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TRIPLEX-DOC model development and validation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

 

Haibin Wu1,2  Changhui Peng2,3  Tim R. Moore4  Dong Hua2,5  Changsheng Li6   

Qiuan Zhu3,2  Matthias Peichl7  M. Altaf Arain8  Zhengtang Guo1 

 

1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and 

Geophysics, Chinese Academy of Science, P.O. Box 9825, Beijing 100029, China; 

2. Department of Biology Sciences, Institute of Environment Sciences, University of Quebec 

at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal H3C 3P8, Canada; 

3. Laboratory for Ecological Forecasting and Global Change, College of Forestry, 

Northwest A & F University, Yangling, Shaanxi 712100, China; 

4. Department of Geography and Global Environmental and Climate Change Centre, McGill 

University, Montreal, H3A 0B9, Canada; 

5. Center for Climate Research, University of Wisconsin-Madison, Madison, WI53706, USA; 

6. Institute for the study of Earth, Ocean and Space, University of New Hampshire, Durham, 

NH 03824, USA; 

7. Department of Forest Ecology and Management, Swedish University of Agricultural 

Sciences, Umeå, Sweden; 

8. School of Geography and Earth Sciences and McMaster centre for Climate Change, 

McMaster University, Hamilton, Ontario L8S 4K1, Canada. 

 

To “Geoscientific Model Development” 

 

*Corresponding address: haibin-wu@mail.iggcas.ac.cn or peng.changhui@uqam.ca 

 

 1



Abstract 27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

  Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil 

organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes 

are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial 

ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into 

terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that 

is capable of estimating DOC dynamics in forest soils by incorporating both ecological 

drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a 

biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC 

process module that predicts metabolic transformations, sorption/desorption, and DOC 

leaching in forest soils. The model was validated against field observations of DOC 

concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. 

The model was able to simulate seasonal dynamics of DOC concentrations and the 

magnitudes observed within different soil layers, as well as DOC leaching in the 

age-sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest 

harvesting on DOC leaching, with a significant increase following harvesting, illustrating that 

land use change is of critical importance in regulating DOC leaching in temperate forests as 

an important source of C input to aquatic ecosystems. 

 

Keywords: DOC simulation; soil DOC leaching; terrestrial carbon cycle; pine forest;  

land use change 
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  Recent climatic change projections have led to a great deal of attention being paid to 

carbon (C) cycling patterns and controls, particularly those factors that determine whether an 

ecosystem, from catchment to regional scales, is a net source or sink of atmospheric carbon 

dioxide (CO2) (e.g. Jenerette and Lal, 2005; Chapin III et al., 2006; Cole et al., 2007; Buffam 

et al., 2011). Northern ecosystems have been identified as being especially important for CO2 

exchanges that take place between land and the atmosphere, with temperate forests regarded 

as a potential C sink (Chapin et al., 2000; Dunn et al., 2007). In contrast to terrestrial 

ecosystems, temperate aquatic ecosystems are a net C source owing to the mineralization of 

organic C imported from terrestrial ecosystems and the resultant degassing of inorganic C in 

lakes and streams (Sobek et al., 2003; Roehm et al., 2009; Humborg et al., 2010; Kosten et al., 

2010; Butman and Raymond, 2011; Dennis et al., 2012; Lapierre et al., 2012). Only a handful 

of studies have attempted to comprehensively integrate terrestrial watershed C balances with 

their aquatic components. As a result, net ecosystem exchanges (NEE) of temperate terrestrial 

ecosystems are typically investigated without taking into account C runoff to aquatic 

ecosystems and the resultant C loss. Therefore, an integrative approach to examine C budgets 

for both terrestrial and aquatic ecosystems will help us to understand and estimate net C 

balances on both catchment and regional scales (Grimm et al., 2003; Jenerette and Lal, 2005; 

Chapin III, 2006; Cole et al., 2007; Buffam et al., 2011). 

  Understanding the interactive dynamics between terrestrial and aquatic ecosystems has 

been hampered by uncertainties. Processing DOC is one such uncertainty (Hanson et al., 
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2004; Chapin III, 2006; Cole et al., 2007; Buffam et al., 2011). DOC plays a key role in the 

transport of soil nutrients (Qualls et al., 1991; Kaiser et al., 2001; Kaiser and Kalbitz, 2012), 

leaching from the forest litter layer into mineral soil and then discharged into streams and 

lakes. Globally, terrestrial ecosystem DOC export to oceans was estimated at approximately 

0.17 to 0.36 Pg C yr-1 (Aitkenhead and McDowell, 2000; Harrison et al., 2005; Dai et al., 

2012). Although DOC exports to water bodies are small relative to other terrestrial C fluxes 

(Neff and Asner 2001; Cole et al., 2007), they are nonetheless critical to C biogeochemical 

cycling and budgets in aquatic ecosystems (del Giorgio et al., 1999; Hanson et al., 2004; 

McCallister and del Giorgio, 2008). 
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  Disturbances in the forested watershed or catchments resulting from forest management 

activities can alter biogeochemical processes in soils by changing species composition, soil 

characteristics, soil moisture and soil temperature regimes, soil microbial activity, and water 

flux, thereby potentially causing extensive alterations to occur to soil DOC dynamics 

(Kreutzweiser et al., 2008). Little attention has been paid to the question of how DOC 

concentrations, fluxes, and chemistry vary with land use and forest management practices.  

