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Dear Scientific Editor,

We are pleased to submit to GMD this revised version of our paper entitled
“Capabilities and performance of Elmer/Ice, a new generation ice-sheet model’.

We are very grateful to the two referees for their positive and constructive
comments about our work. We provide here a revised version with changes highlighted in
red, as well as a point by point response to the reviews.

Sincerely Yours,
Olivier Gagliardini



# Referee 1: Anonymous

This paper describes in detail the formulation of the Elmer/Ice ice sheet model. As discussed in the
paper, this is one of a new generation of models aimed at better simulating future ice-sheet
changes, with full-Stokes dynamics, unstructured horizontal grid meshes, sophisticated linear
solvers with massively parallel capability, and inverse methods for internal-flow enhancement
factors and basal sliding coefficients. The model formulation is described in highly technical and
terse mathematical style, which will be fully accessible only to a subset of readers, but it is a
rigorous and comprehensive record of the model physics and numerics. Given the terseness,
some sections would benefit from a few non-mathematical sentences providing perspective,
justification, or purpose of the following material, as noted below. Apart from that caveat, the paper
is well written and clear, and the sections are nicely organized, stepping through the individual
processes and functions of the model.

The paper is strictly limited to the model formulation and aspects of numerical solutions, and does
not contain any examples of applications to real glaciers or ice sheets. This is justified because
such applications are readily available in other publications, as noted on pg. 1693 (lines 26-29).

We thank the referee for this positive statement about our work.

Specific comments:

Abstract: Most of the abstract, except for the last 2 sentences, sounds more like background
material and perspective on Elmer/Ice’s role. This is valuable information, but belongs more in the
Introduction. Perhaps the abstract could open with one sentence in that vein, but it would be more
usual and useful for the bulk of the abstract to summarize the main content of the paper. This could
be like a simplified and shortened version of the concluding paragraph in section 9.

The abstract has been modified and a better description of which material is presented in the paper
has been added. We made the choice to make the abstract longer by only adding a better present-
ation of which material is really presented in the paper. The abstract still fits the GMD length re-
commendation.

Section 2.2: Some sentences justifying the inclusion of the two anisotropic flow laws (GOLF and
CAFFE) would be helpful. Do they have significant effects on predicted fields of interest, compared
to using simple spatial variations of enhancement coefficients? What are those fields, and is this
information in other papers?

We have added some sentences to justify the use of an anisotropic flow law and gives some ex-
amples with link to papers where the anisotropy have been shown to be a key component of the
overall flow.

Section 2.3: There is some discussion (pg. 1699, top) where the surface accumulation and ablation
come from. But there is no corresponding mention of where the sub-iceshelf oceanic
melting/accretion or calving rates come from, that enter in Egs. (11) and (13). This is discussed in
"Outlooks" in section 8, mainly as future work. It would help (i) to add a sentence on pg. 1699
referring to the later discussion, and (ii) to briefly describe how ocean melt/accretion and calving
have been prescribed in the executed Elmer/Ice simulations of future Greenland (abstract, and pg.
1693 line 20).

We have added a sentence which state that basal melting and calving rate are more complicated

boundary conditions than the surface accumulation, but that this point is discussed in Section 8.
The Greenland simulations were performed without any basal melting and calving.

Section 6.1: pg. 1713, line 22: At the start of this paragraph, make clear that the following page,



describing re-arrangement of the nodes, is to allow changing ice boundaries in long-term
simulations (e.g., growth for ice caps to a full ice sheet). This basic perspective sometimes gets
lost in the mathematical terseness of the presentation. More sentences like pg. 1715, line 6-7,
would be helpful.

We have added a sentence to explain the context and that the mesh deformation is required as far
as we are dealing with a transient simulation with evolving top and/or bottom and/or front boundar-
ies.

Section 6.2: Similarly, it would help to open this section by stating its basic purpose or function,
even if it is somewhat obvious. Here, say that this is the basic way that Elmer/Ice solves the main
equations (Stokes, and transport) - by casting them in variational form. And say why this is done,
as opposed to non-variational methods - to lead to linear systems, as noted at the start of Section
6.3?

We have added a small introduction at the top of Sec. 6.2 to explain the general purpose of the two
following sub-sections.

Technical comments:
pg. 1691, line 27: "opens" should be "open".

Done

pg. 1694, line 2: Change "ice age equation" to "age equation", to avoid possible confusion at first
sight with "Ice Ages (Quaternary, etc)".

Done

pg. 1696, line 5: Change "knowing of" to "knowledge of" or "knowing".

Done

pg. 1711, line 10: Change "best with to" to ?

Changed by 'the best possible fit to observations'

pg. 1716, line 19: Change "ice the" to "the ice".

Done

pg. 1721, line 8. Perhaps use different symbols for the general u,v terms in Eq. (65), to avoid initial
reader confusion with the actual velocities u and v.

As it is only used here, we haven't change the notation but have specified that u,v are here two ar-
bitrary vectors.

Fig. 1: Associated with Fig. 1, would it be possible to indicate the dimensional mesh values (km)
associated with the x axis, and typical magnitudes of velocity differences (m/year) associated with
the y axis? This could be summarized in words on pg. 1721, or in the caption.

The dimensional mesh values is now given in the text. For the typical magnitudes of velocity differ-
ences, as this solution is manufactured, the absolute value of velocity hasn't a real physical mean-
ing so that relative error is certainly more pertinent.

Fig. 1: It seems disconcerting that there is no levelling off of the L"2 error as the dof (#mesh size)
decreases. In general, a test of adequate model resolution is that errors level off (or are close to it)
for finer resolutions than the one used. Is this relevant here?

No, the difference between the analytical solution and the FE solution should continuously be de-



creasing with decreasing element size down to an element size where the numerical errors might
not allow any amelioration of the solution. This stage is not reached for the presented convergence
tests.

Figs. 3,4: Define Acceleration and Efficiency (y-axes), even though they may be basic concepts in
computer parallelism.

Acceleration and efficiency are now defined in the text where Figs. 3 and 4 are presented.

Section 7.4: It would be interesting to add a figure showing the prescribed sinusoidal forms of beta
and eta (Egs. 66, 67), and their final estimated forms (or the difference), as functions of x. Unless
they are virtually the same (?)

