1	A Coupled Two-dimensional Hydrodynamic and Terrestrial
2	Input Model to Simulate CO ₂ Diffusive Emissions from
3	Lake Systems
4	
5	Haibin Wu ^{1, 2,*} Changhui Peng ^{2,3*} Marc Lucotte ^{2, 4} Nicolas Soumis ^{2, 4} Yves
6	Gélinas ⁵ Éric Duchemin ^{2, 4} Jean-Baptiste Plouhinec ^{2, 4} Alexandre Ouellet ⁵
7	Zhengtang Guo ¹
8	
9	(1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and
10	Geophysics, Chinese Academy of Science, P.O. Box 9825, Beijing 100029, China;
11	2. Institut des sciences de l'environnement, Université du Québec à Montréal,
12	Montréal, QC, H3C 3P8, Canada;
13	3. Laboratory for Ecological Forecasting and Global Change, College of Forestry,
14	Northwest A & F University, Yangling, Shaanxi 712100, China;
15	4. GEOTOP, Universityof Québec à Montréal , PO Box 8888, Montreal H3C 3P8,
16	Canada;
17	5. Department of Chemistry and Biochemistry, Concordia University, Montréal, QC,
18	H4B 1R6, Canada.)
19	
20	To "Geoscientific Model Development Discussion"
21	
22	*Correspondence should be addressed to:
23	Haibin-wu@mail.iggcas.ac.cn or peng.changhui@uqam.ca

Abstract

25	Most lakes worldwide are supersaturated with carbon dioxide (CO ₂) and
26	consequently act as atmospheric net sources. Since CO_2 is a major greenhouse gas
27	(GHG), the accurate estimation of CO ₂ exchanges at air/water interfaces of aquatic
28	ecosystems is vital in quantifying the carbon budget of aquatic ecosystems overall. To
29	date, lacustrine CO ₂ emissions are poorly understood, and lake carbon source
30	proportions remain controversial, largely due to a lack of integration between aquatic
31	and terrestrial ecosystems. In this paper a new process-based model framework
32	(TRIPLEX-Aquatic) is introduced incorporating both terrestrial inputs and aquatic
33	biogeochemical processes to estimate diffusive emissions of CO ₂ from lake systems.
34	The model was built from a two-dimensional hydrological and water quality model
35	coupled with a new lacustrine CO ₂ diffusive flux model. For calibration and
36	validation purposes, two years of data collected in the field from two small boreal
37	oligotrophic lakes located in Québec (Canada) were used to parameterize and test the
38	model by comparing simulations with observations for both hydrodynamic and carbon
39	process accuracy. Model simulations were accordant with field measurements in both
40	calibration and verification. Consequently, the TRIPLEX-Aquatic was used to
41	estimate the annual mean CO ₂ diffusive flux and predict terrestrial dissolved organic
42	carbon (DOC) impacts on the CO ₂ budget for both lakes. Results show a significant
43	fraction of the CO ₂ diffusive flux (\sim 30-45%) from lakes was primarily attributable to
44	the input and mineralization of terrestrial DOC, which indicated terrestrial organic
45	matter was the key player in the diffusive flux of CO ₂ from oligotropical lake systems

46 in Québec, Canada.

47

48 *Keywords:* boreal lake; carbon dioxide; diffusive flux; hydrodynamic model;

49	aquatic	carbon cycle;	terrestrial DOC
----	---------	---------------	-----------------

50

51

52 **1. Introduction**

53 Lakes account for more than 3% of land surface area (Downing et al., 2006) and are an important component in terrestrial carbon cycling. Substantial evidence indicates 54 that the transfer of terrestrial carbon to lake ecosystems is considerably larger than the 55 carbon flux to marine systems and approximately coequal to estimates of the net 56 57 ecosystem productivity (NEP) of the terrestrial biosphere (Richey et al., 2002; Cole et 58 al., 2007; Battin et al., 2009). In addition, a significant fraction of terrestrial carbon 59 can be mineralized in lake systems (Kling et al., 1991; Cole et al., 1994; Hope et al., 60 1996; del Giorgio et al., 1997; Striegl et al., 2001; Algesten et al., 2003; Sobek et al., 2003; Rantakari and Kortelainen, 2005; Cole et al., 2007). Lake surveys carried out 61 worldwide have demonstrated that boreal, temperate, and tropical lakes are typically 62 63 supersaturated with CO₂ and consequently release significant amounts of CO₂ into the atmosphere (Kling et al., 1991; Cole et al., 1994, 2007; Sobek et al., 2003; Roehm et 64 al., 2009; Battin et al., 2009). 65

66

The northern latitude biomes have been identified as important for CO₂ exchange

67	between ecosystems and the atmosphere, with a net sink of CO ₂ for temperate forests
68	(Chapin III, et al., 2000; Dunn et al., 2007). However, there are few quantitative
69	estimates of lake emission in relation to current assessments of the CO ₂ balance. To
70	date, the lake CO ₂ emissions over space are poorly understood (Duchemin et al., 2002;
71	Sobek et al., 2003; Cardille et al., 2007; Roehm et al., 2009; Tedoru et al., 2009;
72	Demarty et al., 2011), and lake carbon source proportions in different ecosystems
73	remain controversial (del Giorgio et al., 1999; Cole et al., 2000; Jonsson et al., 2001,
74	2003; Prairie et al., 2002; Algesten et al., 2003; Hanson et al., 2003, 2004; Karlsson et
75	al., 2007; McCallister and del Giorgio, 2008). Therefore, estimates of the fraction of
76	terrestrial organic carbon that is exported to lakes and then routed into atmospheric
77	CO ₂ and the evaluation of the role of lakes in regional carbon budget require the
78	integrated studies of the entire lake-watershed system (Algesten et al., 2003; Jenerette
79	and Lal, 2005; Cole et al., 2007; Battin et al., 2009; Buffam et al., 2011).
80	Identifying CO_2 emissions from lakes is challenging and tends to be fraught with
81	uncertainty since complex links exist between terrestrial and aquatic ecosystems
82	(Hutjes et al., 1998; Wagener et al., 1998; Kalbitz et al., 2000; Smith et al., 2001;
83	McDowell, 2003; Hanson et al., 2004; Jenerette and Lal, 2005; Cole et al., 2007;
84	Buffam et al., 2011). In addition, water bodies exhibit significant multidimensional
85	variations caused by interactions among hydrodynamic, biological, and chemical
86	processes (Cole and Wells, 2006). Although lacustrine biogeochemistry is an
87	integrative discipline, previous terrestrial and lake models have developed somewhat
88	independently of each other (Grimm et al., 2003; Jenerette and Lal, 2005; Hanson et

89	al., 2004; Cole et al., 2007; Cardille et al., 2007; Debele et al., 2008; Jones et al.,
90	2009). Therefore, understanding the connectivity between each process and scaling up
91	biogeochemical information must rely on coupled terrestrial and aquatic carbon cycle
92	models essential in reducing uncertainty in carbon fluxes from and into lake systems
93	(Grimm et al., 2003; Jenerette and Lal, 2005; Chapin III, 2006; Cole et al., 2007;
94	Battin et al., 2009; Buffam et al., 2011).
95	In this paper a new process-based two-dimensional model framework
96	(TRIPLEX-Aquatic) was developed to investigate lake carbon cycles with a particular
97	emphasis on CO ₂ diffusion. This model incorporates both terrestrial inputs and an
98	aquatic carbon cycle model with exceptional spatial and temporal resolution. Thus,
99	the model constitutes an improved tool to investigate the primary processes involved
100	in aquatic carbon cycling (including CO ₂ diffusive exchanges between air and water
101	bodies). Here, we seek to address two questions: 1. Is the TRIPLEX-Aquatic able to
102	capture the dynamics of CO_2 diffusive flux in boreal lakes? 2. What is the
103	contribution of terrestrial DOC to lake CO ₂ emission?
104	
105	2. Model description and methods

To achieve the objectives of this study, the model need to capture the principal 106 hydrological characteristics, the detailed carbon cycle accounting for inputs of DOC 107 from the watershed in lake carbon processing, and the accurate CO₂ diffusive flux 108 simulation to the atmosphere. 109

110	Figure 1 provides a schematic of the applied method based upon hydrological,
111	carbon submodels, and CO_2 diffusive exchanges between air and water in the lake.
112	The first model, hydrological submodel simulates the hydrodynamic conditions in
113	lake. It is important in modeling carbon cycle since hydrology controls physical
114	mixing processes between different spatial components of lake, factors that can
115	directly or indirectly control biotic and abiotic processes. The second model, the lake
116	carbon processes focus primarily on the prediction of organic/inorganic pools via
117	photosynthesis and respiration, and their effects on dissolved oxygen and
118	conventional cycles of nitrogen and phosphorus. This approach represents a
119	substantial progression in lacustrine biogeochemical models since the 1970s (Harris,
120	1980; Beck, 1985; Ambrose et al., 1993; Kayombo et al., 2000; Chapelle et al., 2000;
121	Omlin et al., 2001; Cole and Wells, 2006). In this paper, lake hydrodynamic and
122	carbon simulations follow the approach of the CE-QUAL-W2 model (Cole and Wells,
123	2006) since the model has coupled between two-dimensional hydrodynamics and
124	carbon cycle simulations with the same time steps and spatial grid, as well as it having
125	already been successfully applied to rivers, lakes, reservoirs, and estuaries for several
126	decades in the past. The CE-QUAL-W2 model is available at
127	http://www.ce.pdx.edu/w2, and its program code is not changed in this study.
128	The third model, the simulation of CO_2 diffusive fluxes at the air/water interface uses
129	a new boundary layer model developed by Vachon and Prairie (2013) for the CO ₂
130	diffusive flux in temperate lakes. Because this simulation in CE-OUAL-W2 model