  In the past decade, considerable progress has been made in modeling approaches used to 

estimate DOC flux, such as improvements in soil and watershed C dynamics (Boyer et al., 

1996; Currie and Aber, 1997; Band et al., 2001; Raymond et al., 2010; Xu et al., 2012). 

Models have used a variety of physical and chemical watershed properties to predict DOC 

concentration or export either regionally or globally, based on empirical relationships 

between DOC and watershed attributes. Examples are basin size and slope (Clair et al., 1994; 
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Clair and Ehrman, 1996), soil characteristics (Nelson et al., 1993; Hope et al., 1997; 

Aitkenhead et al., 1999; Aitkenhead and McDowell, 2000), and land cover type (Eckhardt 

and Moore, 1990; Dillon and Molot, 1997; Aitkenhead et al., 1999). However, these 

empirical models often contain numerous environmental variables, some of which may be 

qualitative in nature, making it impossible to apply to conditions of climate change and 

human activity over long time spans. To overcome the shortcomings of empirical models, 

simplistic, process-based mechanistic models that couple hydrological, biological, and 

geochemical processes have been developed to predict DOC dynamics (Band et al., 2001; Xu 

et al., 2012). 
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  A handful of more complex process-based soil DOC models have recently been developed. 

Neff and Asner (2001), for example, have proposed a model related to DOC transport for 

terrestrial ecosystems, involving rates of production of DOC by vegetation and organic soil 

compounds, soil profile transport, mineral soil horizon adsorption, and the eventual export 

from a system. Michalzik et al. (2003) relied on 14C data to determine the age of soil organic 

matter. Lumsdon et al. (2005) simulated changing organic matter solubility as a function of 

competitive cation adsorption and hydrophobicity in a single soil horizon. Although these 

DOC models reasonably simulate soil DOC dynamics, they are currently incapable of 

investigating the potential impacts of land use change on the fate of DOC, such as forest 

management practices.  

  The broad aim in this study is to develop a general and quantitative approach at the 

landscape scale to simulate changes in soil DOC concentration and flux resulting primarily 
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from successional changes in forest type, productivity, aboveground biomass, litterfall, and 

forest floor biomass accumulation through stand development. The specific objectives are: (a) 

to introduce the development of TRIPLEX-DOC, a new DOC process-based model was used 

in conjunction with the forest soil C model to simulate seasonal and annual DOC 

concentration and flux patterns from precipitation to subsoil seepage; and (b) to assess land 

use impacts on dynamics and temporal changes in DOC soil leaching. 
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2. Model description and methods 

  DOC concentrations and fluxes were assigned for a vertical profile for a given forest 

ecosystem as follows (see Fig. 1): input through precipitation and throughfall; forest floor 

biological production and leaching; subsequent transfer to soil A, B, and C layers, including 

physical sorption/desorption processes; and the eventual export from a given forest 

ecosystem.  

  Fig. 1 provides an overall structure and framework of TRIPLEX-DOC which includes 

forest growth, soil carbon, hydrological and thermal conditions, and DOC dynamics 

simulation. This model is primarily based on Forest-DNDC (Li et al., 2000), a process-based 

biogeochemical model that simulates C and N dynamics and trace gas emissions in upland 

forest ecosystems.  

  The forest growth submodel (Li et al., 2000) was adopted from the PnET model (Aber and 

Federer, 1992), a forest physiology model developed to predict forest photosynthesis, 

respiration, organic C production and allocation, and litter production. This submodel is 
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driven by solar radiation, temperature, water and N availability, and transfers litter production, 

water and N demands, and root respiration data to the soil climate submodel or the 

decomposition submodel.  

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

  Soil C is divided into three organic matter pools (Li et al., 2000): residues (primary plant 

residues), microbial biomass, and humads. Each pool has both a labile and resistant 

component (Fig. 1). Soil organic matter (SOM) content is related to litter quantity and quality. 

The forest growth submodel predicts litter production and the litter C/N ratio. After litterfall, 

the decomposition submodel allocates fresh litter to the very labile, labile, and resistant litter 

pools based on the litter C/N ratio; then quantifies the decomposition of organic matter 

resulting in DOC substrate concentrations, ammonium (NH4
+), nitrate (NO3

-), and CO2, based 

on decay rates (k-values) that are dependent on organic matter quality and soil environmental 

conditions (e.g., soil temperature, soil moisture, and clay content in soil).  