There are not virtually the same, especially for eta. To illustrate that we have added a figure which
compare the inversion for eta over the whole domain or assuming that the vertical evolution of eta
is conserved. As can be seen, for a very comparable agreement of the surface velocity with obser-
vation, the two inferred eta fields are significantly different.

pg. 1726, line 17: “filed" should be "field".

Done

Review #2: Eric Larour
General comments:

the manuscript is a good summary of the state of the art developments that EImer/lce has shown in
the past decade. It is clearly written, to the point, with clear figures and clear development of the
technical capabilities. | find no issue with the technical developments exposed in the model, as
they are fairly standard and well-known by now in the ice sheet modeling community. | believe this
model is a great example of good engineering meeting good science targets, and its implementa-
tion has resulted in great advances in terms of grouding line dynamics in particular. As such, | re-
commend this manuscript be published, as it will be very useful for other ice sheet modelers to cal-
ibrate against, and for new modelers to come up to speed with the state of the art in ice sheet mod-
eling.

Thank you for these positive comments about our paper.
Detailed comments:

p1690.11: this is a strong statement. The wording in the key uncertainties section of the report is
more nuanced.

The sentence has been modified.

p1690.112: not sure what is meant by this statement. What is an ice-sheet model? | would not
define one by its scalability. The term is in my opinion voluntarily vague, and should probably re-
main so.

This sentence was a kind of reply to the paper by Alley and Joughin (2012), but as this statement is
in the abstract this paper cannot be referenced. Anyway, we agree that the definition of what is an
ice sheet model is vague.

p1694.110: "very very” not needed.
Corrected

p1695.11-2: please provide citations to this effect.



Done. Following a remark from reviewer #1, a short introduction on the importance of accounting
for anisotropy has been added.

p1699.13: "based the positive” — > "based on”
Done.

p1718.110: the normals are uniquely defined along edges of elements in 2D, or faces in 3D. If the
boundary conditions are applied on these faces, and not at the nodes, this should not be an issue.
Please elaborate on this further, as it is not clear why you are evaluating your boundary conditions
at the nodes.

This is not exactly true as Dirichlet BC are imposed at nodes. This is thus problematic when setting
a non-penetration BC, i.e. that the normal velocity is null (in presence of sliding for example). The
paragraph has been clarified.

p1718.16: by repeating the algorithm, zigzagging is probably going to appear. Please discuss how
you avoid these issues in your model.

No, this method is stable and converge without oscillation. This method is similar to a contact
method.

p1723.112: please explain the one order of magnitude statement. It would seem that if the solvers
are scalable, more than one order magnitude improvement should be reachable?

Scalability in reality is always up to a number of cores. The point is that using the previous MUMPS
library, the Stokes solver was scalable up to less than 100 cores. With the new block precondi-
tioned solver presented in this paper, the solver stay scalable up to more than 1000 cores, which
open the door of mesh size 10 time larger than what we were able to do so far. The text has been
slightly modified to be clearer.

Figures: figures are clear and concise, captions are descriptive and to the point.

Thanks
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Abstract. The Fourth IPCC Assessment Report concluded that ice-sheet flow models, in their current
state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associ-
ated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort
to develop and improve a new generation of ice-flow models, and as a result, a significant number of new
ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the
open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections
for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to
solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached
the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise
almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations,
for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem,
and contains various basal friction laws. Derived fields, like the age of the ice, the strain-rate or stress
can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known
parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation
of a block preconditioned solver for the Stokes system. In this paper, all these components are presented
in detail, as well as the numerical performance of the Stokes solver and developments planned for the

future.
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1 Introduction

Since the 2007 IPCC report (Solomon et al., 2007), theoretical glaciology has taken a big leap towards
improved ice-sheet flow models, in order to provide reliable future estimates of the dynamical contribu-
tion of ice-sheets to sea level rise. These models were originally designed to reconstruct the evolution
of ice-sheets over past glaciological cycles, neglecting short term responses and local features. The new
challenge of running ice-sheet models to provide estimates of future sea-level rise has created the need
for a new generation of ice-sheet models (Vaughan and Arthern, 2007; Gillet-Chaulet and Durand, 2010;
Blatter et al., 2011; Kirchner et al., 2011; Alley and Joughin, 2012). This new generation of ice-sheet
models includes a set of requisites that are essential to provide a sufficiently accurate description of the
ice flow dynamics.

As a first requisite, these models must be able to describe the ice flow heterogeneity, and particularly
the major contribution of individual ice streams to the total ice discharge. This requires the use of an
unstructured mesh in the horizontal plane (e.g. Gillet-Chaulet et al., 2012; Larour et al., 2012; Seddik
et al., 2012) or of adaptive multi-grid methods (Cornford et al., 2013b). These mesh techniques are
essential to produce hundred-metre scale grid sizes in areas of interest, especially near the coast, while
for the interior regions where variations in velocity gradients are small, classic grid sizes can be kept to
save computing resources. Grid refinement is even more essential when considering the dynamics of the
grounding line, i.e. the boundary between the grounded ice sheet and the floating ice shelf, because a grid
size that is too large gives inconsistent grounding line dynamics (Durand et al., 2009; Pattyn et al., 2013).

The second important requisite is to have an accurate description of the complex state of stress pre-
vailing in ice streams to solve the full-Stokes system, or at least to adopt a higher order asymptotic
formulation. As shown by the ISMIP-HOM inter-comparison exercise (Pattyn et al., 2008), higher-order
models are needed to describe the ice flow in areas where the basal topography and slipperiness vary
greatly, which are generally the most dynamic regions within ice sheets. Higher-order models are also
necessary to properly describe the dynamics of the grounding line. The MISMIP inter-comparison (Pat-
tyn et al., 2012) indicated the need to solve the full-Stokes equations near the grounding line to obtain
fully accurate results.

The consequences of these first two requisites, i.e. high numerical resolution at places of interest and
higher order formulations, are a high computing cost and the necessity to develop parallel codes, able to
run on hundreds of CPUs. Recent studies (Larour et al., 2012; Gillet-Chaulet et al., 2012; Seddik et al.,
2012; Cornford et al., 2013b) have fulfilled these requirements and have shown that by deploying high
performance computing (HPC) techniques this challenge can be successfully taken on. In this context,
Elmer/Ice takes advantage of being backed by a large open source community that also develops new
numerical and HPC techniques for the code (e.g. Malinen, 2007).