131 was simply designed the gas transfer coefficient for CO_2 is related to that of oxygen

132	transfer using a factor of 0.923 (Cole and Wells, 2006), and most of these CO ₂ transfer
133	velocities are lower (Fig. 2) than the measurements that collected from aquatic
134	systems of different size lakes (Vachon and Prairie, 2013), whereas some of velocities
135	(e.g., Eq-1, Eq-5, Eq-8, Eq-13) are much higher than the observations under high
136	wind speed. As a result, these transfer velocities make it impossible to reliably
137	simulate CO ₂ diffusive fluxes from lakes. The new model is named as TRIPLEX-
138	Aquatic, which is more suitable in predicting CO ₂ diffusive emission from lake
139	systems. The program code of new CO ₂ diffusive flux submodel (Vachon and Prairie,
140	2013) was developed using the Fortran language as in the CE-QUAL-W2 model.
141	The inputs of TRIPLEX-Aquatic model and file format are same as the
142	CE-QUAL-W2 model, including climate data (e.g. air average temperature, dew point
143	temperature, wind speed and direction, cloud cover), inflow and constituent
144	concentrations (e.g. DOC, dissolved inorganic carbon (DIC), phosphate (PO ₄ ³⁻),
145	ammonium (NH_4^+) , nitrate (NO_3^-) , and dissolved oxygen (DO)), and bathymetric and
146	geometric data of lake. The model outputs represent the characteristics of hydrology
147	(e.g. water velocity, density, temperature) and carbon processes (e.g. DOC, DIC,
148	bicarbonates, carbonates, CO_2 concentration in water) in the lake, especially the CO_2
149	diffusive fluxes to the atmosphere. A brief overview of the TRIPLEX-Aquatic
150	model is presented below.

2.1 The hydrodynamic submodel

153 The hydrodynamic simulation is able to characterize time variable

154 longitudinal/vertical distributions of thermal energy in water bodies, based upon a

155 finite difference solution applied to laterally averaged equations of fluid motion

156 including momentum balance, continuity, constituent transport, free surface elevation,

157 hydrostatic pressure, and equation of state (Cole and Wells, 2006).

The model quantifies the free surface elevation, pressure, and density as well as the 158 horizontal and vertical velocities (Cole and Wells, 2006). Explicit numerical schemes 159 are also used to compute water velocities that affect the spatiotemporal distribution of 160 161 temperature and biological/chemical constituents. The model simulates the average temperature for each model cell based upon water inflows/outflows, solar radiation, 162 and surface heat exchanges. The term-by-term formulation was used to characterize 163 164 the surface heat exchange. Spatial and temporal variations are permitted for longitudinal diffusion. The model computes the vertical diffusion coefficient from the 165 vertical gradient of longitudinal velocities, water densities, and decay of surface wind 166 shear. A full description of the model is offered by Cole and Wells (2006). 167 168

169 2.2 The carbon cycle submodel

The carbon submodel explicitly depicts organic and inorganic carbon processes in
lake system. The organic carbon process includes four interacting systems:
phytoplankton kinetics, nitrogen cycles, phosphorus cycles, and the dissolved oxygen
balance (Fig. 3). The model accepts inputs in terms of different pools of organic

174 matter (OM) and various species of algae. OM is partitioned into four pools according

175	to a combination of its physical state (dissolved – DOM versus particulate – POM)
176	and reactivity (labile $-L$ versus refractory $-R$) characterizing the
177	mineralization/decay rate of organic compounds. Labile OM (LDOM and LPOM) is
178	more readily mineralized (i.e., having faster decay rates) whereas refractory OM
179	(RDOM and RPOM) is less readily mineralized (i.e., having slower decay rates). All
180	OM decay and decomposition processes in the model follow first order kinetics with
181	temperature-dependent coefficients. The inorganic carbon processes include carbon
182	dioxide input and output the inorganic carbon pool among carbonate species via two
183	major pathways: atmospheric and biological exchange processes.
184	The hydrodynamic and carbon dynamics have been well documented and are
185	described in detail in the CE-QUAL-W2 (Cole and Wells, 2006). The scope of this
186	study was only to describe CO ₂ diffusion across the air/water interface and the newly

187 redesigned TRIPLEX-Aquatic.

188

189 **2.3 The CO₂ diffusive flux submodel**

190 CO₂ diffusion across the air/water interface (F_{CO_2}) is driven by the concentration 191 gradient between the atmosphere and surface water and regulated by the gas exchange 192 velocity *K*. Hence:

193
$$F_{CO2} = K_{CO2} (\Phi_{CO2} - pCO_{2atm} K_H)$$
(1)

194 where K_{CO_2} is the piston velocity (cm/h); Φ_{CO_2} is the CO₂ concentration in water 195 (g/m³); and ($pCO_{2atm}K_H$) is the CO₂ concentration in equilibrium with the atmosphere. 196 pCO_{2atm} represents the CO₂ partial pressure in the atmosphere, and K_H is the Henry's 197 constant corrected for water temperature.

198
$$K_{CO_2}$$
 is the piston velocity constant for CO₂ calculated as follows:

199
$$K_{CO2} = K_{600} (\frac{600}{Sc_{CO2}})^n$$
 (2)

200 *n*, the exponent, was used the value 0.5, which is appropriate for low-wind systems 201 (Jahne et al., 1987). K_{600} , the piston velocity measured with SF₆ and normalized to a Schmidt number of 600, was used the recently function (Vachon and Prairie, 2013) for 202 temperate lakes in Canada that determined according to lake area (LA) together with 203 wind speeds. Comparison to the power function developed for low-wind speed 204 conditions by Cole and Caraco (1998) that focused on wind speed alone, this equation 205 206 provided a more complete predictive model of gas transfer velocities in lakes because the ecosystem size acts as the main modulator of the effect of wind speed on gas 207 exchange (Read et al., 2012). 208 $K_{600} = 2.51 + 1.48U_{10} + 0.39U_{10}\log_{10}LA$ (3) 209 where U_{10} is the wind speed (m/s) at a height of 10 m. Sc_{CO2}, representing the Schmidt 210

number for carbon dioxide, is calculated according to Equation 4 (Wanninkhof,

212 1992):

213
$$Sc_{CO2} = 1911.1 - 118.11T_W + 3.4527T_W^2 - 0.04132T_W^3$$
 (4)

- 214 where T_W is the water surface temperature (°C).
- 215

216 **3. Model input and test data**

217	The computational grid of the two-dimensional lake model was developed based
218	upon the bathymetric and geometric data collected from the unperturbed oligotrophic
219	Lake Mary (46.26° N, 76.22° W) and Lake Jean (46.37° N, 76.35° W) in Québec,
220	Canada, with a surface area of 0.58 and 1.88 km ² , respectively. The watershed areas
221	are 1.19 km^2 for Lake Mary and 5.43 km^2 for Lake Jean. The region has an average
222	altitude of 230 m, and is characterized by an average temperature of approximately
223	5°C, with 1000 mm of annual precipitations. Dominant tree species are red pine and
224	yellow birch in mature. Soils are Brunisolic Luvisols. The lake areas were divided
225	into 24 horizontal segments and 10 vertical layers. Longitudinal segments were 50 m
226	in length for Lake Mary and 160 m in length for Lake Jean. The vertical layers were 2
227	m thick for both lakes (Fig. 4).

228 Time-varying boundary conditions at the surface of the lakes were set up with regard to meteorological influences. Hourly meteorological data, such as air average 229 230 temperature, dew point temperature, wind speed and direction as well as cloud cover 231 were obtained from weather monitoring station (Maniwaki Airport, Québec) located closet to the sites (17 km for Lake Mary, and 29 km for Lake Jean), although the 232 meteorological data may be less accurate because it is not the local weather station. 233 234 Daily inflow and constituent concentrations of DOM at branch-estimated by the TRIPLEX-DOC model (Wu et al., 2013) that is capable of estimating DOC and 235 hydrologic dynamics in forest soils by incorporating both ecological drivers and 236 biogeochemical processes in the age-sequence of temperate forests, then multiplyed 237 238 the watershed forest landscape areas of Lake Mary and Lake Jean. They were adapted

to TRIPLEX-Aquatic formats—were used as time-series inflow boundary conditions.