  The soil climate submodel converts daily climate data into soil temperature and moisture 

profiles and is used to calculate soil oxygen availability within the forest soil profile. The 

hydrological submodel (Li et al., 2000) simulates soil water flux. The soil profile is divided 

into layers exhibiting different characteristics (e.g., organic soils and mineral soils). This 

submodel takes into account water input (e.g., precipitation, surface inflow, snow and ice 

melt), output (evaporation and transpiration), runoff, and water transfer within the 

unsaturated zone (infiltration, gravity drainage, and matrix redistribution). 

  Forest-DNDC has previously been used to successfully predict trace gas emissions in 

regional studies (Kesik et al., 2005; Kiese et al., 2005) and effects of forest management 
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practices on soil environmental factors (Sun et al., 2006; Dai et al., 2012). Additionally, the 

model is currently parameterized for 12 forest ecosystem tree species/genera: pine, spruce, 

hemlock, fir, hardwoods, oak, birch, beech, slash pine, larch, cypress, and evergreen oak (Li 

et al., 2000). It is particularly useful when investigating DOC dynamics for different forest 

types at a landscape level.  
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  Although Forest-DNDC was developed to competently administer the production of DOC 

by microorganisms associated with litter C, microbial biomass, and humads decomposition 

(Li et al., 2000), the model does not include throughfall DOC production. Because mean 

annual concentrations of DOC in throughfall are between 3 and 35 mg l-1 in temperate forests, 

and the fluxes of DOC range from 40 to 160 kg DOC ha-1 y-1 (Michalzik et al., 2001), it is an 

important source that derives as rainfall passes through forest canopies. Moreover, 

Forest-DNDC also does not adequately estimate DOC consumption and does not include the 

capacity to simulate sorption/desorption, two key processes that determine DOC 

decomposition and stabilization in soils (Neff and Asner, 2001). As a result, Forest-DNDC 

overestimates DOC concentrations in different soil layers (Fig. 2) and makes it impossible to 

reliably simulate DOC leaching from soils. To overcome these shortcomings, the DOC 

dynamics submodel incorporates a more precise algorithm describing contributions of 

throughfall, DOC consumption, and DOC sorption/desorption was integrated into 

Forest-DNDC. The new model is named as TRIPLEX-DOC, which is more suitable in 

predicting forest soil DOC metabolic transformations, sorption/desorption, and leaching in 

changing environmental conditions. 
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  Soil C pools and decomposition processes, forest growth, and hydrological dynamics have 

been well documented and are described in detail in the DNDC (Li et al., 1992), PnET (Aber 

and Federer, 1992), and Forest-DNDC models (Li et al., 2000). However, the scope of this 

study was only to describe DOC processes and the newly redesigned TRIPLEX-DOC, 

including DOC production and consumption as well as sorption/desorption.  
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2.1 DOC production and consumption submodel 

  The biological production and consumption of DOC play an important role in the 

regulation of soil DOC flux. DOC production via throughfall was calculated as follows: 

[Interception iDOC R DOC                                         (1) 

where DOCInterception is DOC production via throughfall; DOC is the concentration in 

throughfall; and Ri is interception, a highly simplified function based on the Leaf Area Index 

(LAI) by Rutter et al. (1971). The other production processes of DOC by microorganisms 

associated with litter C, root exudates and humified organic matter were adopted from 

Forest-DNDC (Li et al., 2000). 

  The major factors affecting DOC biodegradation and the size of these pools included its 

molecular size, chemical composition (e.g. quantities of carbohydrates, lignin, etc.), polarity 

and acidity, as well as the chemical characteristics of the solution itself, such as pH, nutrient 

content, oxygen and metal concentrations (Marschner and Kalbitz, 2003). Because the 

estimates of decomposition rates are difficult to model by a simple approach considering all 

the above-mentioned factors, numerous studies have focused on DOC fractions that 
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decompose over a range of time spans (Dahm, 1981; Zsolnay and Steindl, 1991; Qualls and 

Haines, 1992; Jandl and Sollins, 1997; Yano et al., 1998; Kalbitz et al. 2003). Two kinetically 

distinct pools of biodegradable DOC have been recognized as fast and slow, and a double 

exponential equation for two distinct DOC pools with different mineralization rate constants 

fitted well to the measured data (Qualls and Haines 1992; Kalbitz et al. 2003; Kiikkila et al., 

2006; McDowell et al., 2006). 
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1(%) (100 ) 10 10k t k t
remainDOC b b                                 (2) 

where t is time (units of day); 100-b and b are the initial percentages of rapidly and slowly 

decaying components, respectively; and k1 and k2 are the rate constants of the two 

components determined from a range of litters and soils in Canadian forests (Turgeon, 2008). 

