Geosci. Model Dev. Discuss., 6, C550–C551, 2013 www.geosci-model-dev-discuss.net/6/C550/2013/ © Author(s) 2013. This work is distributed under the Creative Commons Attribute 3.0 License.

GMDD

6, C550–C551, 2013

Interactive Comment

Interactive comment on "The mathematics of the total alkalinity–*p*H equation: pathway to robust and universal solution algorithms" *by* G. Munhoven

A. Ridgwell (Editor)

andy@seao2.org

Received and published: 10 May 2013

Guy – I concur with both reviewers – this is an excellent piece of work with high potential for becoming an important and widely-used element of global carbon cycle (and other) models.

I add my own personal observations alongside that of one of the reviewers – in my own ('GENIE' model) code, which is solved implicitly, while for all past (paleo) and modern 'natural' (DIC,ALK) I have come across the algorithm has had no difficult in converging on a unique solution within only a couple of iterations, in the context of artificially adding lime (CaO) to the ocean surface (aka carbon dioxide removal geoenginereing), in exceeding ca. 4000 umol kg-1 ALK compared to ca. 2000 umol kg-1 DIC I find that failure in specific grid cells can start to occur. (This has prompted me to add a

pre-estimate of the possible range of pH to re-seed the model iteration with.) TL:DR – your algorithm is attractive

I encourage you to revise along the lines suggested by the reviewers. In particular – anything you can do to make the paper more accessible would greatly aid in its future uptake and impact.

I note the provision of the code plus full documentation (although sadly I have not had a chance to compile and run it myself) as an exemplary GMD effort.

andy

Interactive comment on Geosci. Model Dev. Discuss., 6, 2087, 2013.

GMDD

6, C550–C551, 2013

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