240 Other inflow constituents—included POM, DIC, phosphate (PO_4^{3-}) , ammonium

 (NH_4^+) , nitrate (NO₃⁻), and DO—were compared to data from the nearby tributary in

Eastern Canada with sampled data (Wang and Veizer, 2000; Hélie et al., 2002; Hélie

and Hillaire-Marcel, 2006; Teodoru et al., 2009) because these have not been sampled

in the present study.

245 Hydraulic parameters governing horizontal dispersion and bottom friction were set to default values using the Chezy friction model (Cole and Wells, 2006). Parameters 246 247 affecting constituent kinetics are also required by the model. Initially, kinetic coefficients were set to default values (Cole and Wells, 2006) but subsequently tuned 248 during the aquatic carbon process calibration so that the model output agreed with the 249 250 field data. Kinetic coefficients were adjusted within acceptable ranges based upon data in published literature (Table 1). Although site-specific data are preferable, the 251 paucity of details on hydraulic and kinetic coefficients in the lakes under study made 252 253 it difficult to rely on site-specific data alone.

To test the model, four times campaigns were conducted in the two lakes from 2006 to 2007 because of the remote region, during periods following ice breakup in May 2006 (16 sampling time points in 6 days) and 2007 (15 sampling time points in 2 days), summer stratification in July 2006 (10 sampling time points in 2 days) and when fall overturn occurred in October 2006 (14 sampling time points in 3 days) for the center of Lake Mary, and during periods in July2006 (27 sampling time points in 2

260	days), October 2006 (1 sampling time point in 1 day), May 2007 (14 sampling time
261	points in 1 day), July2007 (20 sampling time points in 2 days) for the center of Lake
262	Jean. During each field trip, surface layer samples and information on water
263	temperature, dissolved CO_2 concentrations (p CO_2) as well as DOC at 15 cm depth
264	was collected in pelagic sites of lake. An about 10 m depth profile of temperature, pH
265	DO and pCO_2 was also carried out at the central point of lake.

To determine pCO_2 , three 30-mL water samples were collected in 60-mL 266 polypropylene syringes from each depth and carried out within 6 h of return to the 267 field laboratory. They were equilibrated with an equal volume (30 mL) of ultrapure 268 nitrogen (N₂) by vigorous shaking for two minutes. Water was then flushed gently and 269 the gaseous phase finally injected into the gas chromatograph (GC) (Star-3400CX; 270 271 Varian, Palo Alto, CA, USA). Equilibrated CO₂ concentrations in the gaseous phase were calculated according to their solubility coefficients as a function of laboratory 272 temperature (Flett et al. 1976). The CO₂ diffusive fluxes were therefore estimated 273 274 from CO₂ saturation measured in the lakes in conjunction with wind speed. DOC concentration was analyzed in 0.2 µm filtered water samples in an OI-1010 Total 275 Carbon Analyzer (OI Analytical, TX, USA) using wet persulafate oxidation. In 276 addition, water temperature, DO, and pH profiles were taken with a YSI-6600 probe. 277 278

4. Model calibration and validation

280 Calibration of the TRIPLEX-Aquatic model in middle segment (the center of lake)

281	was carried out by tuning appropriate model parameters to match the predicted and
282	measured data from Lake Mary in 2007 to obtain the best possible fit within
283	acceptable ranges specified by Cole and Wells (2006) (Table 1). The model was
284	verified against more data measured at Lake Mary in 2006 during which it was
285	subjected to different ambient weather and flow conditions from those prevailing
286	during model calibration in 2007, in order to test if the model was capable of
287	accurately simulating the hydrodynamic regime and aquatic carbon dynamics under
288	climatic conditions differing from those used for calibration. The model was also
289	validated against measurements taken in Lake Jean from 2006 to 2007. System
290	coefficients used in the model were the same as those determined during model
291	calibration. Measurements serve to validate model results related to water temperature,
292	pH, DO, pCO ₂ , DOC, and the CO ₂ diffusive flux.

294 4.1 Temperature, pH, dissolved oxygen, and pCO₂

295 Hydrodynamic calibration is typically performed by examining vertical and longitudinal concentration gradients of conservative constituents. Cole and Wells 296 297 (2006) recommend the use of temperature gradients as a first step for hydrodynamic calibration. The prediction of surface water temperature for 2007 was in agreement 298 with the measured data from Lake Mary (Fig. 5a) despite high variability in the 299 300 calibration data. The root mean squared error (RMSE) for the calibration period was 0.95°C. The verification of surface layer water temperature during 2006 for Lake 301 Mary and from 2006 to 2007 for Lake Jean (Fig. 5) shows sufficient agreement 302

303	between the model simulations and field measurements. The water temperature
304	RMSE was 0.9°C during all simulation periods in both lakes.

305	With regard to the validation of the vertical simulation of lake hydrodynamics and
306	carbon cycle, the water temperature, pH, DO, and pCO ₂ between model
307	reconstructions and measurements were examined. Figure 5 shows that model
308	simulation results with respect to depth were also accordant with the recorded
309	observations: the RMSE were 0.28°C for temperature, 0.09 for pH, 3.5 for DO (%),
310	and 4.7 for pCO ₂ during fall turnover (Fig. 6a, c, e, g), and 0.96°C for temperature,
311	0.44 for pH, 11.1 for DO, and 5.3 for pCO_2 during spring stratification in Lake Mary
312	(Fig. 6b, d, f, h). However, predicted values showed lower gradients than measured
313	values during the spring period, especially for DO (Fig. 6f). The model also tended to
314	underestimate water DO (%) by approximately 9% for complete profile during fall
315	turnover (Fig. 6e).

316 Differences between simulated and measured DO concentration, could partly be 317 explained by lower tributary dissolved oxygen loads, because data was compared 318 from the nearby tributary where may region-specific differences. For thermocline had lower gradients in predicted values than actual, because the stratification is a complex 319 320 integration of multiple forcing components such as mixing rates, vertical dimensions of layer, layer temperature, basin morphometry, hydrology and, most important, 321 meteorological conditions (Harleman, 1982; Owens and Effler, 1989), thus, it is 322 323 difficult to accurately simulate the thermocline without intensive meteorological data,

while the data used in this study are measured at only one nearby meteorological
station. On the other hand, uncertainties resulting from the daily inflow of
TRIPLEX-DOC model simulations in the upland watershed likely propagated into the
simulations by way of the TRIPLEX-Aquatic model computation for waterbody, since
outputs from the TRIPLEX-DOC model were used to run the TRIPLEX-Aquatic
model.

Although it is importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO_2 in boreal lake (Aberg et al., 2010), the RMSE of surface temperature, p CO_2 in model simulation lead to approximately 12% and 15% mean errors in CO_2 diffusive flux respectively, they had only minor impacts on lake CO_2 emission.

335

336 4.2 Dissolved organic carbon

Dissolved organic carbon, a substrate for microbial respiration, is a key constituent 337 in aquatic carbon dynamics and could be the source of significant variations in lake 338 pCO₂ (Hope et al., 1996; Sobek et al., 2003). Figure 6 offers a comparison between 339 simulated and observed daily DOC concentrations from 2006 to 2007 in Lake Mary. 340 Although the DOC values in different sampling times during daily period have 341 significant variation while the simulated values were relative stable, simulated values 342 were reasonably distributed in the middle of the daily observational period 343 (RMSE=0.71). This agreement obtained during 2006 demonstrates that the model is 344

345 capable of modeling daily DOC carbon-process properties within Lake Mary.

4.3 CO₂ diffusive flux

348	In this study, a zero CO_2 flux was assumed during the ice cover period for the
349	simulations. During the ice-free period, there were considerable seasonal variations in
350	the magnitude of the CO ₂ diffusive flux and a distinct seasonal cycle in both Lake
351	Mary and Lake Jean (Fig.8). Peak fluxes occurred in the month of May following ice
352	breakup and reached a brief, temporary minimum in early July. This minimum was
353	followed by a second peak in late fall associated with autumnal mixing.
354	In comparing simulated results with observational daily data from 2006 for Lake
355	Mary and from 2006 to 2007 for Lake Jean, the model successfully reproduced the
356	observed distributions of CO_2 flux in both lakes, except for a daily value in autumn
357	2006 in Lake Jean that may be due to a single measurement. Although more
358	systematic measurements were absent in this study, such reasonable agreement
359	between simulated and observed hydrodynamic plots and aquatic carbon dynamic
360	parameters demonstrates that TRIPLEX-Aquatic was able to model various
361	hydrodynamic and aquatic carbon cycle processes within the lake systems. It can thus
362	be applied to simulate the CO ₂ diffusive flux for lakes.
363	

5. Terrestrial DOC and lake CO₂ emissions

5.1 Seasonal and annual mean lake CO₂ diffusive flux

366	The most current estimates of the annual CO ₂ emission budgets of lakes, based
367	upon measurements, only consider CO ₂ produced during ice-free periods. However,
368	CO ₂ produced during winter months may accumulate under the ice cover and be
369	subsequently released into the atmosphere once ice break-up occurs in spring (Striegl
370	et al., 2001; Duchemin et al., 2006; Demarty et al., 2011). This early spring CO_2
371	release accumulated during the winter should be accounted for in order to develop a
372	more realistic annual CO ₂ emission budget for boreal lakes.