2.2 DOC sorption/desorption submodel 

  Sorption and desorption are two key processes related to soil DOC stabilization and 

production. Because DOC continuously moves in and out of solutions in soil, the Initial Mass 

(IM) isotherm best represents DOC sorption reactions (Nodvin et al., 1986; Kaiser et al., 

1996). This is described by the following linear isotherm: 

iRE mX b                                                     (3) 

where RE is the amount of DOC released into or removed from a solution; m is the 

dimensionless regression parameter; Xi is the initial concentration of DOC (mg g soil-1); and 

b is the intercept (mg DOC released per gram of soil when Xi = 0). Functionally, m and b can 

be viewed as measures of the tendency of soil to adsorb and release DOC. This linear 

sorption isotherm model is the most widely used by researchers and successfully describes 
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the dissolved organic matter (DOM) sorption phenomena in soil horizons with low sorption 

capacity or cases that occur within a narrow concentration range (Vandenbruwane et al., 

2007).  
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  For DOC, the affinity of soils is closely linked to a number of soil properties. Generally, 

there are positive correlations between m and soil clay content, dithionite extractable iron, 

and oxalate extractable aluminum (Moore et al., 1992; Nelson et al., 1993; Kaiser et al., 1996; 

Kaiser and Zech, 1998; Kothawala et al., 2009). Pedotransfer functions (PTF) used in 

estimating the two parameters (m and b) were developed by Moore et al. (1992): 

0.451 0.02log( ) 0.032 0.064log( )cbdo om Fe Al   x OC223                   (4) 

0.145 0.103log( ) 0.055 0.045log( )cbdo oxb OC Al    Fe224 
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                  (5) 

where OC, Alox, and Fecbd denote the contents (in mass %) of organic C, oxalate extractable 

aluminum, and dithionite-citrate-bicarbonate extractable iron; soil properties of Alox and Fecbd. 

were established from Canadian soils (Kothawala et al., 2009). Parameters m and b are given 

as a fraction and in units of g kg-1, respectively.  

  Hydrologic conditions influence the leaching and apparent reactivity of DOC. Within soils, 

factors such as hydraulic conductivity and bypass flow capacity affect the concentration and 

flux of inorganic elements in a solution (Prendergast, 1995) and it is likely that DOC behaves 

in a similar manner (Radulivich et al., 1992). Weigand and Totshe (1998) have provided 

strong evidence that water flow rates through soil layers affect the fate of DOC. A recent 

analysis of stream discharge and DOM measurements from 30 forested watersheds in the 
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eastern United States revealed the importance of hydrologic events in regulating the transport 

of DOC to downstream ecosystems (Raymond and Saiers, 2010).  
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  Sorption affinity m is reduced by a modifier (Hm) that scales with the rate of movement of 

a solution through soil: 

om m H                                                   (6) 

This parameterization denotes a kinetic aspect of sorption reaction and a maximum flow rate 

induced variation in m of 20% for soils with a 100% clay content: 

%
0.2

100m o
s

v Cla
H m

v
         
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b250 

                                 (7) 

where v is the actual pore water velocity, and vs is the pore water velocity in saturated 

conditions (a soil-specific parameter). These parameters were established from Forest-DNDC 

(Li et al., 2000). The equation scales with clay content because the rate of sorption does not 

appear to be affected by hydrologic flux rates in sandy soils (Weigand and Totsche, 1998). 

  In contrast to sorption flux, desorption flux appears to be driven by concentration gradients 

that increase with solution flow (Weigand and Tosche, 1998). Thus, b is increased and 

calculated as follows: 

ob b H                                                    (8) 
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v Cla
H b

v
         
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y
251 
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                                   (9) 

As it is with the down-regulating Hm modifier, Hb scales with flow velocity and clay content; 

however, in contrast to how flow affects m, b is incremented by Hb, establishing a 

flow-dependent desorption coefficient.  
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The above DOC submodel was incorporated into Forest-DNDC to simulate DOC flux in 

temperate forest soils. The program of DOC submodel was developed using the C++ language 

as used in the Forest-DNDC. The Forest-DNDC model is available at 

http//www.dndc.sr.unh.edu, and its program code is not changed in this study. For 

simulations, the soil profile (1.0 m) was divided into horizontal layers with a typical thickness 

of 4 cm. Each layer was assumed to have uniform properties (e.g., temperature, moisture, 

substrate and microbe concentrations, etc.), and all decomposition calculations were carried 

out layer by layer. The model was run in a daily time step. 
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3. Model input and validation data 263 

  TRIPLEX-DOC inputs and file format are same as Forest-DNDC model, including daily 

climate data (maximum and minimum temperature, and precipitation), soil properties (soil 

type, soil texture, and pH), and forest characteristics and management (forest type, stand age, 

and percentage of trees removed or harvested).  

