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Many thanks for treating our article with so much care and for giving us detailed
feedback. In the sequel we would like to comment on your suggestions.

Validation with independent data

Your main criticism relates to our claim that we validate the precision of the pre-
dictions with “independent” data. Your view is that “validation with independent
data” should be reserved for a comparison of predictions with extra data (collected
by probability sampling, cf. Brus et al., 2011) and that our validation approach does
not differ from cross-validation exercises done earlier by other authors. We carefully
evaluated these arguments, but in the end only partially agree:

We certainly accept that model assessment is most meaningful when predictions
are compared to validation data that are 1) newly and independently collected from
the calibration data by a randomized sampling design and 2) are not used in any
phase of the model building process. Unfortunately, such a procedure can be rarely
used in practice as it requires considerable funding and time and cannot be used for
obvious reasons when only legacy data are available.

One is then bound to data splitting strategies and cross-validation for assessing
the predictive power of a statistical model. You argue that there is no difference
between our data splitting approach and cross-validation as done earlier by Martin
et al. (2009, 2011) and Meersmans et al. (2012). We are sorry to say that we do
not share this view: Following Hastie et al. (2009, chap. 7) our validation set (n =
175) corresponds to a test set (used for estimating the generalization error, i.e. the
prediction error for new data), and our calibration set (n = 858) has the combined
role of a training (used for parameter estimation) and a validation set (used for
estimating prediction errors during model selection). When no separate training
and validation sets are available then cross-validation is often used for parameter
estimation and model selection and for choosing tuning parameters of employed
algorithms. This is exactly what we did: We chose the relevant covariates of the
regression model and the robustness tuning constant by cross-validation using only
the calibration data. Then we estimated the generalization error by applying the
final model to the test set (i.e. to our validation data).

The “external validation” reported by Martin et al. (2009, 2011) and Meersmans
et al. (2012) does not have the same significance as our validation results: Martin
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et al. (2009, 2011) used cross-validation (with the full data set) for selecting the
tuning parameters of their algorithm and kept these parameters then fixed for esti-
mating again by cross-validation the generalization error. Clearly, such a procedure
gives a too optimistic estimate of the generalization error. Some information in
the cross-validation subset, currently being predicted and used for estimating the
generalization error, had been used before for model building. Also the reported
“external validation” in Meersmans et al. (2012) provided only a distorted estimate
of the generalization error because the structure of the regression model and its
coefficients were not re-estimated in cross-validation (Meersmans, personal commu-
nication). Unfortunately, this is common practice in the geostatistical community,
but is clearly not correct (Hastie et al., 2009, sec. 7.10.2). Such a “validation”
scheme tends to be overly optimistic when reporting the precision of predictions for
new data. According to our knowledge only Mishra et al. (2009, 2010, 2012) and
Wiesmeier et al. (2012) did not use measurements of the validation set for their
model calibration. This justifies to explicitly mention these studies and to oppose
them to the model validation strategy used by Martin et al. (2011) and Meers-
mans et al. (2012) who did the “external validation” (partly) with fixed parameters
estimated from the full data set.

Moreover, we would like to comment on the concern that our validation data
might not be spatially representative for SOC stocks of Swiss forests because it had
been obtained by splitting a legacy data set (and not by independent probability
sampling): 134 out of 175 soil profiles of our validation set stem from a survey
where the sites were arranged on a 8×8 km grid. Data from these sites should be
spatially representative because the grid was placed without consideration of SOC
stocks. The additional 38 sites of this survey had to be assigned to the calibration
set because there were no other data available for certain parts of the country.
Another 38 soil profiles of the validation set stem from regional studies where the
sites were arranged on 1×1 km grids. Again, these should be representative for
local conditions and should not be influenced by sampling bias. You recommend
that we use for validation the data available from the national and two cantonal soil
monitoring networks as described in section 3.4 of Nussbaum et al. (2012). However,
the sites of these networks have been purposively selected similar to the majority
of the WSL data and are likely not more representative than the data that we
assembled for validation. Furthermore, soil sampling and analysis differed in these
surveys from the procedure used by WSL and this likely adds some extra variation
when we evaluate the precision of our predictions with this data. We have therefore
good reason to believe that the generalization error, estimated with our validation
set, provides a fair picture of the prediction error of our model for new data. Finally,
although we could have repeated splitting the data randomly into calibration and
validation sets (and then building and assessing the model for each such split) we
abstained from such a procedure because we wanted to have a single final model
that can be used in future applications to predict SOC stocks. Furthermore random
splitting would have precluded the creation of a spatially representative validation
data set as described above.
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Further general comments