At the end of the winter season, the TRIPLEX-Aquatic model was well-calibrated 373 to capture the principal characteristics of a high CO_2 flux episode just after ice melt 374 over a period of approximately ten days (Fig. 8a, b). During this period the model 375 estimated that approximately 80% of the CO₂ contained in the water column of Lake 376 377 Mary and Lake Jean was emitted into the atmosphere. The values for early spring CO₂ 378 emissions ranged from 5% to 8% of the annual CO₂ diffusive emission budget for 379 both lakes during the 2006 and 2007 period, which are thus an important portion in 380 the annual CO₂ budget.

For Lake Mary and Lake Jean, variations in daily CO₂ flux were greatest during spring and fall and smallest during summer stratification (Fig. 8a, b). The average summer (from July to August) values were approximately 22% to 57% lower than the average calculated values for the entire open water period in both lakes, a typical situation for northern temperate dimictic lakes (Hesslein et al., 1990).

386 Although there is a reasonable agreement between model simulations and field

measurements for daily CO₂ diffusive flux (Fig. 8), when comparisons are based on
seasonal CO₂ diffusive flux in Lake Mary (Fig. 9a), it was noted that the observations
made during the autumn of 2006 were much higher than those in the simulation. For
Lake Jean (Fig. 9b) measurements taken in the summer of 2006 were lower than those
in the model simulations.

392 **5.2 Impact of terrestrial DOC on lacustrine CO₂ diffusive emissions**

393	A large body of literature suggests net heterotron is the key factor responsible for
575	That be body of interactive suggests net neterotrophy is the key factor responsible for

394 the often observed supersaturation of CO_2 in lake systems (del Giorgio et al., 1999;

³⁹⁵ Cole et al., 2000; Jonsson et al., 2001, 2003; Prairie et al., 2002; Algesten et al., 2003;

Hanson et al., 2003, 2004; Sobek et al., 2003; Karlsson et al., 2007; McCallister and

del Giorgio, 2008), but this inference is tempered by uncertainties in the magnitude of

the carbon load to lakes, and the relative contributions to lake CO₂ emission (Hanson

et al., 2004; Karlsson et al., 2007; McCallister and del Giorgio, 2008).

400 To evaluate impacts of terrestrial DOC on the lake CO₂ emission regime, a

401 comparison between DOC inputs and CO₂ fluxes was performed where the DOC data

402 was simulated by way of the TRIPLEX-DOC model. Figure 10 shows a positive

403 relationship between terrestrial DOC and CO_2 flux in both Lake Mary (CO_2 flux =

404 15.32DOC + 132.37, $R^2 = 0.42$, P<0.0001) and Lake Jean (CO₂ flux = 12.68DOC +

405 201.9, $R^2 = 0.50$, P<0.0001), underlining the important role of DOC inputs in seasonal

406 CO₂ diffusive flux variations.

407	To further estimate the impact of terrestrial DOC on aquatic CO ₂ diffusive flux, a
408	sensitivity analysis was carried out on the modeled results for 2006 to 2007 for both
409	lakes by setting the terrestrial DOC inputs to zero while keeping other variable inputs
410	at normal values, mimicking a situation in which the terrestrial DOC input would be
411	nil. Results showed the annual mean CO ₂ diffusive flux from lakes under
412	no-DOC-input conditions were much lower (approximately 15% to 29% lower) than
413	values with DOC inputs (Fig. 11a, b).
414	

415 **6. Discussion and conclusion**

416 **6.1 Comparison model with earlier approaches**

417 There are presently only a handful of model studies (Hanson et al., 2004; Cardille et al., 2007; Buffam et al., 2011) that have tried to link terrestrial watershed carbon 418 inputs to their aquatic components for CO₂ emission. However, integration is still 419 pending. In this study a comprehensive process-based aquatic carbon model 420 421 (TRIPLEX-Aquatic) incorporating both terrestrial inputs, an aquatic carbon cycle, and detailed hydrodynamic simulation was developed and applied to investigate aquatic 422 423 CO₂ diffusion in lake ecosystems within Québec, Canada. Although recent lake carbon models (Hanson et al., 2004; Cardille et al., 2007) 424 integrate inputs of terrestrial DOC from watersheds, such models have no or very low 425 hydrodynamic spatial resolution. In addition, these models do not include real-time 426 427 meteorological conditions, while using constants to represent physical mixing

processes between spatial components. The mass balance model (Jones et al., 2009)
accounts for real-time metrological data for lake carbon simulation, but does not
include inputs of terrestrial DOC from catchments. Accordingly, the lake
hydrodynamic routine is less realistic than the simulation carried out in this study.
Moreover, previous photosynthetic estimates are based upon empirical models
whereas simulations in this study were based on a process-based model.

A previous numerical CO₂ emission model developed by Barrette and Laprise 434 (2002) illustrate the relevant approach to modeling physical processes in the water 435 column based upon an extension of the lake water column model. It was used to study 436 the temporal and spatial distribution of the dissolved CO₂ concentration profile and 437 the CO₂ diffusive flux at the air/water interface. However, this particular model does 438 439 not include the autotrophic and heterotrophic production of organic matter based upon 440 variables such as water temperature, dissolved oxygen, nutrient salts, and terrestrial 441 organic matter from catchments. All were included in the model used in the present 442 study.

 systems of different size in Canada under a low-wind environment, which is similar to the lakes in this study. Even though the Vachon and Prairie (2013) model in this study is relatively simple, it is reasonable for estimating the CO₂ diffusive flux, partly because there has been little evidence that incorporation of comprehensive surface forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et al., 2009). 	449	also provided no bias estimations of CO ₂ evasion based on experiment in aquatic
 the lakes in this study. Even though the Vachon and Prairie (2013) model in this study is relatively simple, it is reasonable for estimating the CO₂ diffusive flux, partly because there has been little evidence that incorporation of comprehensive surface forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et al., 2009). 	450	systems of different size in Canada under a low-wind environment, which is similar to
 is relatively simple, it is reasonable for estimating the CO₂ diffusive flux, partly because there has been little evidence that incorporation of comprehensive surface forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et al., 2009). 	451	the lakes in this study. Even though the Vachon and Prairie (2013) model in this study
 because there has been little evidence that incorporation of comprehensive surface forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et al., 2009). 	452	is relatively simple, it is reasonable for estimating the CO ₂ diffusive flux, partly
454 forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et455 al., 2009).	453	because there has been little evidence that incorporation of comprehensive surface
455 al., 2009).	454	forcing provides a better flux field than simple wind speed algorithms (Wanninkhof et
	455	al., 2009).

457 **6.2 Impact of terrestrial DOC on CO₂ emission**

Based on model validation, the agreement between observations and simulated results indicates the model is able to capture the principal hydrological characteristics and carbon dynamic processes in lake systems, it thus provides a realistic CO₂ diffusive flux simulation.

462 For the early spring CO₂ emissions, our model can successfully simulate the high

463 CO₂ flux episode following ice breakup events. Such emission peaks were also

identified by measurements in boreal lakes (Riera et al., 1999; Duchemin et al., 2006;

Huotari et al., 2009; Demarty et al., 2011). Duchemin et al. (2006) estimated during

the week following ice breakup 95% of the dissolved CO₂ contained in the water

467 column was released into the atmosphere. CO₂ emitted during this short period would

468 account for 7% to 52% of total annual emissions (Duchemin et al., 2006; Huotari et

469 al., 2009; Demarty et al., 2011). Our results are within the lower end of their estimates,

and reveal a significant CO₂ contribution during the ice break-up periods to the annual
CO₂ budget of aquatic ecosystems in boreal lakes.

472	Concerning the seasonal and annual CO ₂ emission, the differences between
473	simulated and measured CO ₂ diffusive flux values may result, in part, from the
474	absence of systematic (or continuous) measurements of highly variable daily
475	emissions: there are only a few daily observations for each season and these cannot
476	accurately represent the natural CO ₂ emission, thus resulting in a substantial
477	overestimation or underestimation of seasonal, or annual flux values. On one hand, for
478	the analysis of seasonal or annual variability, we should, in the future, use the eddy
479	covariance measurements, which provide more frequent sampling and more accurate
480	estimates of the CO ₂ emission (Vesala et al., 2006; Jonsson et al., 2008; Huotari et al.,
481	2011). On the other hand, it is our hope that the model simulation could contribute to
482	the development of more effective sampling strategies, based on the characteristics of
483	the simulated temporal CO ₂ emission pattern associated with each lake.