The third requisite, and from the physical point of view the most challenging, is to implement physically-



55

60

65

70

75

80

85

founded boundary conditions. These improvements are far more complex and it will take more time to
fully address them in the ice-sheet flow models. The recently observed changes in coastal glacier dynam-
ics (e.g. Moon et al., 2012) are certainly driven by changes in ice sheet and ice shelf boundary conditions,
and consequently linked to changes in the ocean and atmosphere components of the climatic system. In
the simplest cases, changes in the climatic components directly drive the changes at the boundaries of the
ice mass. This is the case for surface air temperature or ocean temperature which directly drive the tem-
perature boundary condition of the upper surface or the bottom ice/ocean interface, respectively. In other
more complex cases, the link between changes in the ocean and/or atmosphere and changes in the ice
flow is indirect. Intermediate processes (often not observable) are involved, as in the case for example of
the link between surface runoff and basal sliding or ocean temperature and calving rate. Thus, a dedicated
model is required to describe the processes responsible for the transfer of these changes to the ice mass.
Driving this dedicated transfer model might require to couple the ice sheet model with an atmosphere or
an ocean model.

The last important requisite for a forecast model is to be able to simulate present day observations with
as much fidelity as possible (Aschwanden et al., 2012). This point must be addressed clearly using data
assimilation techniques and specific inverse methods to estimate the less well-known parameters of the
model (e.g. Heimbach and Bugnion, 2009; Arthern and Gudmundsson, 2010; Morlighem et al., 2010).

Recent ice-sheet model developments have started to fulfil some of these priority requisites, leading
the way toward the new generation of ice-sheet models (Bueler and Brown, 2009; Pollard and DeConto,
2009; Rutt et al., 2009; Larour et al., 2012; Leng et al., 2012b; Winkelmann et al., 2011; Favier et al.,
2012; Gillet-Chaulet et al., 2012). Among them, the Elmer/Ice model already includes many of these
requisites. Elmer/Ice is the glaciological extension of Elmer, the open source finite element (FE) software
developed by CSC in Finland (http://www.csc.fi/elmer/). Elmer is a multi-physics code base from which
it was possible to develop new specialised modules for computational glaciology while maintaining the
compatibility with the main Elmer distribution. Thus, Elmer/Ice still benefits from the developments of
the standard Elmer distribution. In this paper, for simplicity we refer to Elmer/Ice even if some of the
features described belong to the main Elmer distribution. Elmer/Ice was not originally designed as an
ice-sheet model since the first applications were restricted to local areas of interest or glaciers (Le Meur
et al., 2004; Zwinger et al., 2007; Zwinger and Moore, 2009). Elmer/Ice was primarily developed to
solve the flow of anisotropic polar ice and the evolution of its strain-induced fabric (Gillet-Chaulet et al.,
2006; Durand et al., 2007; Seddik et al., 2008, 2011; Ma et al., 2010; Martin and Gudmundsson, 2012).
It has since then been used to model the flow of a cold firn-covered glacier using a dedicated snow/firn
rheological law (Zwinger et al., 2007). Elmer/ice has been the only full-Stokes model to perform the
whole set of the ISMIP-HOM experiments (Gagliardini and Zwinger, 2008; Pattyn et al., 2008) and is
still the only full-Stokes model to participate in the grounding line experiments MISMIP (Pattyn et al.,
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2012). Elmer/Ice was further used as a reference for the later MISMIP3d experiments (Pattyn et al., 2013).
Recently, data assimilation was implemented within Elmer/Ice (Jay-Allemand et al., 2011; Schifer et al.,
2012; Gillet-Chaulet et al., 2012) to infer poorly known parameters such as basal drag. Today, Elmer/Ice
is the only three-dimensional full-Stokes model that solves the grounding line dynamics (Favier et al.,
2012) and, it will be the only full-Stokes model able to run forecast simulations for the whole Greenland
ice sheet for the coming ARS IPPC report, in the framework of both SeaRISE (Seddik et al., 2012) and
ice2sea (Gillet-Chaulet et al., 2012; Shannon et al., 2013; Edwards et al., 2013) programmes.

In this paper, we summarise ten years of consistent developments and present the current state of the
new generation ice-sheet model Elmer/Ice. We only focus on the past developments that are relevant for
simulations of three-dimensional ice sheets. Specific developments regarding two-dimensional flow line
or glacier applications are not presented here, but one can consult previous publications on these types
of applications (the complete list of Elmer/Ice publications can be found on http://elmerice.elmerfem.
org/). Section 2 presents the governing equations implemented in Elmer/Ice. The associated boundary
conditions are discussed in Sect. 3. Other useful equations, such as the equation to evaluate the age of
the ice, are presented in Sect. 4. Section 5 is dedicated to the inverse methods implemented in Elmer/Ice.
Some technical aspects related to the resolution of these equations in the framework of the FE method
are discussed in Sect. 6. The efficiency of Elmer/Ice was verified by standard convergence and scalability

tests described in Sect. 7. Finally, we provide some insights in the future planned developments in Sect. 8.

2 Governing equations
2.1 Ice flow equations

Ice is a fluid with an extremely high viscosity that flows very slowly so that inertia and acceleration terms
entering the momentum equation can be neglected. Therefore, the three-dimensional velocity field and
the pressure field of an ice mass flowing under gravity are obtained by solving the Stokes equations over

the ice volume (2. The Stokes equations express the conservation of linear momentum
dive + pg =divr — grad p+pg =0, €))

and the mass conservation

divu =tre =0. 2)

In these equations, p is the ice density, g = (0,0,—g) the gravity vector, u = (u,v,w) the ice velocity
vector, o = 7 — pI the Cauchy stress tensor with p = —tro /3 the isotropic pressure and 7 the deviatoric
stress tensor. This system of equations of unknowns u and p is closed by adopting one of the rheological
laws presented in the next section. The conditions that are applied on the boundary I" of the volume 2

are discussed in Sect. 3.
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2.2 Rheological laws for polar ice

Even if most ice-sheet models assume an isotropic rheological law for ice, it is well known that the viscous
response of polar ice can be strongly anisotropic, and that this response depends on the crystal orientation
distribution, i.e. the ice fabric (e.g. Gagliardini et al., 2009). Elmer/Ice includes the classic isotropic
Glen’s flow law as well as two anisotropic flow laws. As shown in various applications, the anisotropy
of polar ice has a strong influence on the overall flow (Zwinger et al., 2013) and will in turn modify the
age-depth relationship (Gillet-Chaulet et al., 2006; Seddik et al., 2011). In central parts of ice-sheets, ice
anisotropy and the development of fabric can explain the observed heterogeneity of the ice deformation
along a drilling (Durand et al., 2007). On the coastal area, due to the large contrast of the stress regimes
for the grounded part and for the ice-shelf, the ice anisotropy induces an apparent hardening of the ice up
to a factor 10 when ice moves from grounded to floating (Ma et al., 2010).

