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Most lakes worldwide are supersaturated with carbon dioxide (CO2) and 

consequently act as atmospheric net sources. Since CO2 is a major greenhouse gas 

(GHG), the accurate estimation of CO2 exchanges at air/water interfaces of aquatic 

ecosystems is vital in quantifying the carbon budget of aquatic ecosystems overall. To 

date, lacustrine CO2 emissions are poorly understood, and lake carbon source 

proportions remain controversial, largely due to a lack of integration between aquatic 

and terrestrial ecosystems. In this paper a new process-based model framework 

(TRIPLEX-Aquatic) is introduced incorporating both terrestrial inputs and aquatic 

biogeochemical processes to estimate diffusive emissions of CO2 from lake systems. 

The model was built from a two-dimensional hydrological and water quality model 

coupled with a new lacustrine CO2 diffusive flux model. For calibration and 

validation purposes, two years of data collected in the field from two small boreal 

oligotrophic lakes located in Québec (Canada) were used to parameterize and test the 

model by comparing simulations with observations for both hydrodynamic and carbon 

process accuracy. Model simulations were accordant with field measurements in both 

calibration and verification. Consequently, the TRIPLEX-Aquatic was used to 

estimate the annual mean CO2 diffusive flux and predict terrestrial dissolved organic 

carbon (DOC) impacts on the CO2 budget for both lakes. Results show a significant 

fraction of the CO2 diffusive flux (~30-45%) from lakes was primarily attributable to 

the input and mineralization of terrestrial DOC, which indicated terrestrial organic 

matter was the key player in the diffusive flux of CO2 from oligotropical lake systems 
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1. Introduction 

Lakes account for more than 3% of land surface area (Downing et al., 2006) and are 

an important component in terrestrial carbon cycling. Substantial evidence indicates 

that the transfer of terrestrial carbon to lake ecosystems is considerably larger than the 

carbon flux to marine systems and approximately coequal to estimates of the net 

ecosystem productivity (NEP) of the terrestrial biosphere (Richey et al., 2002; Cole et 

al., 2007; Battin et al., 2009). In addition, a significant fraction of terrestrial carbon 

can be mineralized in lake systems (Kling et al., 1991; Cole et al., 1994; Hope et al., 

1996; del Giorgio et al., 1997; Striegl et al., 2001; Algesten et al., 2003; Sobek et al., 

2003; Rantakari and Kortelainen, 2005; Cole et al., 2007). Lake surveys carried out 

worldwide have demonstrated that boreal, temperate, and tropical lakes are typically 

supersaturated with CO2 and consequently release significant amounts of CO2 into the 

atmosphere (Kling et al., 1991; Cole et al., 1994, 2007; Sobek et al., 2003; Roehm et 

al., 2009; Battin et al., 2009).  

The northern latitude biomes have been identified as important for CO2 exchange 
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between ecosystems and the atmosphere, with a net sink of CO2 for temperate forests 

(Chapin III, et al., 2000; Dunn et al., 2007). However, there are few quantitative 

estimates of lake emission in relation to current assessments of the CO2 balance. To 

date, the lake CO2 emissions over space are poorly understood (Duchemin et al., 2002; 

Sobek et al., 2003; Cardille et al., 2007; Roehm et al., 2009; Tedoru et al., 2009; 

Demarty et al., 2011), and lake carbon source proportions in different ecosystems 

remain controversial (del Giorgio et al., 1999; Cole et al., 2000; Jonsson et al., 2001, 

2003; Prairie et al., 2002; Algesten et al., 2003; Hanson et al., 2003, 2004; Karlsson et 

al., 2007; McCallister and del Giorgio, 2008). Therefore, estimates of the fraction of 

terrestrial organic carbon that is exported to lakes and then routed into atmospheric 

CO2 and the evaluation of the role of lakes in regional carbon budget require the 

integrated studies of the entire lake-watershed system (Algesten et al., 2003; Jenerette 

and Lal, 2005; Cole et al., 2007; Battin et al., 2009; Buffam et al., 2011). 
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Identifying CO2 emissions from lakes is challenging and tends to be fraught with 

uncertainty since complex links exist between terrestrial and aquatic ecosystems 

(Hutjes et al., 1998; Wagener et al., 1998; Kalbitz et al., 2000; Smith et al., 2001; 

McDowell, 2003; Hanson et al., 2004; Jenerette and Lal, 2005; Cole et al., 2007; 

Buffam et al., 2011). In addition, water bodies exhibit significant multidimensional 

variations caused by interactions among hydrodynamic, biological, and chemical 

processes (Cole and Wells, 2006). Although lacustrine biogeochemistry is an 

integrative discipline, previous terrestrial and lake models have developed somewhat 

independently of each other (Grimm et al., 2003; Jenerette and Lal, 2005; Hanson et 
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al., 2004; Cole et al., 2007; Cardille et al., 2007; Debele et al., 2008; Jones et al., 

2009). Therefore, understanding the connectivity between each process and scaling up 

biogeochemical information must rely on coupled terrestrial and aquatic carbon cycle 

models essential in reducing uncertainty in carbon fluxes from and into lake systems 

(Grimm et al., 2003; Jenerette and Lal, 2005; Chapin III, 2006; Cole et al., 2007; 

Battin et al., 2009; Buffam et al., 2011).  
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In this paper a new process-based two-dimensional model framework 

(TRIPLEX-Aquatic) was developed to investigate lake carbon cycles with a particular 

emphasis on CO2 diffusion. This model incorporates both terrestrial inputs and an 

aquatic carbon cycle model with exceptional spatial and temporal resolution. Thus, 

the model constitutes an improved tool to investigate the primary processes involved 

in aquatic carbon cycling (including CO2 diffusive exchanges between air and water 

bodies). Here, we seek to address two questions: 1. Is the TRIPLEX-Aquatic able to 

capture the dynamics of CO2 diffusive flux in boreal lakes? 2. What is the 

contribution of terrestrial DOC to lake CO2 emission? 