For the impact of terrestrial DOC on lake CO₂ emission, results from this study

485 reveal that approximately 15% to 29% of the annual CO_2 diffusive flux is due to

486 terrestrial DOC input. Our study agree with the work ranged from 3% to 80% CO₂

487 flux from terrestrial organic carbon in lakes of the southern Quebec, Canada

488 (McCallister and del Giorgio, 2008), the boreal Scandinavia (Algesten et al., 2003),

and of the Wisconsin, UAS (Cole et al., 2002; Hanson et al., 2004). Our results thus

490 support the hypothesis that a significant fraction of aquatic CO_2 diffusive flux is

491	attributable to allochthonous organic carbon inputs from lake catchments (del Giorgio
492	et al., 1999; Cole et al., 2000, 2007; Jonsson et al., 2001, 2003; Prairie et al., 2002;
493	Algesten et al., 2003; Hanson et al., 2003, 2004; Karlsson et al., 2007; McCallister
494	and del Giorgio, 2008; Battin et al., 2009; Buffam et al., 2011).
495	Sediment respiration is also an important source of CO ₂ in lake system (Algesten et
496	al., 2005; Kortelainen et al., 2006; Brothers et al., 2012). To investigate the potential
497	effects of sediment dynamics on the CO ₂ emission from the lake, we performed a
498	sensitivity experiment with sediment oxygen demand levels ranging from 1 to 0 g m^{-2}
499	d ⁻¹ in Lake Mary and Lake Jean. The mean contribution of benthic metabolism to
500	surface CO_2 diffusive emission was approximately 23% to 47%. This result is in good
501	agreement with the observed studies (Jonsson et al., 2001; Brothers et al., 2012) that
502	revealed the benthic respiration in boreal lakes representing approximately 23% to
503	50% of the total carbon production.
504	There is generally a net uptake of CO_2 from the atmosphere in boreal forests
505	(Chapin III, et al., 2000; Dunn et al., 2007), whereas, lake ecosystems seems to
506	process a large amount of terrestrial derived primary production and alter the balance
507	between carbon sequestration and CO ₂ release. It demonstrates that lake ecosystems
508	contribute significantly to regional carbon balances.
509	
510	6.3 Future improvements to the TRIPLEX-Aquatic

511 A major challenge for developing a new process-based model is the validation

phase. Results presented in this study demonstrate that the TRIPLEX-Aquatic 512 model is able to provide the potential to predict the hydrodynamic and carbon 513 514 processes in two selected boreal oligotrophic lakes (Lake Mary and Lake Jean). However, our model calibration and validation are still limited by the number of 515 516 sample available in this study and should be improved by using more sensor network 517 data in future. Moreover, additional system verification and model testing should be 518 conducted when applying the model to lakes with different characteristics in different climatic zones. 519

In addition, the aquatic carbon approach is relatively simple in the current version 520 of TRIPLEX-Aquatic. Decomposition processes of organic carbon follow first order 521 kinetics of temperature-dependent coefficients for bacterial degradation. In fact, 522 523 mineralization of allochthonous organic carbon occurs primarily, if not exclusively, by 524 way of bacterial degradation (Jonsson et al., 2001). Photochemical degradation (Granéli et al., 1996) and its interaction with bacterial mineralization (Bertilsson and 525 526 Tranvik, 1998) may add substantially to overall lake mineralization. Moreover, groundwater inflow (Kling et al., 1991; Striegl and Michmerhuizen, 1998) and surface 527 water (Dillon and Molot, 1997; Cardille et al., 2007) enriched in inorganic carbon 528 529 derived from weathering and soil respiration could be an important factor in some 530 lakes.

There is also increasing evidences that gas transfer near the air/water interfacecannot be adequately quantified using simple wind speed and lake area. Studies have

shown that other factors, such as friction velocity, bubbles, buoyancy, energy
dissipation, fetch, surface slicks, rain, and chemical enhancement (Asher and Pankow,
1986; Wallace and Wirick, 1992; Erickon, 1993; Ho et al., 2000; Zappa et al., 2001;
McNeil and d'Asaro, 2007; Wanninkhof et al., 2009; MacIntyre et al., 2010), can also
affect the gas transfer velocities. Disregarding these factors will undoubtedly add to
the analytical uncertainty in relation to the aquatic carbon cycle. These shortcomings
will be addressed and minimized in the future.

540 It is important to point out that the TRIPLEX-Aquatic model, incorporating robust process-based hydrodynamic components, could be feasibly adapted to reservoirs in 541 the future in spite of the fact that their hydrodynamic and biogeochemical 542 characteristics differ from those observed in lake systems. The model can also be 543 544 coupled with land surface and ecosystem models at various horizontal resolutions or 545 forced with GCM outputs to investigate the potential impact of climate and land use changes on lake carbon cycles. It is hoped that reassessment and future investigation 546 547 will generate an improved and integrative understanding of carbon flux in lakes and reservoirs as well as a better integration between aquatic and terrestrial components. 548 549

550 Acknowledgements

551 This research was funded by the Natural Sciences and Engineering Research

552 Council of Canada (Strategic Project Grant STPGP 322385), National Basic Research

553 Program of China (973 Program) (2010CB950204, 2013CB956602), the National

Natural Science Foundation of China (No. 41071055 and 41125011), the Bairen

555	Programs of the Chinese Academy of Sciences, as well as the Natural Sciences and
556	Engineering Research Council of Canada Discovery Grant and the Canada Research
557	Chair Program.

559

560 **Reference:**

561	Aberg, J., Jansson, M., and Jonsson, A.: Importance of water temperature and thermal
562	stratification dynamics for temporal variation of surface water CO ₂ in a boreal

563 lake, J. Geophys. Res., 115, G02024, doi: 10.1029/2009JG001085, 2010.

- 564 Algesten, G., Sobek, S., Bergstrom, A.-K., Agren, A., Tranvik, L. J., and Jansson, M.:
- Role of lakes for organic carbon cycling in the boreal zone, Global Change Biol.,
 20, 141-147, 2003.
- 567 Algesten, G., Sobek, S., Bergström, A., Jonsson, A., Tranvik, L. J., and Jansson, M.:
- 568 Contribution of sediment respiration to summer CO₂ emission from low
- productive boreal and subarctic lakes, Microb. Ecol., 50, 529-535, 2005.
- 570 Ambrose, R. B., Wool, R. B., and Martin, J. L.: The Water Quality Analysis
- 571 Simulation Program, WASP5--Part A: Model Documentation, Environmental
- 572 Research Laboratory, US Environmental Protection Agency, Athens, GA, 1993.
- 573 Anderson, D. E., Striegl, R. G., Stannard, D. I., and Michmerhuizen, C. M.:
- 574 Estimating lake-atmosphere CO₂ exchange, Limnol. Oceanogr., 44, 988-1001,
- 575 1999.
- 576 Asher, W. F., and Pankow. J. F.: The interaction of mechanically generated turbulence

- and interfacial films with a liquid phase controlled gas/liquid transport process,
- 578 Tellus B, 38, 305-318, 1986.
- 579 Banks, R. B.: Some Features of Wind Action on Shallow Lakes, J. Env. Engr. Div.,
- 580 101, 489-504, 1975.
- Banks, R. B., and Herrera, F. F.: Effect of wind and rain on surface reaeration, J. Envir.
 Engr. Div., 101, 813-827, 1977.
- 583 Barrette, N., and Lapries, R.: Numerical modeling: a complementary tool for studying
- 584 CO₂ emission from hydroelectric reservoirs, Global Biogeochem. Cy., 16,
- 585 1128-1139, 2002.
- Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufedenkample, A. K., Richter, A., and
- 587 Tranvik, L. J.: The boundless carbon cycle, Nature Geoscience, 2, 598-600, 2009.
- 588 Beck, M. B.: Water Quality Management: A Review of the Development and
- 589Application of Mathematical Models, Springer Verlag, Berlin and New York,
- 590 1985.
- 591 Bertilsson, S., and Tranvik, L. J.: Photochemically produced carboxylic acids as
- substrates for freshwater bacterioplankton, Limnol. Oceanogy., 43, 885-895, 1998.
- 593 Broecker, H. C., Petermann, J., and Siems, W.: The influence of wind on CO₂
- exchange in a wind-wave tunnel, J. Marine Res., 36, 595-610, 1978.
- 595 Brothers, S. M., Prairie, Y. T., and del Giorgio1, P. A.: Benthic and pelagic sources of
- carbon dioxide in boreal lakes and a young reservoir (Eastmain-1) in eastern
- 597 Canada, Global Biogeochem. Cy., 26, GB1002, doi:10.1029/2011GB004074,
- 598 2012.

