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Abstract. The paper presents a package of a modified
temperature index based snow water equivalent model as
part of the hydrological modeling system NewAge-JGrass.
Three temperature-based snow models are integrated in the
NewAge-JGrass modeling system and use many of its com-5

ponents such as those for radiation balance (SWRB), krig-
ing (KRIGING), automatic calibration algorithms (particle
swarm optimization), and tests of goodness of fit (NewAge-
V), to build suitable modelling solutions (MS). Similarly to
all the NewAge-JGrass components, the models can be exe-10

cuted both in raster and in vector mode. The simulation time
step can be daily, hourly or sub-hourly, depending on user
needs and availability of input data. The MS are applied on
the Cache la Poudre river basin (CO, USA) using three test
applications. First, daily snow water equivalent is simulated15

for three different measurement stations for two snow model
formulations. Second, hourly snow water equivalent is sim-
ulated using all the three different snow model formulations.
Finally a raster mode application is performed to compute
snow water equivalent maps for the whole Cache la Poudre20

basin. In all the applications the model performance is satis-
factory in terms of goodness of fit relative to measured snow
water equivalent time series and the results, and the differ-
ences in performances of the different modelling solutions
are discussed.25

Keywords. Snow water equivalent modeling, model calibra-
tion

1 Introduction

The process-based distributed approach is the most com-30

plete method of simulating snowpack evolution. This solu-
tion has reached maturity and was pursued successfully with

many recent models including CROCUS (Brun et al. (1992)),
Alpine3D (Lehning et al. (2006)), GEOtop (Rigon et al.
(2006); Endrizzi et al. (2013); Endrizzi (2007); Dall’Amico35

et al. (2011)), ISNOBAL (Marks et al. (1999)), and UEB
(Tarboton et al. (1996)). These models simulate snow ac-
cumulation and ablation using the energy budget and may
also include ancillary modeling of blowing snow and other
features required to reproduce the full set of thermodynamic40

quantities representative of snowpack state. However, real-
time modeling with data assimilation and parameter cali-
bration may require that a forecasting simulation be gener-
ated in few minutes, and this can be accomplished only with
simpler models. Simpler models may be limited to forecast-45

ing just the snow water equivalent (SWE, the mass of liq-
uid water in the snowpack) and not other variables such as
snow depth and density. One early example of a simple snow
accumulation and ablation model is the Snowmelt Runoff
Model (SRM) by Martinec (1975). This model was applied50

to hundreds of basins with reasonable success Martinec et al.
(1983) and Martinec et al. (1994). SRM is a linear model in
which the independent variables are average daily tempera-
ture and an estimate of the catchment area covered by snow.
The snow-covered area can be determined from airborne or55

satellite remote sensing data, and loss of snow cover was then
simulated based on a temperature index. Simulations were
typically run at a daily time step.

In other studies (Cazorzi and Dalla Fontana (1996); Hock
(1999)) the temperature index snow modeling was improved60

by incorporating a radiation term in addition to temperature.
In Cazorzi and Dalla Fontana (1996) the radiation term is
an energy index computed for each pixel of the grid as short-
wave solar radiation integrated over time, as explained in sec-
tion 2. In Hock (1999) the melt factor depends on the value65

of the clear sky solar radiation, following on studies by Kus-
tas et al. (1994) and Brubaker et al. (1996). Hock’s model
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depends on two separate terms: a constant value (melt coef-
ficient) and a value function of the potential solar radiation
(radiation coefficient). A third temperature-based snow mod-70

eling approach was presented by Tobin et al. (2012) who pro-
posed to use a varying degree-day factor throughout the day
to improve simulation of snowmelt rates at sub-daily time
steps as a component of a runoff model.