 

2. Model description and methods 

To achieve the objectives of this study, the model need to capture the principal 

hydrological characteristics, the detailed carbon cycle accounting for inputs of DOC 

from the watershed in lake carbon processing, and the accurate CO2 diffusive flux 

simulation to the atmosphere.  
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Figure 1 provides a schematic of the applied method based upon hydrological, 

carbon submodels, and CO2 diffusive exchanges between air and water in the lake. 

The first model, hydrological submodel simulates the hydrodynamic conditions in 

lake. It is important in modeling carbon cycle since hydrology controls physical 

mixing processes between different spatial components of lake, factors that can 

directly or indirectly control biotic and abiotic processes. The second model, the lake 

carbon processes focus primarily on the prediction of organic/inorganic pools via 

photosynthesis and respiration, and their effects on dissolved oxygen and 

conventional cycles of nitrogen and phosphorus. This approach represents a 

substantial progression in lacustrine biogeochemical models since the 1970s (Harris, 

1980; Beck, 1985; Ambrose et al., 1993; Kayombo et al., 2000; Chapelle et al., 2000; 

Omlin et al., 2001; Cole and Wells, 2006). In this paper, lake hydrodynamic and 

carbon simulations follow the approach of the CE-QUAL-W2 model (Cole and Wells, 

2006) since the model has coupled between two-dimensional hydrodynamics and 

carbon cycle simulations with the same time steps and spatial grid, as well as it having 

already been successfully applied to rivers, lakes, reservoirs, and estuaries for several 

decades in the past. The CE-QUAL-W2 model is available at 
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http://www.ce.pdx.edu/w2, and its program code is not changed in this study. 127 
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The third model, the simulation of CO2 diffusive fluxes at the air/water interface uses 

a new boundary layer model developed by Vachon and Prairie (2013) for the CO2 

diffusive flux in temperate lakes. Because this simulation in CE-QUAL-W2 model 

was simply designed the gas transfer coefficient for CO2 is related to that of oxygen 
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transfer using a factor of 0.923 (Cole and Wells, 2006), and most of these CO2 transfer 

velocities are lower (Fig. 2) than the measurements that collected from aquatic 

systems of different size lakes (Vachon and Prairie, 2013), whereas some of velocities 

(e.g., Eq-1, Eq-5, Eq-8, Eq-13) are much higher than the observations under high 

wind speed. As a result, these transfer velocities make it impossible to reliably 

simulate CO2 diffusive fluxes from lakes. The new model is named as TRIPLEX- 

Aquatic, which is more suitable in predicting CO2 diffusive emission from lake 

systems. The program code of new CO2 diffusive flux submodel (Vachon and Prairie, 

2013) was developed using the Fortran language as in the CE-QUAL-W2 model. 
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The inputs of TRIPLEX-Aquatic model and file format are same as the 

CE-QUAL-W2 model, including climate data (e.g. air average temperature, dew point 

temperature, wind speed and direction, cloud cover), inflow and constituent 

concentrations (e.g. DOC, dissolved inorganic carbon (DIC), phosphate (PO4
3-), 

ammonium (NH4
+), nitrate (NO3

-), and dissolved oxygen (DO)), and bathymetric and 

geometric data of lake. The model outputs represent the characteristics of hydrology 

(e.g. water velocity, density, temperature) and carbon processes (e.g. DOC, DIC, 

bicarbonates, carbonates, CO2 concentration in water) in the lake, especially the CO2 

diffusive fluxes to the atmosphere. A brief overview of the TRIPLEX-Aquatic  

model is presented below. 

 

2.1 The hydrodynamic submodel 
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The hydrodynamic simulation is able to characterize time variable 

longitudinal/vertical distributions of thermal energy in water bodies, based upon a 

finite difference solution applied to laterally averaged equations of fluid motion 

including momentum balance, continuity, constituent transport, free surface elevation, 

hydrostatic pressure, and equation of state (Cole and Wells, 2006).  
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The model quantifies the free surface elevation, pressure, and density as well as the 

horizontal and vertical velocities (Cole and Wells, 2006). Explicit numerical schemes 

are also used to compute water velocities that affect the spatiotemporal distribution of 

temperature and biological/chemical constituents. The model simulates the average 

temperature for each model cell based upon water inflows/outflows, solar radiation, 

and surface heat exchanges. The term-by-term formulation was used to characterize 

the surface heat exchange. Spatial and temporal variations are permitted for 

longitudinal diffusion. The model computes the vertical diffusion coefficient from the 

vertical gradient of longitudinal velocities, water densities, and decay of surface wind 

shear. A full description of the model is offered by Cole and Wells (2006). 