We further identified the following issues in the general part of your review, on which
we would like to comment:

1. On page C2584 (line 25) of the review you suggested to discuss the added value
of robust measures for evaluating the precision of SOC predictions. We see no
real need for this as the inclusion would extend the length of the article: We
mentioned in the article why we computed BIAS and RMSE of the relative
prediction errors. We used robust variants of these statistics because non-
robust quality measures are possibly influenced by only few observations that
are poorly predicted. Robust quality measures provide a better picture how
well a method predicts the majority of the observations. A detailed discussion
of continuous ranked probability score (CRPS) can be found in Gneiting et al.
(2007), to which we refer repeatedly in the paper, and we see no need to
expand on this.

2. On page C2585 (line 1–10) you inquire about the increase in prediction errors
when residual autocorrelation is neglected and predictions are computed from
the regression models only. We have dealt with this issue in our answer to the
review by Philippe Lagacherie (AC C2824).

3. You suggested to include graphs of the variograms in the article. We see again
no need for this as such plots can be easily generated from the estimated
variogram parameters listed in Table S5 of the Supplementary Material.

4. We refer now in the introduction of our article to the important review paper
by Minasny et al. (2013). We were quite happy to see that our study addresses
two issues that the authors explicitly mentioned as weaknesses of past studies:
Validating SOC predictions with independent data and qualifying the precision
of predictions by modelled standard errors.

5. Concerning the advantages of LASSO (least absolute shrinkage and selection
operator) we refrain from adding a detailed discussion. First, non-specialist
information about this procedure is available (e.g. Hastie et al., 2009, sec-
tion 3). Second, we used LASSO only as a screening tool to find a preliminary
set of covariates. The final set of covariates was selected by cross-validating
the robustly fitted geostatistical models.

Specific comments

We accepted most of the suggestions as they improve the clarity of the article. We
discuss only the comments where we (partly) disagree or some clarification is needed:

P7081 L23 We have changed the text and replaced “common model” by “the same
set of fitted parameters”. For a linear model the covariance of the prediction
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errors can be easily computed from the covariance matrix of the fitted regres-
sion coefficients (see any textbook on linear regression), for ML methods, it
is not clear how to compute these covariances irrespective whether there is
residual autocorrelation or not (see our answer to comments by referee #1,
AC C2823).

P7082 L25 According to Table 2 in Martin et al. (2011) SOC stocks are more
variable in French forests than on cultivated land. There is not yet harmonized
soil data available to check this for Switzerland. Nevertheless, we mention
now that forest soil stocks might be more variable and use this as a further
justification for a separate analysis of the respective data.

P7083 L11 These percentages are correct. 29 % of the total area of Switzerland as
opposed to 45.5 % of the vegetated area of Switzerland is covered by forests.

P7087 L5–15 This is a fair comment, which points to a weakness of our analysis (in
particular of the validation scheme): We re-computed therefore the “median
mass of soil particles < 2 mm” assigned to geotechnical map units using only
the calibration data (n = 858) and re-fitted the model for topsoil SOC stocks
(0–30 cm) to this data, however, without repeating the full model building
process. Table 1 below lists for the validation set the statistics of the relative
prediction errors of the re-calibrated model. Comparison with Table 2 of the
article reveals that the statistics hardly changed. We abstain therefore from
re-computing the predictions of regional and national SOC stocks as the figures
published by Nussbaum et al. (2012) and listed in our article that are currently
used for Switzerland’s GHG inventory.

P7094 L6–9 Gneiting et al. (2007) give an exhaustive account on quality measures
to validate probabilistic forecasts and we see no need to expand on this.

P7095 L20–25 We too refer to our answer to the comments by Philippe Lagacherie
(AC C2824).

P7099 L2–9 We computed BIAS and RMSE of the relative prediction errors be-
cause this seems a natural choice for a lognormal model, where the coefficient
of variation (and not the variance) is constant. Other studies have reported
absolute BIASes and RMSEs. The (robust) R2 is therefore the only criterion
available for a cross-study comparison.

Table 1: Statistics of relative prediction errors of soil organic carbon (SOC) stocks
in topsoil (0–30 cm depth) for the validation set (n = 175). The model was fitted to
the data where the covariate “mass of soil particles < 2 mm assigned to geotechnical
map units” was computed only from the calibration data set (n = 858).

BIAS RMSE R2 robBIAS robRMSE robR2 CRPS
0.135 0.488 0.355 0.063 0.390 0.345 0.221
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