In this paper we implement three of these temperature-75

based snow models: a temperature index (C1), Cazorzi and
Dalla Fontana’s model (C2) and Hock’s model (C3) of snow
water equivalent, that estimates SWE from spatially dis-
tributed radiation and temperature. They are provided as Ob-
ject Modeling System version 3 (OMS3, David et al. (2013))80

components and integrated with the other components of the
JGrass-NewAGE system. This system provides an optimal
framework for comparing modelling solutions, as all the an-
cillary tools used remain unchanged when switching from
one SWE model to the other. The model components can85

then be executed using OMS3 implicit parallelism to improve
computational efficiency in multicore or multiprocessor ma-
chines. The paper is organized as follows: section 2 presents
the models’ equations; section 3 contains a general descrip-
tion of the JGrass-NewAge system, and section 4 contains a90

test of the model for an example basin.

2 The NewAge-SWE Component

The snow water equivaltent modeling components in
NewAge are built following the conceptual scheme presented
in Kokkonen et al. (2006), varying the contents of the snow-95

pack mass balance equation. In particular the new additions
are:

– Snow melt is simulated with three different
temperature-based solutions;

– The separation of rain from snow precipitation uses a100

smoothing function based on air temperature rather than
a threshold air temperature. This approach addresses
problems found in prior research by Kavetski et al.
(2006) who found that threshold temperatures for pre-
cipitation could generate extremely non-smooth param-105

eter surfaces during automatic calibration procedures.

In the next subsection the main algorithms of the model are
described with more detail.

2.0.1 Mass Balance

The snowpack mass balance is computed as follows. For the110

water equivalent of ice (Mi[L]):

dMi

dt
= Ps+F −M (1)

and for liquid water (Mw [L]) in the snowpack:

dMw

dt
= Pr −F +M (2)

Eq.(1) represents time-varying ice in the snowpack as the115

sum of snowfall, Ps, and freezing water, F, minus melt, M (all
expressed as snow water equivalent). Eq.(2) represents time-
varying liquid water in the snowpack as the sum of the rain-
fall, Pr, and melt water minus freezing water. If liquid water
Mw exceeds liquid water-retention capacity of the snowpack120

(Mmax [mm]), the surplus becomes snowmelt discharge qm
[L/T]. The liquid water retention capacity of a snowpack is
related to the ice content by a linear relationship depending
on the coefficient αl [-], eq.(3)

Mmax = αl ·Mi (3)125

Kokkonen et al. (2006) computed these mass balance equa-
tions at a daily time step, but here the time step can vary
depending on the time resolution of input data.

2.1 Type of precipitation

The first hydrological process simulated is the discrimina-130

tion between rainfall and snowfall considering that the two
forms of precipitation appear as distinct in equations (2) and
(1). Usually only precipitation totals and air temperature are
available from meteorological stations. A common procedure
for separating rain and snow is to use a threshold air temper-135

ature Ts: all the precipitation is considered snow if the air
temperature for the time interval is less than or equal to Ts;
all the precipitation is considered to be rain if air temperature
is greater than Ts. As proposed in Kavetski et al. (2006) to
avoid problems for parameter calibration, a smoother filter140

for thresholds is applied, and the algorithm to discriminate
between rainfall and snowfall can be described as follows:Pr = αr ·

[
P
π · arctan

(
T−Ts

m1

)
+ P

2

]
Ps = αs ·

[
P −Pr

] (4)

where: P [L/T] is measured precipitation, Pr [L/T] is the rain-
fall precipitation, Ps [L/T] is the snowfall precipitation, Ts145

[C] is the threshold temperature and m1 [-] is the parame-
ter controls the degree of smoothing (if m1→ 0 threshold
behavior is simulated). The two coefficients αr, and αs ad-
just for measurement errors for rain and snow. Because dif-
ferent values for different climate regions have been found150

in prior studies (Forland et al. (1996); Rubel and Hantel
(1999);Michelson (2004)), in the model the two coefficients
are considered parameters and are therefore calibrated.

2.2 Snow melt fluxes

The model includes three snow melt formulations. The user155

is able to select the any of these depending on the site char-
acteristics and data availability.