When ice is assumed to behave as an isotropic material, its rheology is given by a Norton-Hoff power

law, known as Glen’s law in glaciology, which links the deviatoric stress T with the strain-rate &:
T =2n¢€, 3)
where the effective viscosity 7 is defined as
1
— Z(EA —1/n-(1—n)/n. 4

In Eq. (4), é2 =1tr(€?)/2 is the square of the second invariant of the strain-rate and A = A(T") is
a rheological parameter which depends on 77, the ice temperature relative to the pressure melting point,
via an Arrhenius law. The enhancement factor E in Eq. (4) is often used to account for anisotropy effects,
by prescribing an ad-hoc value depending on the ice age and/or type of flow. Due to the state of stress,
is expected to be greater than 1 for grounded ice of polar ice-sheets, whereas a value lower than 1 should
be used for floating ice-shelves (Ma et al., 2010). A compressible form of Glen’s law (Gagliardini and
Meyssonnier, 1997), well adapted to describe the flow of firn is also implemented in Elmer/Ice (Zwinger
et al., 2007).

Both implemented anisotropic flow laws depend on the ice polycrystalline fabric, which is described

by its second and fourth order orientation tensors a(?) and a®), respectively, defined as

agf) = <Cicj> and az(.?])d = <CiCjCkCl>, (5)

where c is the crystal c-axis unit vector and () denotes the average over all the grains that compose the
polycrystal. By definition odd order orientations tensors are null, and the higher the order of the orien-
tation tensor the better the description of the fabric. However, it can be shown that with a linear flow
law, knowing the second and fourth order orientation tensors is sufficient to uniquely define the macro-

scopic flow law (Gillet-Chaulet et al., 2005; Gagliardini et al., 2009). For random c-axes distribution the
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non-zero entries of a(?) are aiﬁ = aég) = a§3) =1/3, for a single maximum fabric with its maximum in

the third direction, ag? >1/3 and aﬁ) = ag) < 1/3, and for a girdle type fabric in the plane (x1,22),
aé? <1/3 and a(ﬁ) ~ a(222) >1/3. In addition to three eigenvalues, three Euler angles are necessary to
uniquely define a(®) with respect to a general reference frame. It can be shown analytically with a linear
flow that if the second and fourth order orientation tensors have the same eigenframe, the polycrystal
behaviour will exhibit orthotropic symmetries (Gillet-Chaulet et al., 2006). The equations for the fabric
evolution are presented in Sect. 2.5.

The first anisotropic flow law implemented in Elmer/ice is the non-linear General Orthotropic Flow
Law (GOLF, Gillet-Chaulet et al., 2005; Ma et al., 2010). The GOLF law provides a non-collinear and
non-linear relation between strain-rate and stress, using the concept of structure tensors. In its initial
form, the ice was assumed to behave as a linearly viscous orthotropic material. In more recent works
(Martin et al., 2009; Ma et al., 2010), the GOLF law has been extended to a non-linear form by adding
an invariant in the anisotropic linear law. The simplest choice is either to add the second invariant of the
strain rate €, (Martin et al., 2009) or the second invariant of the deviatoric stress 7. (with 72 = tr(72)/2,
Pettit et al., 2007; Ma et al., 2010). No theoretical or experimental results are available today to discard
one of these two solutions, and other solutions based on anisotropic invariants of the deviatoric stress
and/or the strain rate are also possible. In Elmer/Ice, both solutions are implemented. Using the second
invariant of the deviatoric stress, for a given fabric and a given state of stress, the corresponding strain
rate relative to the isotropic response is the same for the linear and non-linear cases. Using the strain-rate
invariant in the same way as Martin et al. (2009) leads to an opposite definition of the anisotropy ratios:
for a given strain-rate, the corresponding stress relative to the isotropic response is the same for the linear

and non-linear cases. When using the stress second invariant, the GOLF law reads

2A7 by =

r

[nte(M, - €)MP +1,153(6- M, +M,-¢)"]. (6)
1

3

The six dimensionless anisotropy viscosities 7,.(a(®)) and 7,,3(a®) (r =1, 2, 3) are functions of
eigenvalues of the second order orientation tensor a(®), which represent a measure of the anisotropy
strength. The three structure tensors M, are given by the dyadic products of the three eigenvectors of
a® | which then represent the material symmetry axes. In the method proposed by Gillet-Chaulet et al.
(2006), the six dimensionless viscosities 7, (a(2)) are tabulated as a function of the fabric strength (i.e. the
az@) using a micro-macro model. Various micro-macro models, from the assumption of uniform stress
within the ice polycrystal to the assumption of uniform strain-rate, as well as different crystal anisotropy
can be used to tabulate the six viscosities 7. The most realistic polycrystalline response is obtained
using the visco-plastic self-consistent model (VPSC, Castelnau et al., 1996, 1998), with the two crystal

anisotropy parameters chosen so that the experimentally observed polycrystal anisotropy is reproduced

(Gillet-Chaulet et al., 2006; Ma et al., 2010). When the ice is isotropic, n, =0 and n,y3=1 (r=1, 2, 3),
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then the GOLF law 6 reduces to Glen’s isotropic flow law 3 with £ = 1.