  DOC data used to test and validate our model were measured at the Turkey Point Flux 

Station and have been reported in Peichl et al. (2007). These data provided an opportunity to 

quantify the role of DOC in upland forest ecosystems and through comparisons between sites 

to identify critical controls as well as to test model performance. Turkey Point Flux Station is 

located on the northern shore of Lake Erie in southern Ontario, Canada (Arain and 

Restrepo-Coupe, 2005; Peichl et al., 2010). It consists of four eastern white pine (Pinus 

strobus L.) forests that were planted in 2002 (2 year-old), 1989 (15 year-old), 1974 (30 

year-old), and 1939 (65 year-old), respectively. All four stands are located within a 20 km 
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radius of each other. The average altitude of the sites is 220 m, the 30 year mean annual 

temperature is 7.8°C and annual precipitation is 1010 mm, of which 438 mm falls from May 

to September (Environment Canada norms from 1971 to 2000 taken at Delhi, Ontario). Mean 

annual snowfall is 133 cm, the mean annual frost-free period is 160 days and the mean 

growing season length is approximately 212 days (Presant and Acton, 1984). Turkey Point 

sites are situated on lacustrine sandy plains with Brunisolic Luvisol and Gleyed Brunisolic 

Luvisol sandy soils (about 98% sand, 1% silt, 1% clay) which are well drained and have 

low-to-moderate water holding capacity. Meteorological and soil temperature and soil 

moisture (at several depths at two locations at each site) data were collected at all four 

age-sequence sites using automatic weather stations. Further site and instrumentation details 

are given in Table 1 and Peichl and Arain (2006) and Peichl et al. (2010).   
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  DOC data used in our study were collected at monthly intervals from the end of May to the 

end of November 2004 and at biweekly intervals from early April to November 2005 and 

from April to mid-May 2006. Throughfall DOC was collected in plastic buckets equipped 

with a 10 cm radius funnel with necks fitted with glass wool. Leachates from beneath the 

forest floor and the organic-rich Ah-horizon were sampled using zero-tension lysimeters. 

Porous cup suction lysimeters at 25, 50, and 100 cm depth were used to sample mineral soils.  

A detailed description of DOC measurements is given in Peichl et al. (2007). 

  To mimic forest harvesting, a model simulation was performed for a 80 year-old stand 

where 50% of the trees were excluded, while biomass was left on the forest floor.  

4. Model validation 
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4.1 Carbon density at different forest ages  297 
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  The model was run along a series of different forest ages, applying default forest parameter 

settings of pine (Li et al., 2000) for temperate forest growth. Fig. 3 shows simulation results 

for 2, 15, 30, and 65 year-old white pine stands compared to observed C density in foliage, 

wood, forest floor, and soil. Values approximate to 1:1 indicating that the forest growth 

submodel performed well and therefore has the potential to predict temperate pine forest 

growth for different stand ages. 

4.2 DOC concentrations and leaching in different soil layers 

  Temporal variation in soil water DOC concentrations and fluxes were simulated and the 

model was able to capture reasonably well the temporal variations (maximum in summer and 

minimum in winter) in DOC concentrations in the forest floor or litter layer compared to 

observations at the 65 and 30 year-old forests (Fig. 4). However, model simulations yielded 

less temporal variation in DOC concentrations than observed in summer for a 15 year-old 

forest stand. Model simulations showed good agreement with field observations of DOC in 

the Ah layer with respect to seasonality and magnitude for the 65 and 15 year-old forest 

stands but yielded lower DOC concentrations in summer than observed in the 30 year-old 

forest stand (Fig. 4).  

  Model simulations showed that DOC concentrations throughout a one year period clearly 

decreased from the litter layer, to the A horizon and the B mineral horizon, reasonably 
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consistent with observations for both the 65 and 15 year-old forest stands which data had 

been previously measured (Fig. 5).  
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  Simulated DOC leaching from forests of 2, 15, 30, and 65 year-old stands (Fig. 6) showed 

a deceasing trend with increasing stand age, in good agreement with field observations 

throughout the age-sequence investigation. Overall performance indicated that the model was 

able to capture the primary mechanisms responsible for the variability and dynamics in 

observed DOC concentrations and leaching in these white pine forest soils. 