The first melt component (C1) is a traditional temperature
index method where the snow melt rates depends only on air
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temperature:160

M =

{
αm1 · (T −Tm) T> Tm

0 T≤ Tm

(5)

where: M [L T−1] is the melt rate; αm1 [L C−1 t−1] is the
melt factor, and T [C] is the air temperature. The model can
be used either at hourly or daily time steps, if the parameters
are calibrated accordingly.165

The second snow melt component (C2) is based on the
approach presented in Cazorzi and Dalla Fontana (1996): the
melt rate is a function of both shortwave radiation and air
temperature. The equation for melt during the day is

M =

{
αm2 ·EI · (T −Tm) ·VS T> Tm

0 T≤ Tm

(6)170

The equation for the melt process during the night is:

M =

{
αm2 ·min(EI) · (T −Tm) ·VS T> Tm

0 T≤ Tm

(7)

where: αm2 [L C−1 E−1] is the combined melt factor; EI [E
t−1] is an energy index, and Vs [-] is the sky view factor. This
energy index is the mean energy from shortwave radiation175

over a given period at a certain point, and can be variable
in space. In practice, the shortwave direct and diffuse solar
radiation is estimated by means of an appropriate tool. In this
paper, as presented in Cazorzi and Dalla Fontana (1996) five
EI maps are computed starting from 21 December (winter180

solstice) to the middle of February, March, April, May and
June. Different time intervals could be selected depending
on user needs. During the night the snow melt is a function
of the energy index minimum value of the considered map,
as presented in Cazorzi and Dalla Fontana (1996).185

The third snow melt component (C3) is based on the for-
mulation presented in Hock (1999). Unlike C2, where the
energy index is variable in space but integrated over time, C3
requires the computation of the solar energy for each time-
step of the simulation. The melt formulation is:190

M =

{
(αm3 +αe ·Rs) ·VS · (T −Tm) T> Tm

0 T≤ Tm

(8)

where Rs [E] is the incoming (beam plus diffuse) solar
radiation received by the pixel and computed using the model
presented in Formetta et al. (2013b), αe [L C−1 E−1 t−1] is
the radiation factor and αm3 [L C−1 t−1] is the melt factor.195

The shortwave radiation model from Formetta et al. (2013b),
unlike the radiation model presented in the original Hock’s
formulation, is able to account for shadow effects, complex
topography, and compute diffuse radiation.

2.3 Freezing200

The rate of freezing F used in the mass balance equations is a
linear function of air temperature when the air temperature is

less then the melting temperature Tm, as presented in eq.(9)

F =

{
αf · (Tm−T ) T < Tm

0 T ≥ Tm
(9)

where F [L T−1] is the freezing rate, and αf [L C−1 t−1] is205

the freezing factor.
For both melt and freezing, if the model is run at a daily

time step temperature is the mean daily temperature. If it
is applied at and hourly time step, temperature is the mean
hourly temperature.210

3 SWE-C integration in the JGrass-NewAGE system

The JGrass-NewAge system (Formetta (2013)) provides a
pool of model components that can be connected and ex-
changed at run-time. A working set of components consti-
tutes a modelling solution (MS) which is usually set up for a215

particular purpose or set of simulations. A MS is actually tied
together by means of a scripting language (a domain specific
language or DSL), and the scripts can be stored together with
the input data to preserve memory of a certain simulation set,
which can then be easily reproduced and inspected by third220

parties. JGrass-NewAGE includes components simulate var-
ious hydrological processes such as:

– the space-time structure of precipitation, (KRIGING)

– shortwave and long wave radiation balance, (SWRB and
LWRB), Formetta et al. (2013b).225

– evapotranspiration, (Priestley-Taylor or Penman-
Monteith)

– runoff production, (Hymod), Formetta et al. (2011).

– aggregation and routing of flows in channel (Routing),
Formetta et al. (2011)230

– model verification component (NewAge-V)

Finally, it also includes three different automatic calibration
algorithms:

– Particle Swarm Optimization component (Eberhart and
Shi (2001))235

– LUCA (Let Us CAlibrate) component (Hay et al.
(2006))

– DREAM component (Vrugt et al. (2009))

The system is based on a hillslope-link geometrical partition
of the landscape, so the basic unit for the water budget eval-240

uation is the hillslope. Each hillslope, rather than a cell or a
pixel, drains into a single associated link. The model requires
interpolation of the meteorological forcing data (air tempera-
ture, precipitation, relative humidity) for each hillslope. This
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operation can be handled by a deterministic inverse distance245

weighted algorithm (Cressie (1992); Lloyd (2005)), kriging
(Goovaerts (1997)) or detrended kriging as in Garen et al.
(1994) and Garen and Marks (2005).