 

2.2 The carbon cycle submodel 

The carbon submodel explicitly depicts organic and inorganic carbon processes in 

lake system. The organic carbon process includes four interacting systems: 

phytoplankton kinetics, nitrogen cycles, phosphorus cycles, and the dissolved oxygen 

balance (Fig. 3). The model accepts inputs in terms of different pools of organic 

matter (OM) and various species of algae. OM is partitioned into four pools according 
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to a combination of its physical state (dissolved – DOM versus particulate – POM) 

and reactivity (labile – L versus refractory – R) characterizing the 

mineralization/decay rate of organic compounds. Labile OM (LDOM and LPOM) is 

more readily mineralized (i.e., having faster decay rates) whereas refractory OM 

(RDOM and RPOM) is less readily mineralized (i.e., having slower decay rates). All 

OM decay and decomposition processes in the model follow first order kinetics with 

temperature-dependent coefficients. The inorganic carbon processes include carbon 

dioxide input and output the inorganic carbon pool among carbonate species via two 

major pathways: atmospheric and biological exchange processes.  
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The hydrodynamic and carbon dynamics have been well documented and are 

described in detail in the CE-QUAL-W2 (Cole and Wells, 2006). The scope of this 

study was only to describe CO2 diffusion across the air/water interface and the newly 

redesigned TRIPLEX-Aquatic. 

 

2.3 The CO2 diffusive flux submodel 

CO2 diffusion across the air/water interface (FCO2) is driven by the concentration 

gradient between the atmosphere and surface water and regulated by the gas exchange 

velocity K. Hence: 

                                  (1) )( 2222 HatmCOCOCO KpCOKF 

where KCO2 is the piston velocity (cm/h); ΦCO2 is the CO2 concentration in water 

(g/m3); and (pCO2atmKH) is the CO2 concentration in equilibrium with the atmosphere. 
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pCO2atm represents the CO2 partial pressure in the atmosphere, and KH is the Henry’s 

constant corrected for water temperature.  
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198 KCO2 is the piston velocity constant for CO2 calculated as follows: 
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                                         (2) 

n, the exponent, was used the value 0.5, which is appropriate for low-wind systems 

(Jahne et al., 1987). K600, the piston velocity measured with SF6 and normalized to a 

Schmidt number of 600, was used the recently function (Vachon and Prairie, 2013) for 

temperate lakes in Canada that determined according to lake area (LA) together with 

wind speeds. Comparison to the power function developed for low-wind speed 

conditions by Cole and Caraco (1998) that focused on wind speed alone, this equation 

provided a more complete predictive model of gas transfer velocities in lakes because 

the ecosystem size acts as the main modulator of the effect of wind speed on gas 

exchange (Read et al., 2012). 

                            (3) LAUUK 101010600 log39.048.151.2 

where U10 is the wind speed (m/s) at a height of 10 m. ScCO2, representing the Schmidt 

number for carbon dioxide, is calculated according to Equation 4 (Wanninkhof, 

1992): 

                   (4) 32
2 04132.04527.311.1181.1911 WWWCO TTTSc 

where TW is the water surface temperature (ºC). 

 

3. Model input and test data 216 
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The computational grid of the two-dimensional lake model was developed based 

upon the bathymetric and geometric data collected from the unperturbed oligotrophic 

Lake Mary (46.26º N, 76.22º W) and Lake Jean (46.37º N, 76.35º W) in Québec, 

Canada, with a surface area of 0.58 and 1.88 km2, respectively. The watershed areas 

are 1.19 km2 for Lake Mary and 5.43 km2 for Lake Jean. The region has an average 

altitude of 230 m, and is characterized by an average temperature of approximately 

5ºC, with 1000 mm of annual precipitations. Dominant tree species are red pine and 

yellow birch in mature. Soils are Brunisolic Luvisols. The lake areas were divided 

into 24 horizontal segments and 10 vertical layers. Longitudinal segments were 50 m 

in length for Lake Mary and 160 m in length for Lake Jean. The vertical layers were 2 

m thick for both lakes (Fig. 4). 
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Time-varying boundary conditions at the surface of the lakes were set up with 

regard to meteorological influences. Hourly meteorological data, such as air average 

temperature, dew point temperature, wind speed and direction as well as cloud cover 

were obtained from weather monitoring station (Maniwaki Airport, Québec) located 

closet to the sites (17 km for Lake Mary, and 29 km for Lake Jean), although the 

meteorological data may be less accurate because it is not the local weather station. 

Daily inflow and constituent concentrations of DOM at branch—estimated by the 

TRIPLEX-DOC model (Wu et al., 2013) that is capable of estimating DOC and 

hydrologic dynamics in forest soils by incorporating both ecological drivers and 

biogeochemical processes in the age-sequence of temperate forests, then multiplyed 

the watershed forest landscape areas of Lake Mary and Lake Jean. They were adapted 
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to TRIPLEX-Aquatic formats—were used as time-series inflow boundary conditions. 

Other inflow constituents—included POM, DIC, phosphate (PO4
3-), ammonium 

(NH4
+), nitrate (NO3

-), and DO—were compared to data from the nearby tributary in 

Eastern Canada with sampled data (Wang and Veizer, 2000; Hélie et al., 2002; Hélie 

and Hillaire-Marcel, 2006; Teodoru et al., 2009) because these have not been sampled 

in the present study. 
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Hydraulic parameters governing horizontal dispersion and bottom friction were set 

to default values using the Chezy friction model (Cole and Wells, 2006). Parameters 

affecting constituent kinetics are also required by the model. Initially, kinetic 

coefficients were set to default values (Cole and Wells, 2006) but subsequently tuned 

during the aquatic carbon process calibration so that the model output agreed with the 

field data. Kinetic coefficients were adjusted within acceptable ranges based upon 

data in published literature (Table 1). Although site-specific data are preferable, the 

paucity of details on hydraulic and kinetic coefficients in the lakes under study made 

it difficult to rely on site-specific data alone. 