599	Buffam, I., Monicag, T., Ankur, R. D., Paul, C. H., James, A. R., Noah, R. L., Emily,
600	H. S., and Stephen, R. C.: Integrating aquatic and terrestrial components to
601	construct a complete carbon budget for a north temperate lake district, Global
602	Change Biol., 17, 1193-1211, 2011.
603	Cardille, J. A., Carpenter, S. R., Coe, M. T., Foley, J. A., Hanson, P. C., Turner, M. G.,
604	and Vano, J. A.: Carbon and water cycling in lake-rich landscapes: Landscape
605	connections, lake hydrology, and biogeochemistry, J. Geophys. Res
606	Biogeosciences, 112, G02031, doi: 10.1029/2006JG000200, 2007.
607	Chapelle, A., Menesguen, A., Paoli, J. M. D., Souchu, P., Mazouni, N., Vaquer, A.,
608	and Millet, B.: Modelling nitrogen, primary production and oxygen in
609	mediterranean lagoon: Impact of oysters farming and inputs from the watershed,
610	Ecol. Model., 127, 161-181, 2000.
611	Chapin III, F. S., Mcguire, A. D., Randerson, J., Pielkesr, R., Baldocchi, D., Hobbie, S.
612	E., Roulet, N., Eugster, W., Kasischke, E., Rastetter, E. B., Zimov, S. A., and
613	Running, S. W.: Arctic and boreal ecosystems of western North America as
614	components of the climate system, Global Change Biol., 6 (Suppl. 1), 211-223,
615	2000.
616	Chapin III, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M.,
617	Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R.,
618	Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M.,
619	Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A.,
620	Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E.,

- 621 Schlesinger, W. H., and Schulze, E. -D.: Reconciling carbon-cycle concepts,
- terminology, and methods, Ecosystem, 9, 1041-1050, 2006.
- 623 Cole, J. J., Bade, D. L., Bastviken, D., Pace, M. L., and de Bogert, M. V.: Multiple
- approaches to estimating air-water gas exchange in small lakes, Limnol.
- 625 Oceanogr.: Methods, 8, 285-293, 2010.
- 626 Cole, J. J., and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind
- oligotrophic lake measured by the addition of SF6, Limnol. Oceanogy, 43,
- 628 647**-**656, 1998.
- 629 Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K.: Carbon dioxide
- supersaturation in the surface waters of the lakes, Science, 265, 1568-1570, 1994.
- 631 Cole, J. J., Carpemter, S. R., Kitchell, J. F., and Pace, M. L.: Pathways of organic
- utilization in small lakes: Results from a whole-lake ¹³C addition and coupled
- 633 model, Limnol. Oceanogr., 47, 1664-1675, 2002.
- 634 Cole, J. J., Pace, M. L., Carpenter, S. R., and Kitchell, J. F.: Persistence of net
- heterotrophy in lakes during nutrient addition and food web manipulations,
- 636 Limnol. Oceanogr., 45, 1718-1730, 2000.
- 637 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G.,
- Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.:
- 639 Plumbing the global carbon cycle: integrating inland waters into the terrestrial
- 640 carbon budget, Ecosystems, 10, 171-184, 2007.
- 641 Cole, T., and Buchak, E.: CE-QUAL-W2: A two-dimensional, laterally averaged,
- hydrodynamic and water quality model, version 2.0, Technical Report El-95-1,

643	U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 1995.
644	Cole, T. M., and Wells, S. A.: CE-QUAL-W2: A Two-Dimensional, Laterally
645	Averaged, Hydrodynamic and Water Quality Model, Version 3.5, Instruction
646	Report EL-06-1, US Army Engineering and Research Development Center,
647	Vicksburg, MS, 2006.
648	Debele, B., Srinivasan, R., and Parlange, JY.: Coupling upland watershed and
649	downstream waterbody hydrodynamic and water quality models (SWAT and
650	CE-QUAL-W2) for better water resources management in complex river basins,
651	Environ Model. Assess., 13, 135-153, 2008.
652	del Giorgio, P. A., Cole, J. J., Caraco, N. F., and Peters, R. H.: Linking planktonic
653	biomass and metabolism to net gas fluxes in northern temperate lakes, Ecology, 80,
654	1422-1431, 1999.
655	del Giorgio, P. A., Cole, J. J., and Cimbleris, A.: Respiration rates in bacteria exceed
656	phytoplankton production in unproductive aquatic systems, Nature, 385, 148-151,
657	1997.
658	Demarty, M., Bastien1, J., and Tremblay, A.: Annual follow-up of gross diffusive
659	carbon dioxide and methane from a boreal reservoirs and nearby lakes in Quebec,
660	Canada, Biogeosciences, 8, 41-53, 2011.

- Dillon, P. J., and Molot, L. A.: Dissolved organic and inorganic carbon mass balances
 in central Ontario lakes, Biogeochemistry, 36, 29-42, 1997.
- 663 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G.,
- McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middelburg, J.

- J.: The global abundance and size distribution of lakes, ponds, and impoundments,
- 666 Limnol. Oceanogr., 51, 2388-2397, 2006.
- 667 Downing, A. L., and Truesdale, G. A.: Some factors affecting the rates of solution of
- oxygen in water, J. Appl. Chem., 5, 570-581, 1955.
- 669 Duchemin E., Lucotte, M., St-Louis, V., and Canuel, R.: Hydroelectric reserviors as
- an anthropogenic source of greenhouse gases, World Resou. Rev., 4, 334-353,
 2002.
- Duchemin, É., Lucotte, M., Canuel, R., and Soumis, N.: First assessment of methane
- and carbon dioxide emissions from shallow and deep zones of boreal reservoirs
- 674 upon ice break-up, Lake. Reserv., 11, 9-19, 2006.
- Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C.: A
- long-term record of carbon exchange in a boreal black spruce forest: Means,
- responses to interannual variability, and decadal trends, Global Change Biol., 13,
- 678577-590, 2007.
- Erickson III, D. J.: A stability-dependent theory for air-sea gas exchange, J. Geophys.
- 680 Res., 98, 8471-8488, 1993.
- Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wűest, A., MacIntyre, S., and
- 682 Chapin III, F. S.: CO₂ exchange between air and water in an Arctic Alaskan and
- midlatitude Swiss lake: Importance of convective mixing, J. Geophys. Res.,
- 684 108(D12), 4362, doi: 10.1029/2002JD002653, 2003.
- Flett, R. J., Hamilton, R. D., and Campbell, E. R.: Aquatic acetylene-reduction
- techniques: Solutions to several problems, Can. J. Microbiol., 22, 43-51, 1976.

- 687 Gelda, R. K., Auer, M. T., Effler, S. W., Chapra, S. C., and Storey, M. L.:
- Determination of reaeration coefficients: a whole lake approach, J. Envir. Engr.,
 122, 269-275, 1996.
- 690 Granéli, W., Lindell, M. J., and Tranvik, L. J.: Photo-oxidative production of
- dissolved inorganic carbon in lakes of different humic content, Limnol. Oceanogr.,
 41, 698-706, 1996.
- 693 Grimm, N. B., Gergal, S. E., McDowell, W. H., Boyer, E. W., Dent, C. L., Groffman,
- 694 P., Hart, S. C., Harvey, J., Johnston, C., Mayorga, E., Mcclain, M. E., and Pinay,
- 695 G.: Merging aquatic and terrestrial perspectives of nutrient biogeochemistry,
- 696 Oecologia, 137, 485-501, 2003.
- Hanson, P. C., Bade, D. L., Carpenter, S. R., and Kratz, T. K.: Lake metabolism:
- 698 Relationships with dissolved organic carbon and phosphorus, Limnol. Oceanogr.,
- 699 **48**, 1112-1119, 2003.
- Hanson, P. C., Pollard, A. I., Bade, D. L., Predick, K., Carpenter, S. R., and Foley, J.
- A.: A model of carbon evasion and sedimentation in temperate lakes, Global
- 702 Change Biol., 10, 1285-1298, 2004.
- 703 Harleman, D. R. F.: Hydrothermal analysis of lakes and reservoirs, J. Hydraul. Div.,
- 704 108, 302-325, 1982.
- 705 Harris, G. P.: Pattern, process and prediction in aquatic ecology: A limnological view
- of some general ecological problems, Freshwater Biol., 32, 143-160, 1980.
- 707 Hélie, J. F., and Hillaire-Marcel, C.: Sources of particulate and dissolved organic
- carbon in the St Lawrence River: isotopic approach, Hydrol. Process., 20,

709 1945-1959, 2006.

- 710 Hélie, J. F., Hillaire-Marcel, C., and Rondeau, B.: Seasonal changes in the sources and
- fluxes of dissolved inorganic carbon through the St. Lawrence River isotopic
- and chemical constraint, Chem. Geol., 186, 117-138, 2002.
- 713 Hesslein, R. H., Rudd, J. W. M., Kelly, C. A., Ramlal, P., and Hallard, K. A.: Carbon
- dioxide pressure in surface waters of Canadian lakes, In: Wilhelms, S.C., Gulliver,
- J.S. editors. Air-water mass transfer. American Society of Civil Engineers, New
- 716 York, p. 413-431, 1990.
- 717 Ho, D. T., Asher, W. E., Bliven, L. F., Schlosser, P., and Gordan, E. L.: On
- mechanisms of rain-induced air-water gas exchange, J. Geophys. Res., 105,
 24045-24057, 2000.
- Hope, D., Kratz, T. K., and Riera, J. L.: Relationship between pCO₂ and dissolved
- 721 organic carbon in Northern Wisconsin lakes, J. Environ. Qual., 25, 1442-1445,
 722 1996.
- Huotari, J., Ojala, A., Peltomaa, E., Pumpanen, J., Hari, P., and Vesala, T.: Temporal
- variations in surface water CO₂ concentration in a boreal humic lake based on
- high-frequency measurements, Boreal Env. Res., 14 (suppl.A), 48-60, 2009.
- Huotari, J., Ojala, A., Peltomaa, E., Nordbo, A., Launiainen, S., Pumpanen, J., Rasilo,
- T., and Vesala, T.: Long-term direct CO₂ flux measurements over a boreal lake:
- Five years of eddy covariance data, Geophys. Res. Lett., 38, L18401,
- doi:10.1029/2011GL048753, 2011.
- Hutjes, R. W. A., Kabat, P., Running, S. W., Shuttleworth, W. J., Field, C., Bass, B.,