4.3 Sensitivity analysis 

A variety of equations have been used within TRIPLEX-DOC to numerically describe 

processes involved in C cycle and DOC leaching in forest ecosystems and to quantify their 

sensitivity to environmental factors. A sensitivity analysis examined the impact of changes in 

environmental conditions (daily maximum and minimum temperature, and precipitation) on 

eight model predictions (net primary productivity (NPP), total biomass, floor carbon, soil 

carbon, annual mean DOC concentration in floor layer, annual mean DOC concentration in 

Ah layer, annual mean DOC concentration in mineral 50cm, and DOC leaching), that are 

considered to be the most important variables for overall forest C dynamics and DOC 

processes in soil at different age forests (Table 2). It provides an opportunity to test the basic 

behavior of the new model. The sensitivity was tested for model drivers by varying one factor 

and keeping all others constant, applying a 1℃ increase/decrease in daily maximum and 

minimum temperature, and a 10% increase/decrease in precipitation to baseline scenarios.  
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As expected, NPP and total biomass for all age forests responded positively to increases in 

both daily minimum temperature and precipitation (Table 2). A 1℃ increase in minimum 

temperature resulted in the increases of 1.9 to 7.5% and 2.8 to 9.2% in NPP and total biomass, 

respectively, with more response for the young forests. The responses of NPP and total 

biomass to a 10% increase in precipitation were less pronounced (only 0.1 to 3.1% increase). 

On the other hand, the NPP and total biomass responded negatively to increases in the 

maximum temperature. The model predictions of positive soil carbon responses with 

decreasing temperature and precipitation were also observed (Table 2).  
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The annual mean DOC concentrations in the forest floor layer, Ah layer, and in mineral 

soil responded negatively to changes in the minimum temperature and precipitation. However, 

this relationship was reversed to changes in the maximum temperature (except the 2 year-old 

forest). The DOC leaching responded positively to the increase of precipitation for all four 

age forests. The response of DOC leaching to precipitation change (-22.8 to 35.7%) was more 

significant than the response to temperature (-4.5 to 4.8%). 

5. Discussion 

5.1 Comparison to previous models  

  The aim of this study was to introduce TRIPLEX-DOC, a newly redesigned process-based 

model developed to investigate soil DOC processes. It incorporates many of the best features 

of existing C processing models, including DOC production and decomposition, 

sorption/desorption into soil solids, and transport by water percolation. It extends 
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Forest-DNDC in predicting C cycles by including detailed model representations of soil DOC 

dynamics and leaching. 
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  The key innovations compared to previous DOC models (Neff and Asner, 2001; Michalzik 

et al., 2003; Lumsdon et al., 2005) are that TRIPLEX-DOC is the first DOC cycling model to 

explicitly include land cover type effects for different forest stand ages, soil C 

biogeochemistry, and hydrological flow on DOC dynamics. TRIPLEX-DOC was validated 

using observed data, showing that the model can successfully simulate soil DOC 

concentrations and leaching for different aged forest stands.  

  The TRIPLEX-DOC modeled DOC production includes fresh litter, root exudates, and 

humified organic matter, all of which contribute substantial amounts of belowground DOC 

(Li et al., 1992; Guggenberger, 1994) whereas DOC was produced only from litter in the 

DocMod model (Currie and Aber, 1997) and only from humified organic matter in the 

DyDoc model (Michalzik et al., 2003). TRIPLEX-DOC shares similar features to the DOC 

model (Neff and Asner, 2001) in that both models generate DOC from both litter and soil 

organic matter. However, estimates from litter in the DOC model (Neff and Asner, 2001) are 

based on statistical relationships between DOC production and the ratio of lignin to N in 

incoming litter, whereas estimates from TRIPLEX-DOC are based on Forest-DNDC (Li et al., 

2000), a process-based model. In this case, fresh litter is partitioned into very labile, labile, 

and resistant litter pools based on the input litter C/N ratio, after which each litter pool 

produces DOC based on its specific decomposition rate, temperature, and soil moisture. 
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  TRIPLEX-DOC adopted a two-fold DOC pool approach to DOC decomposition, with 

labile and recalcitrant fractions and based on the two-component exponential decay model 

(Qualls and Haines, 1992; Kalbitz et al. 2003; Kiikkila et al., 2006; McDowell et al., 2006). 

In contrast, the DyDoc model (Michalzik et al., 2003) is composed of three humic fractions 

corresponding approximately to hydrophilic (Hum-1), hydrophobic acids (Hum-2), and 

humic acid and aged humin (Hum-3) for which metabolic transformations are described with 

first-order decay. The DOC model (Neff and Asner, 2001) only comprises a DOC pool, 

recycling into soil microbial biomass. Another difference between the models is that DyDOC 

tracks 14C through a plant-soil-water system, thereby providing additional timescale 

information but TRIPLEX-DOC confines itself to an overall daily DOC leaching flux.  
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5.2 Environmental controls on DOC production and transport 

  Knowledge of factors and processes that regulate DOC production and transport in forest 

soils is important for the prediction of soil C cycles under a varying climate. Production of 

DOC in the forest litter layer is thought to be primarily controlled by biological processes 