The radiation model (Formetta et al. (2013b)) implements
algorithms that take into account shadows and complex to-250

pography. Shortwave radiation under generic sky conditions
(all-sky) is computed according to Helbig et al. (2010) and
using different parameterizations choices such as Erbs et al.
(1982), Reindl et al. (1990) and Orgill and Hollands (1977).
The longwave radiation budget is based on Brutsaert (1982)255

and Brutsaert (2005).
All modeling components (including those not described

here) can be calibrated using one of the automatic calibration
algorithms implemented: the Particle Swarm Optimization
algorithm, LUCA and DREAM. Verification of each model260

component’s behavior is eventually tested with the use of
NewAge-V (Verification), which provides some of the clas-
sical indices of goodness of fit such as: Nash-Sutcliffe, Per-
cent bias, Index of agreement and Kling Gupta efficiency, all
defined in Appendix A. The complete interoperating set of265

components available so far can be seen in fig.(11).
The snow melt model components, SWE-C, are perfectly

integrated in the NewAge System as presented in fig. (12). It
uses the kriging tools for spatial interpolation of temperature
and precipitation and another interpolation method, JAMI,270

presented in Formetta (2013) for temperature interpolation.
Like the interpolation algorithms, SWE-C can be applied
both to raster grids and for individual points. SWE-C also
uses the NewAge short wave radiation component to esti-
mate the maps of accumulated energy in different periods of275

the year based on topography, shadow, and cloud cover. The
SWE-C outputs could be raster maps or time-series of snow
water equivalent and snow melt for any point within the do-
main. If coupled with runoff modeling, these points could
be centroids of hillslopes. The SWE-C component could be280

connected to the NewAge and OMS3 calibration algorithm
to estimate the best model parameters values.

The MS shown in fig. (12) can be further connected to
other available components to obtain an estimation of the
runoff, although demonstration of this application is not the285

goal of this paper.

4 NewAge-SWE verification

4.1 Sites and data description

To test the performance of SWE-C, the model is applied in
the upper Cache la Poudre River basin, located in the Rocky290

Mountains of northern Colorado and southern Wyoming,
USA. This basin is 2700 km2 has elevations ranging from
1590-4125 m, with mean annual precipitation ranging from
330mm at lower elevations to 1350mm at the highest eleva-
tions (Richer et al. (2013)).295

Six meteorological stations have precipitation and temper-
ature data in this river basin. These stations are presented
in fig. 13, and tab.11 shows their main features. Hourglass,
Deadman Hill and Joe Wright are part of the Natural Re-
source Conservation Service Snow Telemetry (SNOTEL)300

network. They provide data (precipitation, air temperature
and SWE) at a daily time step. For the Hourglass station
the data used start on 1 October 2008 and end on 1 October
2013. For Joe Wright and Deadman Hill stations, the data
used started on 1 October 1999 to 1 October 2013. For the305

Joe Wright station, hourly time series of precipitation, air
temperature and snow water equivalent were also available
from 1 October 2008 to 1 October 2013.

