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Dear Dr Trevisan

Thank you very much for your comments on our manuscript. Please find a detailed
response to your specific comments below.

1. You are right. More information should be added concerning the results obtained
with previous low-order coupled ocean models. This further highlights the similarities
between the present work and the previous ones, with a marked difference with the
results of Nese and Dutton (1993) and much more similarities with the work of van
Veen (2003). In the former, the activation of the dynamics within the ocean leads to an
increase of predictability. This feature contrasts with our results but could probably be
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associated with the way the heat is transported in the ocean basin and then transferred
toward the atmosphere in their model.

In the work of van Veen, the ocean plays a “passive” role when the atmosphere is in
a chaotic regime, while it plays more active role in setting up the (coupled) dynam-
ics when close to the periodic windows of the atmospheric model. This aspect is in
agreement with our results, indicating that in a fully chaotic regime, the presence of the
ocean is not increasing in a substantial way the amplitude of the Lyapunov exponents,
but plays a more important role close to the periodic windows of the system as illus-
trated in Figure 6 of the manuscript. Figures 1 and 2 show the temporal evolution of
the solution A2 for two different values of δ and for a value of θ*, illustrating the crucial
role played by the coupling close to the onset of chaos.

Both models (Nese and Dutton,1993, and van Veen, 2003) are quite different in their
conception and it is therefore difficult to conclude why their results are different, and
at the same time it is difficult to compare with our results which are only based on
a mechanical coupling between the two model components. The introduction of a
thermodynamic equation would be necessary to clarify this point and will be the subject
of a future extension. This aspect will be discussed in more details in paragraph 5,
Section 3.2, by adding,

“Their results are most probably associated with the way heat is transported in the
ocean basin and then transferred toward the atmosphere in their model, a feature not
present in our model.”

and at the end of paragraph 4, page 16:

“Interestingly, the results confirm the tendency already reported in van Veen (2003),
indicating that the presence of the ocean has a stronger influence on the dynamics of
the atmosphere when close to periodic windows.”

We will also add more information on the results of the two previous works (Nese and
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Dutton, and van Veen) in the introduction (3rd paragraph):

“The coupled model developed by Nese and Dutton (1993) was used to evaluate the
impact of the ocean transport on the predictability of the coupled system. They have
found that when the ocean dynamics is activated, an increase of predictability is real-
ized.”

And also :

“In this model, a systematic bifurcation analysis has been undertaken and compared
with the bifurcation structure of the atmosphere only. In particular it was shown that the
ocean plays an important role close to the bifurcation points of the model, but much less
in the chaotic regime. In the latter case the ocean integrates the rapid fluctuations of
the atmosphere in a quite passive manner without providing a strong feedback toward
the atmosphere”.

2. Indeed the values of the Lyapunov exponents obtained in the present work are dif-
ferent to the ones found in Trevisan et al (2001). The main reason is the difference of
parameter settings chosen (but which were fixed in the range suggested by previous
authors, Charney and Straus, 1980; and Reinhold and Pierrehumbert, 1982), in par-
ticular the aspect ratio of the domain. Moreover there is no orography in the present
version, contrarily to the previous work of Reinhold and Pierrehumbert (1982).

To try to understand the properties of the increase of Lyapunov instability as a function
of the coupling parameter, we have computed the mean absolute amplitude of these
vectors along the different modes of the coupled system. Figure 3 displays the result
for the first (backward) Lyapunov vector corresponding to the dominant Lyapunov ex-
ponent. The ten first points correspond to the barotropic atmospheric variables, the ten
next ones to the baroclinic variables and the last four to the ocean variables. Clearly
the projections along the atmospheric variables do not change as a function of the
coupling δ, but well the projection along the ocean variables. A similar picture is found
for the other backward Lyapunov vectors. This suggests that the increase of Lyapunov
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instability is mainly associated with an increase of the projection of the Lyapunov vec-
tors along the ocean variables, and not the baroclinic instability within the atmosphere.
This aspect is worth investigating further in the future by investigating the properties
of the characteristic vectors (also called covariant vectors) of the system which are
(non-orthogonal) intrinsic directions of instability (e.g. Legras and Vautard, 1995). This
figure and the comments on that feature will be introduced at the end of section 3.

3. Concerning the link between the local Lyapunov exponents and the ocean variables,
there is no clear relation as illustrated in Figure 4, in which the local Lyapunov expo-
nents corresponding to the first Lyapunov vector are plotted as a function of the second
ocean variable (similar pictures are found for the other variables). A link is only visible
between these local quantities and the dominant modes of the atmosphere, ψ1 and
θ1. As in the previous point, a better characterization of the instability properties of the
flow and their link with the underlying variables would be worth analyzing based on the
characteristic vectors.
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Fig. 1. Trajectories of the first mode of the barotropic streamfunction field for
$\delta=0.0004826$ and $\theta$*=0.10.
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Fig. 2. Trajectories of the first mode of the barotropic streamfunction field for
$\delta=0.0019305$ and $\theta$*=0.10
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Fig. 3. Mean absolute amplitude of the first (backward) Lyapunov vector along the variables of
the system for $\delta=0.0019305$ and $\theta$*=0.14.
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Fig. 4. 2-D representation of the variable A2 as a function of the local Lyapunov expo-
nents as obtained with the parameters of Fig. 1 of the manuscript ( $\delta=0.0019305$ and
$\theta$*=0.14).
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