731	Avissar, R., Becker, A., Claussen, M., Dolman, A. J., Feddes, R. A., Fosberg, M.,
732	Fukushima, Y., Gash, J. H. C., Guenni, L., Hoff, H., Jarvis, P. G., Kayane, I.,
733	Kaarenke, A. N., Meybeck, M., Nobre, C. A., Oyebande, L., Pitman, A., Pielke, R.
734	A., Raupach, M., Saugier, B., and Schulze, E. D.: Biospheric aspects of the
735	hydrological cycle – Preface, J. Hydrol., 213, 1-21, 1998.
736	Jahne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P.: On
737	parameters influencing air-water gas exchange, J. Geophys. Res., 92, 1937-1949,
738	1987.
739	Jenerette, G. D., and Lal, R.: Hydrologic sources of carbon cycling uncertainty
740	throughout the terrestrial-aquatic continuum, Global Change Biol., 11, 1873-1882,
741	2005.
742	Jones, S. E., Kratz, T. K., Chiu, C. Y., and McMahon, K. D.: The influence of
743	typhoons on annual CO ₂ flux from a sub-tropical, humic lake, Global Change
744	Biol., 15, 243-254, 2009.
745	Jonsson, A., Aberg, J., Lindroth, A., and Jansson, M.: Gas transfer rate and CO ₂ flux
746	between an unproductive lake and the atmosphere in northern Sweden, J. Geophys.
747	Res., 113, D04006, doi:10.1029/2008JG000688, 2008.
748	Jonsson, A., Karlsson, J., and Jansson, M.: Sources of carbon dioxide in clearwater
749	and humic lakes in Northern Sweden, Ecosystems, 6, 224-235, 2003.
750	Jonsson, A., Meili, M., Bergstrom, AK., and Jansson, M.: Whole-lake mineralization
751	of allochthonous and autochthonous organic carbon in a large humic lake
752	(Ortrasket, N. Sweden), Limnol. Oceanogr., 46, 1691-1700, 2001.

753	Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., and Matzner, E.: Controls on the
754	dynamics of dissolved organic matter in soils: a review, Soil Sci., 165, 277-304,
755	2000.

- Kanwisher, J.: On the exchange of gases between the atmosphere and the sea, Deep
- 757 Sea Res., 10, 195-207, 1963.
- 758 Karlsson, J., Jansson, M., and Jonsson, A.: Respiration of allochthonous organic
- carbon in unproductive forest lakes determined by the Keeling plot method,
- 760 Limnol. Oceanogr., 52, 603-608, 2007.
- 761 Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., and Jorgensen, S. E.:
- Modelling diurnal variation of dissolved oxygen in waste stabilization ponds, Ecol.
 Model., 127, 21-31, 2000.
- 764 Kling, G. W., Kipphut, G. W., and Miller, M. C.: Arctic lakes and streams as gas
- conduits to the atmosphere: implications for tundra carbon budgets, Science, 251,
 298-301, 1991.
- 767 Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S.,
- Larmola, T., Silvola, J., and Martikainen, P. J.: Sediment respiration and lake
- trophic state are important predictors of large CO_2 evasion from small boreal lakes,
- Global Change Biol., 12, 1554-1567, 2006.
- Liss, P. S.: Processes of gas exchange across an air-water interface, Deep Sea Res., 20,
 221-238, 1973.
- 773 MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D.,
- Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake,

775	Geophys. Re	es. Lett., 3	37, L24604,	doi:10.1029/2010	GL044164, 2010.
-----	-------------	--------------	-------------	------------------	-----------------

- McCallister, S. L., and del Giorgio, P. A.: Direct measurement of the δ^{13} C signature of
- carbon respired by bacteria in lakes: Linkages to potential carbon sources,
- ecosystem baseline metabolism, and CO₂ fluxes, Limnol. Oceanogr., 53,
- 779 1204-1216, 2008.
- 780 McDowell, W. H.: Dissolved organic matter in soils future directions and
- ⁷⁸¹ unanswered questions, Geoderma, 113, 179-186, 2003.
- 782 McNeil, C. D., and d'Asaro, E.: Parameterization of air-sea gas fluxes at extreme
- 783 wind speeds, J. Mar. Sys., 66, 110-121, 2007.
- Omlin, M., Reichert, P., and Forster, R.: Biogeochemical model of Lake Zurich:
- model equations and results, Ecol. Model., 141, 77-103, 2001.
- 786 Owens, E. M., and Effler, S. W.: Changes in stratification in Onondaga Lake, New
- 787 York, Water Resour. Bull., 25, 587-597, 1989.
- Prairie, Y. T., Bird, D. F., and Cole, J. J.: The summer metabolic balance in the
- epilimnion of southeastern Quebec lakes, Limnol. Oceanogr., 47, 316-321, 2002.
- 790 Rantakari, M., and Kortelainen, P.: Interannual variation and climatic regulation of the
- 791 CO₂ emission from large boreal lakes, Global Change Biol., 11, 1368-1380, 2005.
- 792 Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D.,
- Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C.,
- 794 Brookes, J. D., Laas, A., and Wu, C. H.: Lake-size dependency of wind shear and
- convection as controls on gas exchange, Geophys. Res. Lett., 39, L09405, doi:
- 796 10.1029/2012GL051886, 2012.

- 797 Richey, J. E., Melack, J. M., Aufdenkampel, A. K., Victoria, M. B., and Laura, L. H.:
- 798 Outgassing from Amazonian rivers and wetlands as a large tropical source of
- atmospheric CO₂, Nature, 416, 617-620, 2002.
- 800 Riera, J. L., Schindler, J. M., and Kratz, T. K.: Seasonal dynamics of carbon dioxide
- and methane in two clear-water lakes and two bog lakes in northern Wisconsin,
- 802 U.S.A, Can. J. Fish. Aquat. Sci., 56, 267-274, 1999.
- 803 Roehm, C. L., Prairie, Y. T., and del Giorgio, P. A.: The pCO₂ dynamics in lakes in the
- boreal region of northern Quebec, Canada, Global Biogeochem. Cy., 23, GB3013,
- doi: 10.1029/2008GB003297, 2009.
- 806 Smith, D.J.: WQRRS, Generalized computer program for river-reservoir systems,
- 807 USACE hydrologic engineering center HEC, Davis, California. User's Manual
 808 401-100, 100A, 210 pp, 1978.
- 809 Smith, S. V., Renwick, W. H., Buddemeier, R. W., and Crossland, C. J.: Budgets of
- soil erosion and deposition for sediments and sedimentary organic carbon across
- the conterminous United States, Global Biogeoch. Cy., 15, 697-707, 2001.
- 812 Sobek, S., Algesten, G., Bergstrom, A.-K., Jansson, M., and Tranvik, L. J.: The
- catchment and climate regulation of pCO₂ in boreal lakes, Global Change Biol., 9,
- 814 **630-641**, 2003.
- 815 Soumis, N., Canuel, R., and Luctte, M.: Evaluation of two current approaches for the
- 816 measurement of carbon dioxide diffusive fluxes from lentic ecosystems, Environ.
- 817 Sci. Technol., 42, 2964-2969, 2008.
- 818 Steele, J. H.: Environmental control of photosynthesis in the sea. Limnol. Oceanogr.,

819 7, 137-150, 1965.

- 820 Striegl, R. G., Kortelainen, P., Chanton, J. P., Wickland, K. P., Bugna, G. C., and
- 821 Rantakori, M.: Carbon dioxide partial pressure and ¹³C content of north temperate
- and boreal lakes at spring ice melt, Limnol. Oceanogr., 46, 941-945, 2001.
- 823 Striegl, R. G., and Michmerhuizen, C. M.: Hydrologic influence on methane and
- carbon dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr.,
 43, 1519-1529, 1998.
- 826 Teodoru, C. R., del Giorgio, P. A., Prairie, Y. T., and Camire, M.: Patterns in pCO₂ in
- boreal streams and rivers of northern Quebec, Canada, Global Biogeochem. Cy.,

828 23, GB2012, doi:10.1029/2008GB003404, 2009.

- 829 Teodoru, C. R., Prairie, Y. T., and del Giorgio, P. A.: Spatial heterogeneity of surface
- CO_2 fluxes in a newly created Eastmain-1 reservoir in Northern Quebec, Canada,

Ecosystems, 14, 28-46, DOI: 10.1007/s10021-010-9393-7, 2011.