The second anisotropic flow law implemented in Elmer/Ice is the Continuum-mechanical Anisotropic
Flow model based on an anisotropic Flow Enhancement factor (CAFFE, Seddik et al., 2008; Placidi et al.,
2010). The CAFFE model assumes collinearity between the strain rate and deviatoric stress tensors, so
that the general form of Glen’s law 3 is not modified, but the enhancement factor E is a function of the
polycrystalline deformability D such that:

(1= Enin) D!+ Enin - 1>D >0,
E(D)= (7

2 — —
4D" (Emax ;i+25 4 Emax 5/2 >D>1,

with
t= é M
21\ 1— Epin
The polycrystalline deformability D is a function of strain-rate and fabric. When D = 0, the minimal

)7 Emaleo, Emin'&io.l. (8)

enhancement factor Fy;, is reached, which corresponds to an uni-axial compression on a single maximum
fabric. For an isotropic fabric, D =1 and the response is identical whatever the strain-rate, whereas the
maximal enhancement Ey,, is obtained for D = 5/2 which corresponds to a single maximum fabric
undergoing simple shearing. The adopted form for the polycrystalline deformability, which verifies the

above criteria, reads
[(é-a@) —a:¢):¢€]

D=5 2

)
2.3 Evolution of the surface boundaries

For transient simulations, the upper and lower boundaries of the domain are allowed to evolve, following
an advection equation. Evolution of the upper surface z = zs(z,y,t) is given by

0z ‘u 0z o %
ot “oxr Oy

where (us,vs,ws) are the surface velocities obtained from the Stokes solution and as = as(z,y,t) is the

—ws = as, (10)

accumulation/ablation prescribed as a vertical component only. Elmer/Ice provides a surface melting
parameterisation based on positive degree-day (PDD) method (Reeh, 1991), supplemented by the semi-
analytical solution for the PDD integral by Calov and Greve (2005) (Seddik et al., 2012). The accu-
mulation/ablation distribution can also be inferred from a Regional Climate Model either directly as in
Gillet-Chaulet et al. (2012); Shannon et al. (2013) or using a surface elevation parametrisation as in Ed-
wards et al. (2013).

The lower surface of an ice-sheet is either in contact with the bedrock or the ocean. The evolution of
the lower surface z = 2y, (z,y,t) is given as
1/2

82}, 2 6zb 2
1+(ax>'+<ay)] , (11)

6Zb+ 8zb+ 82}3
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where (up,vp,w,) are the basal velocities and a, | = ap, (2,y,t) is the melting/accretion function, taken
perpendicular to the surface.
Assuming a rigid, impenetrable bedrock z = b(x,y), the following topological conditions must be ful-
filled by zs and zy,:
zs(x,y,t) > 2n(z,y,t) > b(z,y)  Va,y,t. (12)

The weak formulation of Eq. (10), respectively Eq. (11), in combination with the constraints (12) forms
a variational inequality. Technically, it is solved using a method of imposed Dirichlet conditions that are
released by a criterion based on the residual, as described in Sect. 6.5. In Gagliardini et al. (2010), melting
below the ice-shelf was prescribed using a parameterised expression following Walker et al. (2008). As
discussed in Sec. 8, a proper description of the basal melting below ice-shelves will certainly require the
coupling of Elmer/Ice with an ocean model or at least the implementation of a plume type model.

The margin boundary of an ice-sheet is either land- or marine-terminated, depending on whether the
bedrock elevation at the ice front is located above or below sea level, respectively. In both cases, the
front position evolves with time and its evolution is governed by the imbalance between ice flux and
ablation/basal melting/calving processes. Land-terminated fronts can be treated classically by adopting
a minimal ice thickness huyn, SO that the exact condition 12 is replaced by the less strict one zg(x,y,t) >
b(2,y) + hmin (and 2y (2,y,t) = b(x,y)).

Where the ice-sheet is marine-terminated, this type of treatment cannot be applied because the sea-
water pressure and lateral buttressing forces would not be correctly taken into account. The front bound-
ary of a marine-terminated ice-sheet must therefore be allowed to move over time, as a function of the
calving rate and ice flux at the margin.

Assuming that the calving front is a vertical surface, it can be described by the implicit function
F.(z,y,t) =0 (Greve and Blatter, 2009). Denoting by grad F, = (9F./0x,0F./0y,0) its gradient,
N. =] grad F¢| the norm and n. = grad F./N, the unit normal vector (assumed to point out of the

ice), the calving front evolves as follows

OF, n OF, N OF,
ot b ox v oy

=Necy, 13)

where ¢, is the calving rate. The latter is defined as the ice volume flux across the calving front,
¢) = (u—w.)-n., where w, is the kinematic velocity of the calving front (Greve and Blatter, 2009). Im-
plementation of calving laws to evaluate the calving rate c is part of the developments currently ongoing
in Elmer/Ice, as discussed more in details in Sec. 8. Moving the mesh both vertically (upper and lower
surface) and horizontally (calving front) induces additional terms in the convection part of equations and

in turn technical issues that are discussed in Sect. 6.1.
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2.4 Heat equation

The temperature within the ice is obtained from the general balance equation of internal energy and reads

T
pCy (%t +u- grad T) =div(k grad T)+D: o, 14

where k= £(T) and ¢, = ¢, (T) are the heat conductivity and specific heat of ice, respectively. The last
term in the heat equation represents the amount of energy produced by viscous deformation. The ice
temperature 7' is bounded by the pressure melting point Ty, so that T' < Ty, or equivalently 7" <0, with
T’ =T —T,, being the homologous temperature entering the Arrhenius law to estimate Glen’s parameter
in Eqgs. (4) and (6). This inequality, but also temperature-dependent material properties, make the solution
of the heat transfer equation a non-linear problem which is solved using an iterative method as presented

in Sect. 6.5.
2.5 Fabric description and evolution

Assuming that recrystallisation processes do not occur and that the ice fabric is induced solely by de-
formation, the evolution of the second-order orientation tensor a(® defined by Eq. (5) can be written

as
Ha®

T + grada® . u=W-a® —a®. W, (C-a® +a®.Cc-2a":C), (15)

where W is the spin tensor defined as the antisymmetric part of the velocity gradient. The tensor C is
defined as
C=(1—a)é+ak AT 1. (16)