Buckhorn Mountain, Rustic and Virginia Dale stations are
part of the National Weather Service Cooperative Observer310

Program (COOP). They only provide precipitation and air
temperature, not SWE. For these three stations, data from 1
October 2008 to 1 October 2009 were used for air temper-
ature and precipitation interpolations in the fully distributed
application of the snow model.315

4.2 Use of the data and setup of the simulations

Three applications were performed: simulation of SWE at
daily (Test n.1) and hourly (Test n.2) time step and model
application in distributed mode (Test n.3). Calibration of
SWE-C was conducted within the NewAge-JGrass system320

shown in fig.(12) using the Particle Swarm calibration al-
gorithm. The first year of the available time series was se-
lected as calibration period for each station. The ”optimal”
parameter set estimated in the calibration period was used for
the model application in the remaining part of the available325

time series (verification period). The Kling-Gupta Efficiency
(KGE), see Appendix, presented in Gupta et al. (2009) was
selected as the calibration objective function. The appendix
also describes the motivation for using the goodness of fit
indices used in the paper and presents equations for each:330

Nash-Sutcliffe Efficiency (NSE), Percentage Bias (PBIAS)
and Index of Agreement (IOA).

4.3 Test 1: Model calibration and verification at daily
time-step.

In this application models C1 and C2 were calibrated and335

verified. Model C3 was not applied in this case because the
SWRB component needed air temperature and relative hu-
midity at an hourly time step to compute the incoming solar
radiation. As specified in Formetta et al. (2013b), this is nec-
essary for modeling the current atmospheric transmittances.340

This information was not available at every station. Tables
(12) and (13) report the optimal parameter sets of the models
C1 and C2 respectively for each of the three locations where
they were applied.

Tables (14) and (15) show for the calibration period and345

for entire simulation period the goodness of fit values for the
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models C1 and C2 respectively and for the three SNOTEL
stations. Model C2 performs better than the classical tem-
perature index model both in calibration and in verification
period in each of the three locations.350

Values of the objective function, KGE, were around 0.90
for the model C1 and around 0.95 for model C2, for the
calibration periods. In verification period values decreased
to 0.80 for C1 model and 0.90 for C2. Similarly, values
of the other performance metrics declined from the calibra-355

tion to verification time periods, but they all are within the
range specified for ”good” model performance according the
guidelines presented in Stehr et al. (2008) and Van Liew et al.
(2005). Thus, in each of the three locations the model perfor-
mance (C1 and C2) deteriorates in verification period.360

The performance decrease is much more evident for the
C1 model. This may be because the model computes melt as
a function of only temperature and a melt parameter, whereas
C2 also incorporates EI and VS .

In the application for Deadman Hill location, fig.(14), the365

two models have similar performance in most years, but in
several years (i.e. 2004-2006) the C1 model (classical tem-
perature index) under-predicts SWE, potentially suggesting a
stronger role of shortwave radiation in providing melt energy
for those years. The applications in the Joe Wright and Hour-370

glass sites, figures (15) and (16) respectively, show higher
sensitivity in the C2 model, which generally has a higher
peak SWE.

However, for any of these applications, all parameters re-
lated to snow accumulation and melt have been optimized, so375

it is not possible to determine whether differences between
the performance of the melt models is related primarily to
the model structure or to the parameter combination selected
in the optimization algorithm.

4.4 Test 2: SWE hourly simulations: models intercom-380

parison

In this application the three snow melt components (C1, C2
and C3) were calibrated and verified against measured data.
This can be performed in Joe Wright station, where air tem-
perature, rainfall and snow water equivalent at hourly time385

step were available. The NewAge OMS component SWRB,
Formetta et al. (2013b), was used to estimate incoming solar
radiation time series input of C3 component.

In this case, the calibration period was 2008, and the veri-
fication period was from 2009 to 2013.390

Table 16 presents the optimal parameter set for each com-
ponent (C1, C2 and C3). For the Tmelt parameters, it identi-
fies optimal negative values for model C1 and C2 and opti-
mal positive value for model C3. The values are in line with
the value founded in Kokkonen et al. (2006). The freezing395

coefficient, αf , assumes an optimal value between 0.0085-
0.0099 [mm C−1 h−1] for the three models. The coefficients
for snow (αs) and rainfall (αr) precipitation are in line with

the range estimated in literature (Forland et al. (1996) and
Rubel and Hantel (1999)).400

Table 17 present the indices of goodness of fit for calibra-
tion and verification periods of each model. Finally, figure
17 presents the comparison between simulated and observed
snow water equivalent for the three models. The gray dots
are the measured data, and green, red and blue solid lines are405

the modeled data by using C1, C2 and C3 component respec-
tively.