To test the model, four times campaigns were conducted in the two lakes from 2006 

to 2007 because of the remote region, during periods following ice breakup in May 

2006 (16 sampling time points in 6 days) and 2007 (15 sampling time points in 2 

days), summer stratification in July 2006 (10 sampling time points in 2 days) and 

when fall overturn occurred in October 2006 (14 sampling time points in 3 days) for 

the center of Lake Mary, and during periods in July2006 (27 sampling time points in 2 
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days), October 2006 (1 sampling time point in 1 day), May 2007 (14 sampling time 

points in 1 day), July2007 (20 sampling time points in 2 days) for the center of Lake 

Jean. During each field trip, surface layer samples and information on water 

temperature, dissolved CO2 concentrations (pCO2) as well as DOC at 15 cm depth 

was collected in pelagic sites of lake. An about 10 m depth profile of temperature, pH, 

DO and pCO2 was also carried out at the central point of lake. 
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To determine pCO2, three 30-mL water samples were collected in 60-mL 

polypropylene syringes from each depth and carried out within 6 h of return to the 

field laboratory. They were equilibrated with an equal volume (30 mL) of ultrapure 

nitrogen (N2) by vigorous shaking for two minutes. Water was then flushed gently and 

the gaseous phase finally injected into the gas chromatograph (GC) (Star-3400CX; 

Varian, Palo Alto, CA, USA). Equilibrated CO2 concentrations in the gaseous phase 

were calculated according to their solubility coefficients as a function of laboratory 

temperature (Flett et al. 1976). The CO2 diffusive fluxes were therefore estimated 

from CO2 saturation measured in the lakes in conjunction with wind speed. DOC 

concentration was analyzed in 0.2 μm filtered water samples in an OI-1010 Total 

Carbon Analyzer (OI Analytical, TX, USA) using wet persulafate oxidation. In 

addition, water temperature, DO, and pH profiles were taken with a YSI-6600 probe.  

 

4. Model calibration and validation 

Calibration of the TRIPLEX-Aquatic model in middle segment (the center of lake) 
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was carried out by tuning appropriate model parameters to match the predicted and 

measured data from Lake Mary in 2007 to obtain the best possible fit within 

acceptable ranges specified by Cole and Wells (2006) (Table 1). The model was 

verified against more data measured at Lake Mary in 2006 during which it was 

subjected to different ambient weather and flow conditions from those prevailing 

during model calibration in 2007, in order to test if the model was capable of 

accurately simulating the hydrodynamic regime and aquatic carbon dynamics under 

climatic conditions differing from those used for calibration. The model was also 

validated against measurements taken in Lake Jean from 2006 to 2007. System 

coefficients used in the model were the same as those determined during model 

calibration. Measurements serve to validate model results related to water temperature, 

pH, DO, pCO2, DOC, and the CO2 diffusive flux. 
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4.1 Temperature, pH, dissolved oxygen, and pCO2 

Hydrodynamic calibration is typically performed by examining vertical and 

longitudinal concentration gradients of conservative constituents. Cole and Wells 

(2006) recommend the use of temperature gradients as a first step for hydrodynamic 

calibration. The prediction of surface water temperature for 2007 was in agreement 

with the measured data from Lake Mary (Fig. 5a) despite high variability in the 

calibration data. The root mean squared error (RMSE) for the calibration period was 

0.95ºC. The verification of surface layer water temperature during 2006 for Lake 

Mary and from 2006 to 2007 for Lake Jean (Fig. 5) shows sufficient agreement 
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between the model simulations and field measurements. The water temperature 

RMSE was 0.9ºC during all simulation periods in both lakes.  
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With regard to the validation of the vertical simulation of lake hydrodynamics and 

carbon cycle, the water temperature, pH, DO, and pCO2 between model 

reconstructions and measurements were examined. Figure 5 shows that model 

simulation results with respect to depth were also accordant with the recorded 

observations: the RMSE were 0.28ºC for temperature, 0.09 for pH, 3.5 for DO (%), 

and 4.7 for pCO2 during fall turnover (Fig. 6a, c, e, g), and 0.96ºC for temperature, 

0.44 for pH, 11.1 for DO, and 5.3 for pCO2 during spring stratification in Lake Mary 

(Fig. 6b, d, f, h). However, predicted values showed lower gradients than measured 

values during the spring period, especially for DO (Fig. 6f). The model also tended to 

underestimate water DO (%) by approximately 9% for complete profile during fall 

turnover (Fig. 6e).  

Differences between simulated and measured DO concentration, could partly be 

explained by lower tributary dissolved oxygen loads, because data was compared 

from the nearby tributary where may region-specific differences. For thermocline had 

lower gradients in predicted values than actual, because the stratification is a complex 

integration of multiple forcing components such as mixing rates, vertical dimensions 

of layer, layer temperature, basin morphometry, hydrology and, most important, 

meteorological conditions (Harleman, 1982; Owens and Effler, 1989), thus, it is 

difficult to accurately simulate the thermocline without intensive meteorological data, 
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while the data used in this study are measured at only one nearby meteorological 

station. On the other hand, uncertainties resulting from the daily inflow of 

TRIPLEX-DOC model simulations in the upland watershed likely propagated into the 

simulations by way of the TRIPLEX-Aquatic model computation for waterbody, since 

outputs from the TRIPLEX-DOC model were used to run the TRIPLEX-Aquatic 

model.  
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Although it is importance of water temperature and thermal stratification dynamics 

for temporal variation of surface water CO2 in boreal lake (Aberg et al., 2010), the 

RMSE of surface temperature, pCO2 in model simulation lead to approximately 12% 

and 15% mean errors in CO2 diffusive flux respectively, they had only minor impacts 

on lake CO2 emission.  