The interaction parameter o controls the relative weighting of the strain rate € and the deviatoric stress
T in the fabric evolution Eq. (15). When o = 0, the fabric evolution is solely controlled by the state of
strain rate, whereas in the case where oo = 1 the fabric evolves under the influence of the deviatoric stress
solely. In between, as for the VPSC, both the strain rate and deviatoric stress contribute to the fabric
evolution. Assuming ¢ = 1, an interaction parameter o = 0.06 is in accordance with the crystal anisotropy
and the VPSC model used to derive the polycrystalline behaviour (Gillet-Chaulet et al., 2006). Seddik
et al. (2008, 2011) adopted instead o =0 and a value of ¢ lower than 1. In Eq. (15), the fourth-order
orientation tensor is evaluated assuming a closure approximation giving a*) as a tensorial function of
a® (Chung and Kwon, 2002; Gillet-Chaulet et al., 2006). Theoretically, recrystallisation processes, such
as continuous and migration recrystallisation, can be included by adding terms in Eq. (15) to parameterise
on the polycrystalline scale the phenomena occurring at the grain scale (Seddik et al., 2011). Because
experimental data are currently missing, these parameterisations have not yet been validated and are not

presented here.
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3 Boundary conditions

For all the equations presented above, classic Dirichlet, Neumann, Robin, symmetric and periodic bound-
ary conditions can be applied on the boundary of the domain. In this section, we present the conditions
to be applied on the different boundaries of an ice-sheet for the main equations presented above, and we

focus more specifically on the treatment of the basal boundary.
3.1 Ice/atmosphere boundary

The upper free surface z = z5(z,y,t), also denoted T, is in contact with the atmosphere and is therefore
a stress-free surface, so that

ONg = —PamNs = 0 for z = 2, 17

where ng is the normal outward pointing unit vector to the free surface. For the dating equation, fabric
equations and all other transport equations, Dirichlet conditions are applied on the upper surface only
where the ice velocity enters the domain (mainly in the accumulation area). Where z = z5 and u-ng <0,
the temperature is equal to the imposed surface temperature, T'(x,y,2s,) = Ts(x,y,t), and the fabric is
assumed to be isotropic, a(®) (x,y,2,) = I/3. For the heat equation, a heat flux can be imposed at the

upper surface to account for melt-water refreezing.
3.2 Ice/bedrock boundary

The lower interface z = z,(x,y,t), also denoted I'y,, may be in contact with either the sea or the bedrock,
so two kinds of boundary conditions coexist on a single surface. The conditions to be applied where the
ice is in contact with the sea are presented in the next section. Where the ice is in contact with the bedrock

(i.e. zp =b), the following conditions apply:

u-ny+ap; =0, (18)
on, = fr(u,N)ug,, i=1,2, (19)

where oy, =t;-onyp and uy, =u-t; (¢ =1,2) are the basal shear stresses and basal velocities, respec-
tively, defined in terms of tangent vectors £; and normal outward-pointing unit vector to the bedrock ny,.
Note that the boundary condition Eq. (18) for the Stokes problem is equivalent to the free surface Eq. (11).
The effective pressure NV is defined as the difference between the ice normal stress and the water pressure,
such as N = —oy, — pyw With oy, =nyp - ony,. Equation (18) is the no-penetration condition accounting
for basal melting (a1, < 0) or basal accretion (a1, > 0), whereas Eq. (19) stands for the general form
of a friction law. When f =0, the ice slides perfectly over the bedrock, whereas when f¢ — +oo basal

sliding is null. The three different friction laws implemented in Elmer/Ice are presented below.

10
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The first friction law linearly relates the basal shear stress to the basal velocity, such as:
Ou, +Bug, =0, i=1,2, (20)

where 3 > 0 is the basal friction parameter. As shown later, this simple law is used for data assimilation
and in this case [ is a control parameter.

The second law implemented in Elmer/Ice is a Weertman-type sliding law:

Ont; +ﬁmubm71ut' =0, =12, 21

i

where uy, is the norm of the sliding velocity up, = u — (u - np )Ny, 5y, is a sliding parameter and m an
exponent. When m = 1, the Weertman-type friction law Eq. (21) reduces to the linear law Eq. (20).
Theoretically, in the case of ice sliding without cavitation over an undulating bed, m is equal to 1/n
(Lliboutry, 1968), where n is Glen’s law exponent.

The third friction was proposed by Schoof (2005) from mathematical expansions and by Gagliardini
et al. (2007) from FE simulations. This law describes the flow of clean ice over a rigid bedrock when

cavitation is likely to occur:

1/n

1—-n
Ont; XUy .
X, =0 i=1,2, 22
on T <1+aq(><ub)q> Yt T 22)

where Y =1/(C"N" As), ag = (q—1)771 /¢4, Aq is the sliding parameter in the absence of cavitation and
n Glen’s law exponent, resulting in a non-linear relation between the basal drag oy, and the basal sliding
velocity wut,. The maximal value of oy, is C and the exponent ¢ > 1 controls the post-peak decrease.
When the post-peak exponent ¢ is equal to 1, the basal drag tends asymptotically to its maximum value
C (no post-peak decrease). Note that in the limit case where N >> 0, the sliding parameter Ay and the
friction parameter [3,, are inversely proportional. As shown by Schoof (2005), the coefficient C' should
be chosen smaller than the maximum local positive slope of the bedrock topography at a decimetre to
metre scale, so that the ratio o, /N < C fulfills Iken’s bound (Iken, 1981). The friction law Eq. (22) is
strongly related to the water pressure p,, through the effective pressure N. The law Eq. (22) can then be
used to couple the hydrology and the ice dynamics. The hydrological model and its implementation in
Elmer/Ice are presented in de Fleurian et al. (2013).

For the heat equation, the geothermal heat flux g,e, is imposed where the basal temperature is lower
than the pressure melting point (T < T}, or 7" < 0), and the following Neumann-type boundary condition
applies:

K(T)( grad T'-ny,) |Fb = (geo T+ o, U, | (23)

where |0y, ut,

is the heat energy induced by basal friction. Where the temperature melting point is

reached (T'=T},), the amount of melted water is estimated from the imbalance of heat fluxes and surface

11
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production:

" Qoeo + | O, Ut | — K grad T' -y,
b= )

pL

(24)

where L is the latent heat of ice.
3.3 Ice/sea boundary

At the bottom surface z = z1,(z,y,t) where the ice is in contact with the ocean (i.e. zp, > b) and at the front
of the ice-sheet, the normal stress is equal to the sea pressure py, (z,t), that evolves vertically as follows:
pug(lu(t)—2), 2 <Ly(t)
Pu(2:t) = ’ (25)
0, 22> 1y (1)
where py, is the sea water density and [, the sea level. The Neumann condition applied on these ice/ocean
interfaces is thus:

oNe=—PyNe. (26)
3.4 Grounding line dynamics

The position of the grounding line is part of the solution and can evolve with time. Its position at each
time step is determined by solving a contact problem. The contact is tested by comparing at each node
where 21, = b the normal force R, exerted by the ice on the bedrock and the equivalent water force Fy,.
R, is directly evaluated from the residual of the Stokes system, whereas F}, is obtained by integrating
the water pressure over the boundary elements using the boundary element shape functions. Then, if
R, > F, and z}, = b, the boundary conditions Egs. (18) and (19) apply; whereas if R,, = Fy, and 21, =b;
or zp, > b, the boundary condition Eq. (26) applies instead.