From the plot in fig.(17) and the analysis of tab.(17), it
is clear that the three models are able to capture the varia-
tion in time of the snow water equivalent. Moreover, similar410

to the daily time step application, the three models deteri-
orate their performance in the verification period. C2 is the
best in preserving the goodness of fit, whereas C1 and C3
are the models that better capture the snow water equivalent
for the calibration period and for 2012 portion of the time415

series shown in fig.(17). In the last event (2013) in fig.(17),
C1 and C3 models overestimate peak snow water equivalent,
whereas C2 has a stronger performance. The timing of com-
plete melting of the snow is well simulated by the three mod-
els, with Cazorzi and Dalla Fontana’s model (C2) performing420

the best of the three in the verification period
Finally, hourly SWE data as available on the website

http://www.wcc.nrcs.usda.gov/snow/ are shown in fig.(17).
The plot of measured snow water equivalent data shows how
difficult it is to collect accurate measurements at an hourly425

time-step: instability of the signal is evident in 2011 and
2013. Models, even simple as presented in this paper, could
provide help in identifying data errors.

4.5 Test 3: Distributed application of SWE-C

The aim of this application is to show that SWE-C compo-430

nent is able to produce snow melt maps. Moreover the full
integration in the NewAge JGrass system allows the user to
immediately visualize and manage output raster maps. The
SWE-C model is tested in distributed mode for the entire
Cache la Poudre basin. The simulation period was between 1435

October 2008 and 1 October 2009. Daily rainfall and temper-
ature raster maps were computed using the detrended krig-
ing algorithm. In this case three SNOTEL and three COOP
meteorological stations were used, tab.(11). The mean val-
ues of the three optimal parameters sets identified in the first440

model test (section 4.3). Simulated SWE distributions for se-
lect dates are presented in fig.(18). Snow water equivalent
maps were plotted for each month starting from 1 December
2008 to 1 April 2009, and six classes of snow water equiv-
alent value are plotted for each month fig.(18). The model445

is able to simulate the spatial and temporal variability of the
SWE during the hydrological year. The dynamics of the snow
accumulation and melt are consistent with model structure
and expected seasonal pattern of snow, where the snow ac-
cumulation increases with elevation and peaks in spring. Fu-450

ture work will compare these simulated SWE patterns to a
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more complex distributed model simulation of SWE and to
satellite-derived snow cover patterns.

5 Conclusions

This paper presents a parsimonious snow water equivalent455

model based on water and ice mass balance. The model sim-
ulates snow melt using one of three separate temperature-
based formulations where melt rates are a function of ei-
ther temperature only or both temperature and solar radia-
tion. The model is integrated into the NewAge-JGrass hy-460

drological model as an OMS3 component, and for this rea-
son it can make use of all the OMS3 components of the
system: GIS based visualization, automatic calibration algo-
rithm, and verification packages. All these components are
applied and verified at three SNOTEL stations located in465

the Cache la Poudre river basin (Colorado, USA), and the
model has good performance for both daily and hourly time
steps, although model performance degrades from calibra-
tion to verification periods. Finally, the model is applied in
distributed mode to simulate spatial patterns of SWE across470

the basin. Modeling snow water equivalent patterns in a dis-
tributed mode provides the possibility to compare them with
more physically based snow models and the option to ver-
ify them with snow water equivalent remote sensing data.
Future research will address problems related to modified475

temperature index snow water equivalent models such as
transferability of parameter values to new locations and time
periods, over-parameterization, comparison with physically
based snow models, and verification of how well simulated
snow cover spatial patterns reproduce spatial and temporal480

variability of the snowpack.
The stable version of the model used in this pa-

per will be available under GPL version 3 license at:
http://code.google.com/p/jgrasstools/. The research version
used in this paper is available on a GITHUB repository.485

Appendix A

Objective function and Goodness of fit quantifiers

The Kling-Gupta Efficiency (KGE), eq. A1, presented in
Gupta et al. (2009) was selected as the calibration objective
function.490

KGE, unlike other goodness of fit indices, such as Nash
Sutcliffe Efficiency, is able to synthesize in one objective
function three different components from measured (M) and
simulated (S) data: i) correlation coefficient (r), ii) variabil-
ity error, a= σS/σM and iii) bias error, b= µS/µM . µS and495

µM are the mean values of measured and simulated time se-
ries, and σS and σM are the standard deviations of measured
and simulated time series.