- Vachon, D., Prairie, Y. T.: The ecosystem size and shape dependence of gas transfer
- velocity versus wind speed relationships in lakes, Can. J. Fish. Aquat. Sci., doi:
- 834 10.1139/cjfas-2013-0241, 2013.
- 835 Vesala, T., Huotari, J., Rannik, U., Suni, T., Smolandar, S., Sogachev, A., Launiainen,
- 836 S., and Ojala, A.: Eddy covariance measurements of carbon exchange and latent
- and sensible heat fluxes over a boreal lake for a full open-water period, J.
- 638 Geophys. Res., 111, D11101, doi: 10.1029/2005JD006365, 2006.
- 839 Wagener, S. M., Oswood, M. W., and Schimel, J. P.: Rivers and soils: parallels in
- carbon and nutrient processing, Bioscience, 48, 104-108, 1998.

- Wallace, D. W. R, and Wirick, C. D.: Large air-sea gas fluxes associated with breaking
 waves, Nature, 356, 694-96, 1992.
- 843 Wang, X. F., and Veizer, J.: Respiration-photosynthesis balance of terrestrial aquatic
- ecosystems, Ottawa area, Canada, Geochim. Cosmochim. Ac., 64, 3775-3786,
- 845 2000.
- Wanninkhof, R.: Relationship between gas exchange and wind speed over the ocean, J.
 Geophys. Res., 97, 7373-7382, 1992.
- 848 Wanninkhof, R., Ledwell, J., and Watson, A.: Analysis of sulfur hexafluoride in
- seawater, J. Geophys. Res., 96, 8733-8740, 1991.
- 850 Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGills, W. R.: Advances
- 851 in quantifying air-sea gas exchange and environmental forcing, Annu. Rev. Mar.
 852 Sci., 1, 213-244, 2009.
- Weiler, R. R.: Carbon dioxide exchange between water and atmosphere, J. Fish. Res.,
- 854 **31**, 329-332, 1974.
- 855 Wu, H. B., Peng, C. H., Moore, T. R., Dong, H., Li, C. H., Zhu, Q. A., Peichl, M.,
- Arain, M. A., and Guo, Z. T.: Modeling dissolved organic carbon in temperate
- forest soils: TRIPLEX-DOC model development and validation, Geosci. Model
- 858 Dev. Discuss., 6, 3473-3508, doi:10.5194/gmdd-6-3473-2013, 2013..
- 859 Yu, S. L., Tuffy, T. J. and Lee, D. S.: Atmosphere reaeration in a lake, Office of Water
- 860 Resources and Technology, U.S. Department of the Interior, 1977.
- 861 Zappa, C. J., Asher, W. E., and Jessup, A. T.: Microscale wave breaking and air-water
- gas transfer, J. Geophys. Res., 106, 9385-9392, 2001.

863 Figure Captions

864	Figure 1: Modular structure of the TRIPLEX-Aquatic model. DOC: dissolved organic
865	carbon, POC: particulate organic matter, DIC: dissolved inorganic carbon,
866	and DO: dissolved oxygen.
867	Figure 2: Comparison of the CO ₂ transfer velocities at the air/water interface with
868	wind speed (Eq.1-13) at 20°C in the CE-QUAL-W2 model (Cole and
869	Wells, 2006) and in Vachon and Prairie (2013) model (Eq.14) in this study.
870	The function of Eq.1 from Broecker et al. (1978), Eq.2 from Gelda et al.
871	(1996), Eq.3 from Banks and Herrera (1977), Eq.4 from Wanninkhof et al.
872	(1991), Eq.5 from Kanwisher (1963), Eq.6 from Cole and Buchak (1995),
873	Eq.7 from Banks (1975), Eq.8 from Smith (1978), Eq.9 from Liss (1973),
874	Eq.10 from Downing and Truesdale (1955), Eq.11 from Kanwisher (1963),
875	Eq.12 from Yu et al. (1977), and Eq.13 from Weiler (1974).
876	Figure 3: Flow diagram showing key pools and flux of carbon, nitrogen, and
877	phosphorus simulation in the lake ecosystem from the CE-QUAL-W2
878	model (Cole and Wells, 2006). T: temperature, P: precipitation, DOM:
879	dissolved organic matter, POM: particulate organic matter, L: labile, R:
880	refractory, DO: dissolved oxygen, DIC: dissolved inorganic carbon.
881	Figure 4: Map of the study lakes and the grid arrangement with model segment
882	identification numbers for Lake Mary (a) and Lake Jean (b). The dark
883	circle is sample site.
884	Figure 5: Observed versus predicted water surface temperatures from 2006 to 2007

885 for Lake Mary (a) and Lake Jean (b).

886	Figure 6: Measured versus simulated vertical temperature, pH, dissolved oxygen
887	(DO), dissolved CO_2 (p CO_2) profiles in Lake Mary during autumn (21
888	October 2006) (a, c, e, g) and spring (14 May 2007) (b, d, f, h) periods.
889	Figure 7: Time series plots of measured versus simulated daily DOC concentrations
890	in Lake Mary. Error bars represent standard deviations.
891	Figure 8: Time series plots of measured versus simulated daily CO ₂ diffusive fluxes
892	from Lake Mary (a) and Lake Jean (b). Error bars represent standard
893	deviations.
894	Figure 9: Comparison between measurements and simulations of seasonal CO ₂
895	diffusive fluxes for Lake Mary (a) and Lake Jean (b). Boxes indicate
896	interquartile intervals (25 th and 75 th percentiles) while bars represent 90%
897	intervals (5 th and 95 th percentiles).
898	Figure 10: Relationship between terrestrial DOC input and the CO ₂ diffusive flux
899	from Lake Mary (a) and Lake Jean (b).
900	Figure 11: Sensitivity analysis for the effect of terrestrial DOC inputs on the annual
901	mean CO ₂ diffusive flux from Lake Mary (a) and Lake Jean (b). Bars
902	represent standard errors.
903	
904	
905	
906	

Table 1 Final calibration values for hydrodynamic and ecological input variables.

Kinetic parameters	Units	Value	Suggested value
			(Cole and Well, 2006)
Horizontal eddy viscosity	m ² /s	1.0	1.0
Horizontal eddy diffusivity	m^2/s	1.0	1.0
Bottom frictional resistance	m ² /s	70	70
Solar radiation fraction absorbed at the water surface	_	0.45	0.45
Solar radiation extinction – water	m^{-1}	0.45	0.25-0.45
Solar radiation extinction – detritus	m^{-1}	0.2	0.1
Solar radiation extinction – algae	m^{-1}	0.2	0.2
Wind sheltering coefficient	-	1.0	0-1.0
Zero-order sediment oxygen demand	g m ⁻² day ⁻¹	1.0	0.1-1.0
Algal growth rate	day^{-1}	2.0	1.1-2.0
Algal dark respiration rate	day^{-1}	0.04	0.02-0.04
Algal excretion rate	day^{-1}	0.04	0.01-0.04
Algal mortality rate	day^{-1}	0.1	0.01-0.1
Algal settling rate	day^{-1}	0.1	0.1-0.14
Phosphorus half-saturation coefficient	$\mathrm{g}~\mathrm{m}^{-3}$	0.003	0.003-0.009
Nitrogen half saturation coefficient	$\mathrm{g}~\mathrm{m}^{-3}$	0.014	0.014, 0.03
Light saturation	$W m^{-2}$	50	75
Lower temperature for minimum algal rates	°C	5	5
Lower temperature for maximum algal rates	°C	12	25
Upper temperature for maximum algal rates	°C	20	35
Upper temperature for minimum algal rates	°C	30	40
Lower temperature rate multiplier for minimum algal growth	_	0.1	0.1
Lower temperature rate multiplier for maximum algal growth	_	0.99	0.99
Upper temperature rate multiplier for maximum algal growth	_	0.99	0.99
Upper temperature rate multiplier for minimum algal growth	_	0.1	0.1
Phosphorus-to-biomass ratio	_	0.005	0.005
Nitrogen-to-biomass ratio	_	0.08	0.08
Carbon-to-biomass ratio	_	0.45	0.45
Algae-to-chlorophyll a ratio	-	130	145
Ammonium decay rate	day ⁻¹	0.3	0.12
Sediment release rate of ammonium	fraction of	0.001	0.001
	SOD		
Lower temperature for ammonium decay	°C	5.0	5.0
Upper temperature for ammonium decay	°C	25.0	25.0
Lower temperature rate multiplier for ammonium decay	_	0.1	0.1
Upper temperature rate multiplier for ammonium decay	_	0.99	0.99
Sediment release rate of phosphorus	fraction of	0.001	0.001-0.03
	SOD		
Stochiometric ratio of phosphorus in organic matter	_	0.005	0.005
Stochiometric ratio of nitrogen in organic matter	_	0.08	0.08

Nitrate decay rate	day^{-1}	0.05	0.05-0.15
Lower temperature for nitrate decay	°C	5.0	5.0
Upper temperature for nitrate decay	°C	25.0	25.0
Lower temperature rate multiplier for nitrate decay	_	0.1	0.1
Upper temperature rate multiplier for nitrate decay	_	0.99	0.99

Wu et al., Fig.2

Wu et al., Fig. 4

Wu et al., Fig.5

Wu et al., Fig.6

Wu et al., Fig.7

Wu et al., Fig.8

Wu et al., Fig.9

Wu et al., Fig. 10

Wu et al., Fig. 11