 

4.2 Dissolved organic carbon 

Dissolved organic carbon, a substrate for microbial respiration, is a key constituent 

in aquatic carbon dynamics and could be the source of significant variations in lake 

pCO2 (Hope et al., 1996; Sobek et al., 2003). Figure 6 offers a comparison between 

simulated and observed daily DOC concentrations from 2006 to 2007 in Lake Mary. 

Although the DOC values in different sampling times during daily period have 

significant variation while the simulated values were relative stable, simulated values 

were reasonably distributed in the middle of the daily observational period 

(RMSE=0.71). This agreement obtained during 2006 demonstrates that the model is 
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capable of modeling daily DOC carbon-process properties within Lake Mary.  345 
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4.3 CO2 diffusive flux  

In this study, a zero CO2 flux was assumed during the ice cover period for the 

simulations. During the ice-free period, there were considerable seasonal variations in 

the magnitude of the CO2 diffusive flux and a distinct seasonal cycle in both Lake 

Mary and Lake Jean (Fig.8). Peak fluxes occurred in the month of May following ice 

breakup and reached a brief, temporary minimum in early July. This minimum was 

followed by a second peak in late fall associated with autumnal mixing.  

In comparing simulated results with observational daily data from 2006 for Lake 

Mary and from 2006 to 2007 for Lake Jean, the model successfully reproduced the 

observed distributions of CO2 flux in both lakes, except for a daily value in autumn 

2006 in Lake Jean that may be due to a single measurement. Although more 

systematic measurements were absent in this study, such reasonable agreement 

between simulated and observed hydrodynamic plots and aquatic carbon dynamic 

parameters demonstrates that TRIPLEX-Aquatic was able to model various 

hydrodynamic and aquatic carbon cycle processes within the lake systems. It can thus 

be applied to simulate the CO2 diffusive flux for lakes. 

 

5. Terrestrial DOC and lake CO2 emissions 364 

5.1 Seasonal and annual mean lake CO2 diffusive flux 365 
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The most current estimates of the annual CO2 emission budgets of lakes, based 

upon measurements, only consider CO2 produced during ice-free periods. However, 

CO2 produced during winter months may accumulate under the ice cover and be 

subsequently released into the atmosphere once ice break-up occurs in spring (Striegl 

et al., 2001; Duchemin et al., 2006; Demarty et al., 2011). This early spring CO2 

release accumulated during the winter should be accounted for in order to develop a 

more realistic annual CO2 emission budget for boreal lakes.  
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At the end of the winter season, the TRIPLEX-Aquatic model was well-calibrated 

to capture the principal characteristics of a high CO2 flux episode just after ice melt 

over a period of approximately ten days (Fig. 8a, b). During this period the model 

estimated that approximately 80% of the CO2 contained in the water column of Lake 

Mary and Lake Jean was emitted into the atmosphere. The values for early spring CO2 

emissions ranged from 5% to 8% of the annual CO2 diffusive emission budget for 

both lakes during the 2006 and 2007 period, which are thus an important portion in 

the annual CO2 budget. 

For Lake Mary and Lake Jean, variations in daily CO2 flux were greatest during 

spring and fall and smallest during summer stratification (Fig. 8a, b). The average 

summer (from July to August) values were approximately 22% to 57% lower than the 

average calculated values for the entire open water period in both lakes, a typical 

situation for northern temperate dimictic lakes (Hesslein et al., 1990). 

Although there is a reasonable agreement between model simulations and field 
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measurements for daily CO2 diffusive flux (Fig. 8), when comparisons are based on 

seasonal CO2 diffusive flux in Lake Mary (Fig. 9a), it was noted that the observations 

made during the autumn of 2006 were much higher than those in the simulation. For 

Lake Jean (Fig. 9b) measurements taken in the summer of 2006 were lower than those 

in the model simulations.  
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5.2 Impact of terrestrial DOC on lacustrine CO2 diffusive emissions 392 

A large body of literature suggests net heterotrophy is the key factor responsible for 

the often observed supersaturation of CO2 in lake systems (del Giorgio et al., 1999; 

Cole et al., 2000; Jonsson et al., 2001, 2003; Prairie et al., 2002; Algesten et al., 2003; 

Hanson et al., 2003, 2004; Sobek et al., 2003; Karlsson et al., 2007; McCallister and 

del Giorgio, 2008), but this inference is tempered by uncertainties in the magnitude of 

the carbon load to lakes, and the relative contributions to lake CO2 emission (Hanson 

et al., 2004; Karlsson et al., 2007; McCallister and del Giorgio, 2008). 

To evaluate impacts of terrestrial DOC on the lake CO2 emission regime, a 

comparison between DOC inputs and CO2 fluxes was performed where the DOC data 

was simulated by way of the TRIPLEX-DOC model. Figure 10 shows a positive 

relationship between terrestrial DOC and CO2 flux in both Lake Mary (CO2 flux = 

15.32DOC + 132.37, R2 = 0.42, P<0.0001) and Lake Jean (CO2 flux = 12.68DOC + 

201.9, R2 = 0.50, P<0.0001), underlining the important role of DOC inputs in seasonal 

CO2 diffusive flux variations.  