KGE = 1−
√
(r− 1)

2
+(a− 1)2 +(b− 1)2 (A1)

Three classical goodness of fit indices were computed500

for each simulation: Nash-Sutcliffe coefficient of efficiency
(NSE), percent bias (PBIAS), and index of agreement (IOA).
NSE, defined in eq.(A2), is widely used in assessing the per-
formance of hydrological models. It ranges between (−∞,1)
and 1 is its best value. While recent studies demonstrate505

that NSE is not very appropriate to test models with a very
strong annual cycle, Schaefli and Gupta (2007), this metric is
used to maintain consistency with prior studies of Stehr et al.
(2008) and Van Liew et al. (2005).

NSE = 1−
∑
i(Mi−Si)2∑
i(Mi−µM )2

(A2)510

The PBIAS is defined in eq.(A3). The optimal PBIAS value
is 0.0, positive values indicate an overestimation of the model
and negative values represent an underestimation.

PBIAS = 100 ·
∑
i(Si−Mi)∑

iMi
(A3)

The IOA, proposed by Willmott (1981) and defined in515

eq.(A4) varies between 0 and 1. The value 1 indicates a per-
fect match between observed and simulated time series.

IOA= 1−
∑
i(Si−Mi)

2∑
i(|Si−µM |+ |Mi−µM |)2

(A4)

Following guidelines in Stehr et al. (2008) and Van Liew
et al. (2005), NSE values greater than 0.75 mean that the520

model can be considered ”good”; values between 0.75 and
0.36 are associated with a ”satisfactory” model performance,
and values below 0.36 indicate ”not a satisfactory” model. A
model with an absolute PBIAS value less then 20 is ”good”;
if the values are between 20 and 40 it is considered ”satisfac-525

tory”, and if it is greater than 40 the model is considered ”not
satisfactory”.
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Fig. 11. The NewAge System showing all the modeling compo-
nents. Starting from the top: the uDig GIS, the meteorological
data interpolation tools, energy balance, evapotranspiration, runoff
production-routing and snow water equivalent. The user can select
and connect different components and use automatic calibration al-
gorithms (at the bottom) to optimize model parameters.
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Fig. 12. The SWE-C integration in the NewAge System showing
connections with the short wave radiation component and kriging
interpolation algorithm. Connection with the Particle Swarm Opti-
mization algorithm is in red dashed line.
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Fig. 13. Cache la Poudre river basin digital elevation model. Eleva-
tions are in meters.
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Fig. 14. Calibration and verification model results for station-
specific calibration test in Deadman Hill station: the gray dots rep-
resent the measured SWE, the solid red line represents the model
C1 (classical temperature index model) and the blue solid line rep-
resents the model C2 (Cazorzi and Dalla Fontana).
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Fig. 15. Calibration and verification model results for station-
specific calibration test in Joe Wright: the gray dots represent the
measured SWE, the solid red line represents the model C1 (classi-
cal temperature index model) and the blue solid line represents the
model C2 (Cazorzi and Dalla Fontana).

Fig. 16. Calibration and verification model results for station-
specific calibration test in Hourglass station: the gray dots represent
the measured SWE, the solid red line represents the model C1 (clas-
sical temperature index model) and the blue solid line represents the
model C2 (Cazorzi and Dalla Fontana).
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Fig. 17. SWE-C application with hourly time time step in Joe
Wright station. The gray dots are the measured data, and green, red
and blue solid lines are the modeled data by using C1, C2 and C3
component respectively.
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Fig. 18. SWE-C application in distributed mode: snow water equiv-
alent maps from 1 November to 1 June for the Upper Cache la
Poudre basin.
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Table 11. Meteorological stations used in test simulations for the
Cache la Poudre river basin.