4 Auxilliary equations

The goal of an ice sheet simulation, usually, is to obtain information on either the geometry, the age/depth
relationship or simply the exerted stresses and forces on a particular surface in contact with the ice. This

section introduces the methods needed to obtain such information.
4.1 Age equation

The age A of the ice at each point of the ice-sheet domain is obtained by solving the following equation

0A
E—i—u- grad A=1, 27

where z = 2z, and u - ng <0, the age of the ice is zero, i.e. A(z,y,2s5,) =0 (Zwinger and Moore, 2009).

By solving the age equation we can compute isochrones and determine dating as a function of depth at

12
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an ice-core (drilled or planned) location. Input parameters entering other equations might also be age-

dependent, such as the enhancement factor for example.
4.2 Depth and elevation

It is often very useful to know the depth below the upper surface or the height above the bedrock at each
point of the ice-sheet domain. For example, it can be used to prescribe parameterisation of the temperature
or the ice fabric fields as a function of depth. With the FE method, using unstructured meshes, the depth
d(x,y,z,t) = zs — z or the height h(x,y,z,t) = z — 2, at any point M (z,y,z) cannot be estimated directly
because nodes are not necessarily vertically aligned. Therefore, we compute the depth d (or equivalently
height h) field by solving the following equations

od oh
&——1,or&—1, (28)

with the boundary conditions d =0 on z =z, or h =0 on z = zy,.
Effectively, we solve, here for the height h, the following system
—e,-V(e,-Vh)=0, (29)
e. - Vhlaa =1, (30)
with the boundary condition h|r, =0 and e, the unity vector in the vertical direction. The variational

form is obtained after integrating Eq. (29) by parts and accounting for the boundary condition Eq. (30),

leading to a degenerated Laplace equation of the form

—/V(eZ-Vh)~cpede:/(eZ-Vh)chede—]{ e, -ndl. 3D
Q Q o0

4.3 Stress and strain-rate

Elmer/Ice includes solvers to compute the Cauchy stress, deviatoric stress or strain-rate fields from the
Stokes solution, and also includes eigenvalues of these tensor variables. In addition, calculating of the
stress from the velocity and isotropic pressure fields is a matter of interest because different methods can
lead to noticeably different solutions. In Elmer/ice, the components o;; of the nodal Cauchy stress field
are obtained from an existing Stokes solution (u,p) by writing the variational version of the constitutive

law in a componentwise manner as

/Uij@dQ:/ei~a'ej<PdQ:/ei~(n(grad u+ grad Tu) pr)ejCIDdQ. (32)
Jo Q Q

This results in solving six independent equations, one for each of the six independent components of
the stress tensor. In a similar manner, components &€;; of the nodal strain-rate tensor are obtained from

the following variational form

/éijCI)dQ :/ e;- ( grad u+ grad Tu) e; ¢dQ. (33)
Q Q
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5 Inverse methods within Elmer/Ice

The ice effective viscosity 7(z,y,z) in Eq. (3) and the basal friction coefficient 3(x,y) in Eq. (20) are two
particularly important input fields when modelling the flow of real glaciological systems. However, these
two parameters are used to represent complex processes and their values in-situ are poorly constrained
and can vary by several orders of magnitude with time and space. On the other hand, our knowledge of
some of the outputs of the model (surface velocity, surface elevations) has considerably increased recently
with data acquired by remote spatial observation.

Two variational inverse methods have been implemented within Elmer/Ice to constrain 7(x,y,2) and
B(z,y) in diagnostic simulations from topography and surface horizontal velocity data. Both methods are
based on minimising a cost function that measures the mismatch between the model and the observations.

The two methods are briefly described below and their implementation in Elmer/Ice is verified in Sect. 7.
5.1 Robin inverse method

This method, initially proposed by Arthern and Gudmundsson (2010), consists in solving alternatively
the natural Neumann-type problem, defined by Eqgs. (1) and (2) and the surface boundary conditions
(17), and the associated Dirichlet-type problem, defined by the same equations except that the Neumann
upper-surface condition Eq. (17) is replaced by a Dirichlet condition where observed surface horizontal

velocities are imposed, such that:
u=u"" and v = v for z = z,. (34)
The cost function that expresses the mismatch between the solutions of the two models is given by:

JO:/ (uN —uP)- (N —oP) -ndl, (35)
where superscripts N and D refer to the Neumann and Dirichlet problem solutions, respectively.

The Gateaux derivatives of the cost function J, with respect to the parameters 7 and 3 for perturbations

7’ and ', respectively, are given by:
d,Jo = / 4’ ((€D)* = (e))?)dQ, (36)
Q
dgJ, :/ B (|uP? = |[uN[?)dr, (37)
zb

where the symbol €2 denotes the square of the second invariant of the strain-rate as defined for Eq. (4)
and |- | defines the norm of the velocity vector. Note that this derivative is exact only for a linear rheology
and thus is only an approximation of the true derivative of the cost function when using Glen’s flow law
Eq. (3) with n > 1 in Eq. (4).
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5.2 Control Inverse method

For a linear isotropic rheology (a scalar viscosity 7 independent of the velocity, i.e. n =1 in Eq. 4), the
Stokes system of equations is self-adjoint. Denoting by A and ¢ the adjoint variables corresponding to u

and p, respectively, they are solutions of the following equations:

2divné™ — grad ¢ =0, (38)
tré* =0, (39)

where & is the equivalent of the strain-rate tensor constructed with \. For a non-linear rheology, the op-
erator used by the forward solver (Stokes operator) remains self-adjoint when equipped with the Newton
linearisation (Petra et al., 2012).