 19



To further estimate the impact of terrestrial DOC on aquatic CO2 diffusive flux, a 

sensitivity analysis was carried out on the modeled results for 2006 to 2007 for both 

lakes by setting the terrestrial DOC inputs to zero while keeping other variable inputs 

at normal values, mimicking a situation in which the terrestrial DOC input would be 

nil. Results showed the annual mean CO2 diffusive flux from lakes under 

no-DOC-input conditions were much lower (approximately 15% to 29% lower) than 

values with DOC inputs (Fig. 11a, b).  
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6. Discussion and conclusion 

6.1 Comparison model with earlier approaches 

There are presently only a handful of model studies (Hanson et al., 2004; Cardille 

et al., 2007; Buffam et al., 2011) that have tried to link terrestrial watershed carbon 

inputs to their aquatic components for CO2 emission. However, integration is still 

pending. In this study a comprehensive process-based aquatic carbon model 

(TRIPLEX-Aquatic) incorporating both terrestrial inputs, an aquatic carbon cycle, and 

detailed hydrodynamic simulation was developed and applied to investigate aquatic 

CO2 diffusion in lake ecosystems within Québec, Canada.  

Although recent lake carbon models (Hanson et al., 2004; Cardille et al., 2007) 

integrate inputs of terrestrial DOC from watersheds, such models have no or very low 

hydrodynamic spatial resolution. In addition, these models do not include real-time 

meteorological conditions, while using constants to represent physical mixing 
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processes between spatial components. The mass balance model (Jones et al., 2009) 

accounts for real-time metrological data for lake carbon simulation, but does not 

include inputs of terrestrial DOC from catchments. Accordingly, the lake 

hydrodynamic routine is less realistic than the simulation carried out in this study. 

Moreover, previous photosynthetic estimates are based upon empirical models 

whereas simulations in this study were based on a process-based model. 
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A previous numerical CO2 emission model developed by Barrette and Laprise 

(2002) illustrate the relevant approach to modeling physical processes in the water 

column based upon an extension of the lake water column model. It was used to study 

the temporal and spatial distribution of the dissolved CO2 concentration profile and 

the CO2 diffusive flux at the air/water interface. However, this particular model does 

not include the autotrophic and heterotrophic production of organic matter based upon 

variables such as water temperature, dissolved oxygen, nutrient salts, and terrestrial 

organic matter from catchments. All were included in the model used in the present 

study.  

For the CO2 diffusive flux submodel in TRIPLEX-Aquatic model, although a few 

studies have indicated that CO2 diffusive fluxes obtained with the boundary layer 

technique might have been underestimated (Anderson et al., 1999; Jonsson et al., 

2008) in comparison with the eddy covariance technique that is a direct measurement 

of the CO2 flux, while the studies of Eugster et al. (2003) and Vesala et al. (2006) 

showed a good agreement. The boundary layer model of Vachon and Prairie (2013) 
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also provided no bias estimations of CO2 evasion based on experiment in aquatic 

systems of different size in Canada under a low-wind environment, which is similar to 

the lakes in this study. Even though the Vachon and Prairie (2013) model in this study 

is relatively simple, it is reasonable for estimating the CO2 diffusive flux, partly 

because there has been little evidence that incorporation of comprehensive surface 

forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et 

al., 2009). 
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6.2 Impact of terrestrial DOC on CO2 emission 

Based on model validation, the agreement between observations and simulated 

results indicates the model is able to capture the principal hydrological characteristics 

and carbon dynamic processes in lake systems, it thus provides a realistic CO2 

diffusive flux simulation. 

For the early spring CO2 emissions, our model can successfully simulate the high 

CO2 flux episode following ice breakup events. Such emission peaks were also 

identified by measurements in boreal lakes (Riera et al., 1999; Duchemin et al., 2006; 

Huotari et al., 2009; Demarty et al., 2011). Duchemin et al. (2006) estimated during 

the week following ice breakup 95% of the dissolved CO2 contained in the water 

column was released into the atmosphere. CO2 emitted during this short period would 

account for 7% to 52% of total annual emissions (Duchemin et al., 2006; Huotari et 

al., 2009; Demarty et al., 2011). Our results are within the lower end of their estimates, 
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and reveal a significant CO2 contribution during the ice break-up periods to the annual 

CO2 budget of aquatic ecosystems in boreal lakes.  
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Concerning the seasonal and annual CO2 emission, the differences between 

simulated and measured CO2 diffusive flux values may result, in part, from the 

absence of systematic (or continuous) measurements of highly variable daily 

emissions: there are only a few daily observations for each season and these cannot 

accurately represent the natural CO2 emission, thus resulting in a substantial 

overestimation or underestimation of seasonal, or annual flux values. On one hand, for 

the analysis of seasonal or annual variability, we should, in the future, use the eddy 

covariance measurements, which provide more frequent sampling and more accurate 

estimates of the CO2 emission (Vesala et al., 2006; Jonsson et al., 2008; Huotari et al., 

2011). On the other hand, it is our hope that the model simulation could contribute to 

the development of more effective sampling strategies, based on the characteristics of 

the simulated temporal CO2 emission pattern associated with each lake. 