Station LAT. LONG. Elevation (m)
Hourglass 40.25 105.38 2814
Joe Wright 40.32 105.53 3085

Deadman Hill 40.40 105.46 3115
Buckhorn Mountain 40.60 105.28 2256

Virginia Dale 40.95 105.21 2138
Rustic 40.70 105.70 2347
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Table 12. Optimal parameter values estimated for each of the three
SNOTEL stations for the C1 model at a daily time step.

αm1 αr αs αf Tm αl

[mm C−1 d−1] [-] [-] [mm C−1 d−1] [◦C ] [-]

Hourglass 0.96 1.01 1.35 3.0e-4 -1.24 0.38
Joe Wright 2.68 1.13 0.98 1.0e-4 -0.03 0.14

Deadman Hill 1.86 1.25 0.98 1.8e-4 1.65 0.44
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Table 13. Optimal parameter values estimated for each of the three
SNOTEL stations for the C2 model at a daily time step. E is in W
m−2.

αm2 αr αs αf Tm αl

[mm C−1 E−1 d−1] [-] [-] [mm C−1 d−1] [◦C ] [-]

Hourglass 0.32 1.28 1.01 1.24e-4 1.64 0.70
Joe Wright 0.50 1.17 1.12 0.002 1.51 0.03

Deadman Hill 0.22 1.29 1.025 0.01 -0.49 0.61
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Table 14. Goodness of fit values for the calibration (top) and ver-
ification periods (bottom) for the site-specific calibrations at three
SNOTEL stations and for the model C1 at a daily time step.

Period Station KGE NSE PBIAS IOA

Calibration Hourglass 0.89 0.91 3.2 0.97
Calibration Joe Wright 0.88 0.93 -9.1 0.98
Calibration Deadman Hill 0.90 0.93 -8.6 0.98

Verification Hourglass 0.80 0.82 -11.1 0.95
Verification Joe Wright 0.77 0.71 -21.6 0.91
Verification Deadman Hill 0.81 0.87 -12.9 0.95
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Table 15. Goodness of fit values for the calibration (top) and ver-
ification periods (bottom) for the site-specific calibrations at three
SNOTEL stations and for the model C2 at a daily time step.

Period Station KGE NSE PBIAS IOA

Calibration Hourglass 0.98 0.99 2.2 0.99
Calibration Joe Wright 0.94 0.96 4.9 0.99
Calibration Deadman Hill 0.97 0.97 1.6 0.99

Verification Hourglass 0.91 0.85 -4.3 0.96
Verification Joe Wright 0.89 0.81 -6.1 0.94
Verification Deadman Hill 0.90 0.85 -2.2 0.95
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Table 16. Optimal parameter values estimated Joe Wright station
for C1, C2 and C3 model. E is in W m−2.

Parameter Units Model C1 Model C2 Model C3

αm1 [mm C−1 h−1] 0.0678 [-] [-]
αm2 [mm C−1 E−1 h−1] [-] 0.0085 [-]
αm3 [mm C−1 h−1] [-] [-] 0.07
αe [mm C−1 E−1 h−1] [-] [-] 4.8e-5
αr [-] 0.81 1.32 1.50
αs [-] 0.83 1.10 0.81
αf [mm C−1 h−1] 0.0098 0.0099 0.0085
Tm [C] -0.31 -1.5 1.1
αl [-] 0.80 0.43 0.54

Table 17. Goodness of fit values for the calibration (top) and ver-
ification periods (bottom) for the site-specific calibrations at Joe
Wright and for the models C1, C2 and C3 at a hourly time step.

Period Model KGE NSE PBIAS IOA

Calibration C1 0.97 0.99 2.7 0.99
Calibration C2 0.95 0.93 1.7 0.98
Calibration C3 0.98 0.97 1.2 0.99

Validation C1 0.85 0.86 4.8 0.97
Validation C2 0.90 0.91 6.1 0.98
Validation C3 0.86 0.90 7.3 0.98