The cost function is chosen to measure the mismatch between the modelled and observed surface

velocities
Jo= / j(u—u)dT, (40)
Is

where j is the mismatch measure function and ©°"

are the observed surface velocities. The choice of j
can be case dependent and will affect the boundary condition terms of the adjoint system. For example, as
the surface velocity direction is mainly governed by topography, we can discard the error on the velocity
direction and express j as

=) = 1 (Jun ~ i) @)
where subscript H refers to the horizontal component of the velocity vectors (Gillet-Chaulet et al., 2012).

The Giteaux derivatives of Eq. (40) with respect to  and 3 are obtained as follows:
dyJo = / —2n (€*:€)dq, (42)
Q
dgJo= [ —p'u-AdI. (43)

'y

5.3 Regularisation

When working with non-perfect (noisy) data, it is necessary to add a regularisation term in the cost func-
tion to improve the conditioning of the inverse problem and ensure the existence of a unique minimum.
The regularisation term is based on a-priori information on the solution either from measurements, or
from analytical solutions (Raymond Pralong and Gudmundsson, 2011) or from assumptions on the spa-
tial variations of the variable. In Elmer/Ice, a smoothness constraint on a variable o can be imposed in
the form of a Tikhonov regularisation penalising the first spatial derivatives of « as in Morlighem et al.

(2010), Jay-Allemand et al. (2011),Gillet-Chaulet et al. (2012):
1 da\ 2 da\? oo\’
Jre =3 a_ - - dr. 44
: 2/((%) +(a) () e
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The Gateaux derivative of Ji, With respect to o for a perturbation ¢ is obtained by

wes [ () (50)+ (5)(5) - (5) (50))or 0

The total cost function to minimise then reads

Jtot: J0+>\Jrega (46)

where ) is a positive ad-hoc parameter. The cost function minimum is therefore no longer the best
possible fit to observations, but a compromise (through the tuning of \) between fitting with observations

and smoothness in a.
5.4 Minimisation

The Gateaux derivatives of .J, are given by a continuous scalar product represented by the integral terms
in Eqgs. (37) and (42). When discretized on the FE mesh, these equations are transformed into a discrete
Euclidean product as follows

NIJ
dyJo = / Vodoy Y WiV, (47)

i=1
where +y represents 7 or 3, V,J, is the continuous Fréchet derivative of .J,, the expression of which is
given by comparison with Eqs. (37) and (42), ny Jo is its value at mesh node i =(1,...,N,,) and W; is
the nodal weight associated with node ¢ and computed following the standard integration scheme. The
sum of all weights is the volume (or area) of the FE mesh. The discrete gradients of .J, at each mesh node
used for the minimisation are then given by WiVﬁ{ J, and account for the volume or area surrounding
each node.

The minimisation of the cost function J, with respect to 7, or g; is done using the limited mem-
ory quasi-Newton routine M1QN3 (Gilbert and Lemaréchal, 1989) implemented in Elmer/Ice in reverse
communication mode. This method uses an approximation of the second derivatives of the cost function
and is therefore more efficient than a fixed-step gradient descent.

How we define the inner product used to compute the Gateaux derivatives affects the definition of the
Fréchet derivatives, and could affect the convergence of the minimisation but does not affect the minimum
we are seeking to achieve. As for glaciological applications, velocities and strain-rates can vary by several
orders of magnitude inside the domain, and we have observed that including the nodal weights in the
definition of the Fréchet derivatives leads to good convergence properties when using an unstructured
mesh where large elements correspond to low velocity areas, and vice versa. Possible alternatives are, for
the control inverse method (Morlighem et al., 2010), to use a cost function that measures the logarithm of
the misfit or, for the Robin inverse method (Arthern and Gudmundsson, 2010), to use a spatially varying

step size rather than a fixed step in the gradient descent algorithm, as proposed in Schifer et al. (2012).
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6 Numerical implementation and specificities
6.1 Mesh and deforming geometry

Ice-sheets and ice-caps have a very small aspect ratio, horizontal dimensions being much larger than the
vertical dimensions, and therefore meshing requires special care. The strategy commonly adopted in
Elmer/Ice for meshing glaciers, ice-sheets and ice-caps is to mesh first the horizontal 2-D-footprint and
then extrude it vertically. These meshes are then vertically structured with the same number of layers over
the whole domain, whereas the horizontal dimension can be meshed using an unstructured mesh. This is
one of the main advantage of a FE ice flow model in comparison to the classically used finite difference or
volume methods for which the grid has the same size over all the domain, unless a mesh adaptive method
is implemented (Cornford et al., 2013a).

The unstructured mesh of the footprint can be created using triangle-shaped elements of various sizes
to account for the spatial heterogeneity of the variables gradient. The horizontal size of the elements can
be controlled using, for example, a metric constructed from the Hessian matrix of observed surface speed
(Gillet-Chaulet et al., 2012). Technically, optimising the mesh sizes according to this metric is done using
the freely available anisotropic mesh adaptation software YAMS (Frey and Alauzet, 2005). Because of
the overall size of ice sheets, the mesh is then partitioned and all partitions are solved in parallel using
the Message Passing Interface (MPI). In Elmer/Ice, the mesh can be generated either by extrusion as
a preprocessing step, or by a built-in mesh extrusion feature which operates on the parallel level. This
internal procedure efficiently removes some of the possible bottlenecks in preprocessing as the maximum
mesh size is no longer constrained by serial operations. Also, in the case of an extruded mesh, certain
operations become trivial as for example modifying the geometry or computing the depth or elevation
which efficiently becomes a one-dimensional problem.

For transient simulation, the geometry of the ice-sheet is evolving with time and the mesh has to
be deformed to follow these changes. The common approach to deform geometries in Elmer/Ice, if
dealing with unstructured meshes, is to rearrange the nodes by solving a pseudo linear elasticity problem.
Any mesh displacement, Az, in Elmer/Ice is relative to the initial mesh position, g, i.e. x(t) =x¢+
Az(t). A deformation of the surface, for instance, can be induced by a changing free surface elevation,
h. Hence, the prescribed vertical deformation here is Ax(t) - e, = h(t) — h(t = 0). Inside the bulk-mesh,

the corresponding deformation is then obtained by solving

2Y K Y
e ((1n)(lzn)6“2(1+n)v'm1> =0, (4