(e.g., decomposition of litter, humus, and root exudation), suggesting a high sensitivity to 

changes in soil temperature and moisture (Kalbitz et al., 2000). Simulations carried out for 

this study showed a seasonal pattern, the highest DOC concentration occurring in summer in 

the litter layer and in the Ah layers (Fig. 4). These predications are consistent with results 

from field observations (Michalzik and Matzner, 1999; Solinger et al., 2001; Kaiser et al., 

2002) and laboratory studies (Clark and Gilmour, 1983; Christ and David, 1996; Gödde et al., 

1996; Moore et al., 2008), which documented a generally increasing DOC production with 
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increasing soil temperature and moisture. DOC concentrations are higher in the growing 

season than in non-growing seasons mainly because of the greater microbial activity in 

response to higher temperatures and moisture of the forest floor (Kalbitz et al., 2000; Yano et 

al., 2000; Kaiser et al., 2001). 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

  Our results revealed a strong relationship between water flux and DOC flux in all soil 

layers, exhibiting linear relationships when summed to weekly fluxes (Fig. 7). These results 

are to be expected since DOC and water move in unison, but they imply that hydrologic flux 

rather than production mechanisms are the limiting factors of DOC flux. Results were similar 

to the conclusions based on DOC model simulations (Neff and Asner, 2001) and confirmed 

by a plot scale experiment carried out in the field (Tipping et al., 1999), reporting an increase 

in DOC flux with increasing amounts of water passing through the soil.  

5.3 Impact of land use on DOC leachate 

  Understanding the effects of land use change on DOC concentrations and export is 

imperative when attempting to predict large-scale C dynamics and changes in landscape C 

budgets. Large areas have undergone land use change through forest regeneration and more 

recently through afforestation on marginal agricultural land, affecting ecosystem C dynamics 

(Quideau and Bockheim, 1997; Khomutova et al., 2000; Mattson et al., 2005). 

TRIPLEX-DOC successfully simulated increases in DOC concentrations in solutions 

obtained from the litter floor and Ah layer with the increasing age of forest stands (Fig. 4) 

accompanied with an increasing accumulation of tree and forest floor biomass. Despite 

higher DOC concentrations found in soil solutions of older stands, results suggest that soil 
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DOC leaching may be decreased by up to 4-fold for the 65 year-old stand (Fig. 6) compared 

to a recently established forest stand (2 year-old). This decrease in DOC leaching was mainly 

attributable to a decline in water loss due to increased water uptake by forest 

evapotranspiration, indicating the importance of hydrological controls on DOC processes. 
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  TRIPLEX-DOC predicted a significant increase (approximately 4-fold) in DOC leaching 

from soil following removal of 50% trees compared pre-removal conditions (Fig. 8). This 

result is in general agreement with results from a number of studies that measured increased 

DOC export or concentrations (by 2 to 5 fold) in watershed soil water shortly after logging 

(Plamondon et al., 1982; Hinton et al., 1997; Startsev et al., 1998). This increase in DOC 

leaching may be attributable to the quantity of biomass (leaves, stem, and roots) left on the 

ground and soil, which is considered to be a primary source of increased DOC concentration 

and flux (Qualls et al., 2000; Piirainen et al., 2002). On the other hand, an increase in 

microbial activity could also be responsible for increased forest DOC concentrations and flux 

after forest harvesting. This is because temperature and moisture, critical factors for microbial 

activity, generally increases after harvesting due to more open canopy and reduction in 

evapotranspiration from the root zone (Londo et al., 1999) and may result in an increased 

production of DOC (Kaiser et al., 2001; Kalbitz et al., 2000; Neff and Asner, 2001). Water 

flux also contributes to the release of soil DOC (Kalbitz et al., 2000; Judd and Kling, 2002). 

It is important to note that forest canopy interception of precipitation and evapotranspiration 

would decrease after harvesting, increasing water flux to soils and thus resulting in an 

increase in soil DOC leaching. 
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6. Conclusion and future improvements 439 
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  TRIPLEX-DOC is a useful tool when quantifying DOC concentrations and leaching in 

temperate forest soils as well as in predicting how changes in land use may impact DOC. It is 

compatible with most ecosystem models related to soil C dynamics and forest growth, and 

provides an effective way to integrate forest management effects and DOC leaching in forest 

soils at an ecosystem level. Validation and sensitivity tests demonstrated that TRIPLEX-DOC 

is capable of simulating DOC processes for forest stands of different ages to a reasonable 

accuracy. The model provides an insight into the mechanisms that control soil DOC 

concentrations and export, and may be useful in scaling up DOC leaching from landscape to 

regional scales. Furthermore, this process-based model can be used to project DOC 

concentrations and leaching under future climate scenarios. 