For the impact of terrestrial DOC on lake CO2 emission, results from this study 

reveal that approximately 15% to 29% of the annual CO2 diffusive flux is due to 

terrestrial DOC input. Our study agree with the work ranged from 3% to 80% CO2 

flux from terrestrial organic carbon in lakes of the southern Quebec, Canada 

(McCallister and del Giorgio, 2008), the boreal Scandinavia (Algesten et al., 2003), 

and of the Wisconsin, UAS (Cole et al., 2002; Hanson et al., 2004). Our results thus 

support the hypothesis that a significant fraction of aquatic CO2 diffusive flux is 
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attributable to allochthonous organic carbon inputs from lake catchments (del Giorgio 

et al., 1999; Cole et al., 2000, 2007; Jonsson et al., 2001, 2003; Prairie et al., 2002; 

Algesten et al., 2003; Hanson et al., 2003, 2004; Karlsson et al., 2007; McCallister 

and del Giorgio, 2008; Battin et al., 2009; Buffam et al., 2011). 
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Sediment respiration is also an important source of CO2 in lake system (Algesten et 

al., 2005; Kortelainen et al., 2006; Brothers et al., 2012). To investigate the potential 

effects of sediment dynamics on the CO2 emission from the lake, we performed a 

sensitivity experiment with sediment oxygen demand levels ranging from 1 to 0 g m-2 

d-1 in Lake Mary and Lake Jean. The mean contribution of benthic metabolism to 

surface CO2 diffusive emission was approximately 23% to 47%. This result is in good 

agreement with the observed studies (Jonsson et al., 2001; Brothers et al., 2012) that 

revealed the benthic respiration in boreal lakes representing approximately 23% to 

50% of the total carbon production.  

There is generally a net uptake of CO2 from the atmosphere in boreal forests 

(Chapin III, et al., 2000; Dunn et al., 2007), whereas, lake ecosystems seems to 

process a large amount of terrestrial derived primary production and alter the balance 

between carbon sequestration and CO2 release. It demonstrates that lake ecosystems 

contribute significantly to regional carbon balances. 

 

6.3 Future improvements to the TRIPLEX-Aquatic  

A major challenge for developing a new process-based model is the validation 
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phase. Results presented in this study demonstrate that the TRIPLEX-Aquatic  

model is able to provide the potential to predict the hydrodynamic and carbon 

processes in two selected boreal oligotrophic lakes (Lake Mary and Lake Jean). 

However, our model calibration and validation are still limited by the number of 

sample available in this study and should be improved by using more sensor network 

data in future. Moreover, additional system verification and model testing should be 

conducted when applying the model to lakes with different characteristics in different 

climatic zones. 
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In addition, the aquatic carbon approach is relatively simple in the current version 

of TRIPLEX-Aquatic. Decomposition processes of organic carbon follow first order 

kinetics of temperature-dependent coefficients for bacterial degradation. In fact, 

mineralization of allochthonous organic carbon occurs primarily, if not exclusively, by 

way of bacterial degradation (Jonsson et al., 2001). Photochemical degradation 

(Granéli et al., 1996) and its interaction with bacterial mineralization (Bertilsson and 

Tranvik, 1998) may add substantially to overall lake mineralization. Moreover, 

groundwater inflow (Kling et al., 1991; Striegl and Michmerhuizen, 1998) and surface 

water (Dillon and Molot, 1997; Cardille et al., 2007) enriched in inorganic carbon 

derived from weathering and soil respiration could be an important factor in some 

lakes.  

There is also increasing evidences that gas transfer near the air/water interface 

cannot be adequately quantified using simple wind speed and lake area. Studies have 
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shown that other factors, such as friction velocity, bubbles, buoyancy, energy 

dissipation, fetch, surface slicks, rain, and chemical enhancement (Asher and Pankow, 

1986; Wallace and Wirick, 1992; Erickon, 1993; Ho et al., 2000; Zappa et al., 2001; 

McNeil and d’Asaro, 2007; Wanninkhof et al., 2009; MacIntyre et al., 2010), can also 

affect the gas transfer velocities. Disregarding these factors will undoubtedly add to 

the analytical uncertainty in relation to the aquatic carbon cycle. These shortcomings 

will be addressed and minimized in the future.  
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It is important to point out that the TRIPLEX-Aquatic model, incorporating robust 

process-based hydrodynamic components, could be feasibly adapted to reservoirs in 

the future in spite of the fact that their hydrodynamic and biogeochemical 

characteristics differ from those observed in lake systems. The model can also be 

coupled with land surface and ecosystem models at various horizontal resolutions or 

forced with GCM outputs to investigate the potential impact of climate and land use 

changes on lake carbon cycles. It is hoped that reassessment and future investigation 

will generate an improved and integrative understanding of carbon flux in lakes and 

reservoirs as well as a better integration between aquatic and terrestrial components. 
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Figure 1: Modular structure of the TRIPLEX-Aquatic model. DOC: dissolved organic 

carbon, POC: particulate organic matter, DIC: dissolved inorganic carbon, 

and DO: dissolved oxygen. 

Figure 2: Comparison of the CO2 transfer velocities at the air/water interface with 

wind speed (Eq.1-13) at 20oC in the CE-QUAL-W2 model (Cole and 

Wells, 2006) and in Vachon and Prairie (2013) model (Eq.14) in this study. 

The function of Eq.1 from Broecker et al. (1978), Eq.2 from Gelda et al. 

(1996), Eq.3 from Banks and Herrera (1977), Eq.4 from Wanninkhof et al. 

