So it is absolutely mandatory to convert the altitudes of the DEM grid points into 
ellipsoidal heights by adding the geoid undulation. To do so, a global grid from the EGM96 geoid 
undulation model with respect to the WGS84 ellipsoid was removed from SRTM DEM grid points. 
 
3.4.1 Visibility of the GNSS satellite from the receiver 
 
This algorithm aims to determine the presence of mask between the receiver and the satellite. The 
visibility of the satellite and of the receiver, both from the specular point will be checked once the 
potential specular point position will be found. 
Let R, S, and T be the locations of the receiver, the specular point and the satellite/transmitter on the 
ellipsoid. We interpolate the ellipsoidal heights along the path [TSR] with a step equal to the DEM 
resolution, with a bivariate cubic or bilinear interpolation. Cubic interpolation is used when 480 the gradient 
is big, linear interpolation otherwise. Tests show millimetric differences between cubic and linear 
interpolation for flat zones but can reach one meter for mountainous areas. We thus obtain a topographic 
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profile from R to T. For each segment of this topographic profile, we check if it intersects the path [TR]. 
If it does, it means that the satellite is not visible from the receiver. If not, we check the next topographic 
segment, until reaching the end of the path (i.e. T). 
 
3.4.2 Position of the specular point 
 
Once the satellite visibility from the receiver is confirmed, the next step consists in determining the 
location of the specular reflection point S along the broken line defined as in subsection 3.4.1. In order 
to simplify the process, we only consider the specular points located into the plane formed 495 by the 
satellite, the receiver and the center of the Earth. The algorithm is similar to the one used for the ellipsoid 
approximation and is based on a dichotomous iterative process. The segments formed by the points of 
the 2D DEM (see figure 6) are all considered susceptible to contain a specular reflection point. For each 
of this segment, we check the sign of the correction to apply for the two extremities of the segment with 
the same principle that for the ellipsoid approximation (see subsection 3.3), but with a local vertical 
component defined as the normal of the considered segment. If  the signs are equal, no reflection is 
possible on this segment. Otherwise, we apply the dichotomous iterative method presented in 
subsection 3.3 until convergence with respect to the tolerance parameter (fixed to 1e-7°). 
 
3.4.3 Visibility of the determined specular reflection point from the satellite and the receiver 
 
Once the position of the specular reflection point is determined, we check if it is visible from the satellite 
and the receiver thanks to the algorithm presented in subsection 3.4.1. 
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p. 1015-18: There is something wrong with this sentence. 
 The sentence has been deleted because a new algorithm has been developed (due 

to comments from the other referee). 

 
p. 1015-22: Was it not stated earlier that a 2D coordinate system does not 
always apply? This should be clarified if needed. 
 The sentence has been deleted because a new algorithm has been developed (due 

to comments from the other referee). 

 
p. 1021-5: Do not use the word “important” here. 
 Corrected. Page 8, line 687: “an important receiver height”  “A big receiver height 

above the reflecting surface” 

 
p. 1023-17: The 8 cm difference seems much too large for the 5 m receiver 
height, comparing the sphere versus ellipsoid. 8 cm is 0.27% of the maximum 
reflection point distance from the receiver of 30 m. Distances from the 
receiver reach up to 30 m for the 5 m altitude antenna. It is hard for me to 
believe that the difference between sphere and ellipsoid over a 30 m distance 
approaches 8 cm. 30 m is a small fraction (5x10ˆ-6) of the Earth radius. I do 
not see how differences of nearly 0.3% are possible over 30 m. 
An independent validation or cross check of this code is warranted, to 
establish there is not an error. 
 
 In the new subsection 4.2 Validation of the surface models, the spherical model 

algorithm (analytical with an iterative procedure based on the Newton method to 
determine the roots of a fourth order polynomial) is compared to the ellipsoid 
algorithm, which is a pure iterative procedure (close to the algorithm presented in 
(Kostelechy et al 2005)). By putting the semi-major and –minor axis of the ellipsoid 
equal to the radius of the sphere, differences are sub-millimetric. 
The 8 cm difference is the geometric distance between the two determinations of 
the specular reflection points and is not the difference between the sphere and the 
ellipsoid. 
If the difference between the sphere and the ellipsoid at 30 m is about X cm, the 
difference between the two determinations of the specular reflection point positions 
will be far greater than X cm. 

 
4.2.1 Cross-validation between sphere and ellipsoid approximations 
 
Local sphere and ellipsoid approximation algorithms have  been compared by putting the ellipsoid semi- 
major and minor axis equal to the sphere radius. Planimetric and altimetric differences between both 
are below 6.10-5

 m for a receiver height above reflecting surface between 5 and 300 m and are then 
negligible. The two algorithms we compare are totally  different: the first is analytical and the second is 
based on a iterative scheme and both results are very similar, which confirms their validity. 
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p.1026-5: integration of a DEM must consider the lack of co-planarity is 
possible between transmitter, receiver and Earth center 
 
 You are perfectly right. But same answer as for your first detailed comment. We 

must precise clearly in the article that we only consider the reflections occurring in 
the plane defined by the transmitter, the receiver and the Earth center, which is 
done page 4, line 312. 
 

In the plane, sphere and ellipsoid approximations, the specular reflection point of a given satellite is 
contained within the plane defined by the satellite, the receiver and the center of the Earth. With regards 
to the DEM integration, reflection can occur everywhere. In order to be able to compare the specular 
reflection point positions obtained by integrating a DEM, and to simplify the problem, we will only 
consider the reflections occurring within the plane, even while integrating a DEM. 
 
 
 

 


