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We would like to thank the reviewer for feedback and suggestions on the manuscript.
These comments provide an important independent perspective that have helped us
improve the quality and readability of the manuscript.

Overall comments

p. 4550, l. 13: The authors write that one of the advantages of the Gibbs sampler
over the Metropolis Hastings algorithm is that it offers “greater flexibility in determining
the shape of the marginal distributions at the bounds”. Isn’t the same flexibility in
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determining the shape of the distributions also available using a Metropolis Hastings
algorithm, by simply modifying the prior and conditional PDFs appropriately? I think the
distinction here should be made between the methods used to enforce non-negativity
(Lagrange multipliers vs. the shape of prescribed conditional and/or prior PDFS), rather
than between the Metropolis-Hastings algorithm and the Gibbs Sampler.

In particular, an alternative approach for implementing a non-negative constraint in an
MCMC algorithm is to apply the constraint as a prior pdf, i.e., use a step function rather
than a fully uninformative prior (e.g., Burrows, et al., 2013). Since the posterior PDF is
proportional to the product of the prior PDF and the conditional PDF (Tarantola, 2005),
this is also mathematically equivalent to specifying the conditional PDF as a truncated
Gaussian, or to repeating each random draw until it falls within uncertainty bounds as
was done in Michalak (2008).

We agree with this comment. As the reviewer points out, one could use a different prior
probability density function (pdf) in the inversion setup and sample the posterior distri-
bution using Metropolis Hastings. In theory, a modeler is not restricted to a multivariate
normal prior pdf but instead could use any number of choices (e.g., Rigby et al. 2011,
Burrows et al. 2013). In this sense, Metropolis Hastings allows for a range of flexible
implementations. However, it can be difficult to efficiently sample the posterior pdf us-
ing Metropolis Hastings. This consideration becomes particularly important when the
number of unknown emissions (~s) is large. Efficient sampling often places practical
limitations on the complexity of the prior pdf. We have added a new section 1 to the
supplement that discusses this challenge in detail. Furthermore, we have reworded
sections 3.3.1 and 5.4 in the main manuscript to account for this discussion.

This raises the philosophical question of whether the bounds should be considered a
component of the prior information or of the conditional PDF. This is perhaps a matter
of taste and won’t affect the calculations. But, since the bounds constitute information
about the fluxes that is known prior to the inversion, and is unrelated to the observed
concentrations, wouldn’t it make more sense to consider the bounds to be a part of the
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prior? Stated another way, introducing bounds reduces the uncertainty of the inversion
because it adds information to the problem – but this information comes in the form
of (prior) physical knowledge about the system, rather than in the form of additional
observations or reduced uncertainty in the observations.

The wording in section 3.3.2 may have unintentionally muddled the discussion on this
topic. In this section, the phrase “conditional pdf” refers to the univariate probability of
element si conditional on the probability of all other elements in ~s. This pdf is different
from the conditional pdf in Bayes theorum. For the application here, that pdf refers to
the multivariate probability of the atmospheric observations conditional on the unknown
emissions.

The Gibbs sampler implementation in the manuscript incorporates the bounds as a
component of the prior distribution. The Gibbs sampler in Michalak et al. (2008) for-
mulates the prior pdf as a multivariate truncated Gaussian distribution. As a result,
the posterior pdf is also a multivariate truncated Gaussian distribution. In our study, we
further modify the prior pdf to increase the probability of estimating zero emissions. We
have reworded sections 2 and 3.3.2 in the revised manuscript to clarify this discussion.

.p. 4545, l. 13 – 18: It is interesting to see that the unconstrained inversion sometimes
violates the known bounds. Violations of known bounds in atmospheric transport inver-
sions that use real observations could indicate a problem with the modeled transport
or loss processes, which is sometimes raised as an objection to the use of bounded
inversions. In this case, though, violations of the known bounds occur with synthetic
observations where the sources and winds are exactly known, arising simply as a
result of the uncertainty in the inversion. This is not surprising, but maybe it is worth
re-emphasizing this point, since it is a good argument in favor of enforcing bounds in
this type of inversion.

This is a very good point. If the observations and transport operator are both positive,
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then a negative emissions might seem implausible:

~z = H~̂s+ ~ε (1)

In this equation, ~z are the observations, H the sensitivity or transport matrix, ~̂s the
posterior emissions estimate, and ~ε the model data mismatch (e.g., transport, mea-
surement, boundary condition errors, etc.). If ~z and H contain only positive elements,
then it may seem illogical that ~̂s could have negative components. In reality, ~̂s may
contain negative elements due to the effect of model-data mismatch errors (~ε). When
these errors are present, the gradients in the observations may be consistent with ad-
jacent positive and negative sources. Furthermore, these negative emissions are not
necessarily caused by any violation of the statistical assumptions in the inversion. In
the methane case study, we synthetically generate model-data mismatch errors, so
these errors are guaranteed to obey all assumptions of the statistical model. Positive
observations and positive transport can nonetheless lead to a negative emissions esti-
mate in some locations. We have added several sentences to section 5.1 that highlight
this point.

p. 4549, l. 26: As noted by other reviewers, this is not the first application of MCMC to
the estimation of atmospheric trace gas fluxes. Further examples of similar/related ap-
plications of Monte Carlo techniques to the estimation of trace gas fluxes (and/or their
uncertainties) can be found in a number of recently published papers – e.g., Berchet
et al., 2013; Broquet et al., 2013; Hirst et al., 2013 – and presumably there are others.
Please remove this statement and/or clarify the distinctions and relationships between
this application and previously published studies.

This is a useful suggestion, and we thank the reviewer for the list of references. Rigby et
al. (2011) and Burrows et al. (2013) use MCMC implementations to enforce inequality
constraints in the inversion. A number of other studies, including several of those
referenced by the reviewer, use MCMC methods to sample the posterior uncertainties
in problems without inequality constraints. We now reference the two studies above in
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the revised manuscript. Furthermore, we have added section 1 to the supplement; this
section compares the Metropolis-Hastings implementations in Rigby et al. (2011) and
Burrows et al. (2013) to an approach used in several hydrology studies.

Detailed comments

p. 4543, l. 18-19: Are the synthetic concentration measurements generated using
WRF as the forward model? Please clarify.

This is correct. The synthetic concentration measurements are generated using WRF-
STILT as the forward model. Note that WRF is used here for its modeled wind fields.
STILT, in contrast, is a particle-following model that transports atmospheric tracers
along these modeled wind fields. We have clarified this in section 4.1.

p. 4535, l. 17: “X is a m × 1vector” – change “a” to “an”

Thank you for pointing this out. We have changed the manuscript as suggested.

p. 4542, l. 12: “in context” – missing “the”

We have changed the manuscript accordingly.

p. 4546, l. 25: the budget is cited here as “2.1 ± 0.2 TgC per month” – but in Table
2, the budget for the “Transform” inversion is “1.59 ± 0.20 TgC per month”. Possibly a
typo?

This difference is intended, and we have edited line 25 on this page to clarify the differ-
ence. The budget listed in the table is the maximum a posteriori (MAP) best estimate
calculated using the transform inversion. The higher budget listed in the text (2.1 ± 0.2
TgC per month) is the mean of the conditional realizations. In the unconstrained inver-
sion setup, these realizations sample the posterior probability space, and the mean of
the realization is identical to the MAP estimate. In the data transformation case, how-
ever, this relationship no longer holds true. The difference in budgets above highlights
a key point: the posterior uncertainties and conditional realizations can be difficult to
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interpret in the data transformation inversion.
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