(1991), Eq.5 from Kanwisher (1963), Eq.6 from Cole and Buchak (1995), 

Eq.7 from Banks (1975), Eq.8 from Smith (1978), Eq.9 from Liss (1973), 

Eq.10 from Downing and Truesdale (1955), Eq.11 from Kanwisher (1963), 

Eq.12 from Yu et al. (1977), and Eq.13 from Weiler (1974). 

Figure 3: Flow diagram showing key pools and flux of carbon, nitrogen, and 

phosphorus simulation in the lake ecosystem from the CE-QUAL-W2 

model (Cole and Wells, 2006). T: temperature, P: precipitation, DOM: 

dissolved organic matter, POM: particulate organic matter, L: labile, R: 

refractory, DO: dissolved oxygen, DIC: dissolved inorganic carbon.  

Figure 4: Map of the study lakes and the grid arrangement with model segment 

identification numbers for Lake Mary (a) and Lake Jean (b). The dark 

circle is sample site. 

Figure 5: Observed versus predicted water surface temperatures from 2006 to 2007 
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for Lake Mary (a) and Lake Jean (b). 885 

886 

887 

888 

889 

890 

891 

892 

893 

894 

895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

Figure 6: Measured versus simulated vertical temperature, pH, dissolved oxygen 

(DO), dissolved CO2 (pCO2) profiles in Lake Mary during autumn (21 

October 2006) (a, c, e, g) and spring (14 May 2007) (b, d, f, h) periods. 

Figure 7: Time series plots of measured versus simulated daily DOC concentrations 

in Lake Mary. Error bars represent standard deviations. 

Figure 8: Time series plots of measured versus simulated daily CO2 diffusive fluxes 

from Lake Mary (a) and Lake Jean (b). Error bars represent standard 

deviations. 

Figure 9: Comparison between measurements and simulations of seasonal CO2 

diffusive fluxes for Lake Mary (a) and Lake Jean (b). Boxes indicate 

interquartile intervals (25th and 75th percentiles) while bars represent 90% 

intervals (5th and 95th percentiles). 

Figure 10: Relationship between terrestrial DOC input and the CO2 diffusive flux 

from Lake Mary (a) and Lake Jean (b). 

Figure 11: Sensitivity analysis for the effect of terrestrial DOC inputs on the annual 

mean CO2 diffusive flux from Lake Mary (a) and Lake Jean (b). Bars 

represent standard errors. 
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Table 1 Final calibration values for hydrodynamic and ecological input variables. 907 

908  

Kinetic parameters Units  Value Suggested value 
(Cole and Well, 2006) 

Horizontal eddy viscosity m2/s  1.0 1.0 

Horizontal eddy diffusivity  m2/s  1.0 1.0 

Bottom frictional resistance  m2/s  70 70 

Solar radiation fraction absorbed at the water surface –  0.45 0.45 

Solar radiation extinction – water  m−1  0.45 0.25-0.45 

Solar radiation extinction – detritus  m−1  0.2 0.1 

Solar radiation extinction – algae m−1  0.2 0.2 

Wind sheltering coefficient  –  1.0 0-1.0 

Zero-order sediment oxygen demand  g m-2 day-1 1.0 0.1-1.0 

Algal growth rate  day−1 2.0 1.1-2.0 

Algal dark respiration rate  day−1  0.04 0.02-0.04 

Algal excretion rate  day−1  0.04 0.01-0.04 

Algal mortality rate  day−1  0.1 0.01-0.1 

Algal settling rate  day−1  0.1 0.1-0.14 

Phosphorus half-saturation coefficient  g m−3  0.003 0.003-0.009 

Nitrogen half saturation coefficient  g m−3  0.014 0.014, 0.03 

Light saturation  W m−2  50 75 

Lower temperature for minimum algal rates  ºC  5 5 

Lower temperature for maximum algal rates ºC 12 25 

Upper temperature for maximum algal rates  ºC  20 35 

Upper temperature for minimum algal rates  ºC  30 40 

Lower temperature rate multiplier for minimum algal growth –  0.1 0.1 

Lower temperature rate multiplier for maximum algal growth –  0.99 0.99 

Upper temperature rate multiplier for maximum algal growth –  0.99 0.99 

Upper temperature rate multiplier for minimum algal growth –  0.1 0.1 

Phosphorus-to-biomass ratio  –  0.005 0.005 

Nitrogen-to-biomass ratio  –  0.08 0.08 

Carbon-to-biomass ratio –  0.45 0.45 

Algae-to-chlorophyll a ratio  –  130 145 

Ammonium decay rate  day −1  0.3 0.12 

Sediment release rate of ammonium  fraction of 

SOD  

0.001 0.001 

Lower temperature for ammonium decay  ºC  5.0 5.0 

Upper temperature for ammonium decay  ºC  25.0 25.0 

Lower temperature rate multiplier for ammonium decay –  0.1 0.1 

Upper temperature rate multiplier for ammonium decay  –  0.99 0.99 

Sediment release rate of phosphorus  fraction of 

SOD  

0.001 0.001-0.03 

Stochiometric ratio of phosphorus in organic matter  – 0.005 0.005 

Stochiometric ratio of nitrogen in organic matter  –  0.08 0.08 
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Nitrate decay rate  day−1  0.05 0.05-0.15 

Lower temperature for nitrate decay  ºC  5.0 5.0 

Upper temperature for nitrate decay  ºC  25.0 25.0 

Lower temperature rate multiplier for nitrate decay  – 0.1 0.1 

Upper temperature rate multiplier for nitrate decay  –  0.99 0.99 
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