DOC simulation in this study includes the DOC production from throughfall. Although the 

interception simulation (Rutter, 1971) represents the physically-based process by a running 

water balance of rainfall input, storage and output in the form of drainage and evaporation, 

the interception loss depends strongly on the timing and intensity of rainfall, the vegetation 

structure and the meteorological conditions controlling evaporation during and after rainfall 

(Rutter et al., 1975; Dingman, 2002; Brutsaert, 2005). As the Rutter model (1971) used in this 

study was only treated as a simplified process based on a single-layer vertical vegetation 

structure and a constant storage capacity, further improvements need to involve more detailed 

interception processes in the future. 
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  TRIPLEX-DOC recognizes the role of DOC consumption and sorption/desorption as two 

key mechanisms that regulate DOC concentrations and export rates. Although our 

simulations do not provide a more detailed validation of the DOC submodel for different 

forest types, results indicate that DOC consumption and sorption/desorption-based soil 

submodels can reasonably capture general patterns in DOC concentration and flux rates 

related to soil depth, at least for temperate pine forests that we studied and where observed 

DOC flux data were available. Results also underscore the need for more detailed field 

experiment studies related to different types of forest ecosystems in major climatic regions  

and DOC sorption/desorption results from TRIPLEX-DOC are limited due to its use of an 

equilibrium distribution constant rather than using a time-dependent dynamical process 

(Qualls, 2000). This last point reflects the fact that TRIPLEX-DOC is in its early stage of 

model development as it pertains to DOC sorption/desorption and improvements could be 

made by incorporating more dynamic DOC sorption/desorption processes in more realistic 

ways. 
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  With the future coupling of TRIPLEX-DOC and Geographic Information Systems (GIS) 

which would contribute a detailed database of regional soil distribution, climate 

characteristics, and land use patterns, it is anticipated the new model could be a useful tool in 

improving not only estimations of net C flux and greenhouse gas (GHG) emissions from 

forest soils on a regional scale, but also DOC export from soils. As the DOC from terrestrial 

ecosystem is critical to C budgets in the aquatic ecosystems, this estimate of DOC export will 

improve our understanding of the connectivity between terrestrial and aquatic C cycles, 

reducing the uncertainty in C fluxes of entire lake-watershed systems. TRIPLEX-DOC would 
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take advantage of the TRIPLEX-GHG simulator (Peng et al., 2013) as well as important C 

loss pathways entering into aquatic ecosystems (TRIPLEX-Aquatic model) as described in an 

accompanying paper by Wu et al. (2013). Coupling the two efforts would be a strong 

contribution to understanding the processing and partitioning of organic C across both 

terrestrial and aquatic C cycles, resulting in a full regional integration between terrestrial and 

aquatic ecosystems. 
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Figure 1: Modular structure of TRIPLEX-DOC. The model is composed of four submodels 

that predict forest growth, soil hydrologic and thermal conditions, C decomposition, 

and DOC dynamics. The simulations of forest growth, soil carbon, hydrological 

and thermal conditions were adopted from the Forest-DNDC model, the DOC 

dynamics simulation is the newly redesigned submodel.  

Figure 2: Comparison of annual mean DOC concentrations in different soil layers between 

Forest-DNDC simulations (Li et al., 2000) and field measurements in a 15 year-old 

temperate pine forest in southern Ontario 

Figure 3: Observed versus predicted C densities in foliage (green), wood (blue), forest floor 

(dark yellow), soil (orange), and the summed total (black) in an age-sequence of 

temperate pine forests in southern Ontario.  

Figure 4: Time series of measured DOC concentrations versus simulated daily values in litter 

layer and Ah soils layer in an age-sequence of temperate pine forests in southern 

Ontario.  

Figure 5: Measured versus simulated annual mean DOC concentrations in soils in 65 and 15 

year-old temperate pine forests in southern Ontario. Error bars denote standard 

deviations. 

Figure 6: Comparison between measurements and simulations of annual DOC leaching in an 

age-sequence of temperate pine forests in southern Ontario. Error bars denote 

standard deviations. 
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Figure 7: Relationship between weekly soil DOC flux and water flux in litter layer and 

mineral soil. 

Figure 8: Sensitivity analysis on the effects of land use on annual DOC leaching before and 

after 50% forest harvesting.  



Table 1 Soil and stand characteristics of an age-sequence of temperate pine forests 
in southern Ontario.  

798 

799 

Characteristics  65 year old 30 year old 15 year old 2 year old 

Location  42.7098N, 

80.3574W 

42.7068N, 

80.3483W 

42.7742N, 

80.4588W 

42.6609N, 

80.5595W 

Dominant tree 

species 

White pine (Pinus 

strobes) 

White pine (Pinus 

strobes) 

White pine (Pinus 

strobes) 

White pine 

(Pinus strobes) 

Major understory 

vegetation species 

Quercus vultina, 

Abies 

balsamifera, 

Prunus serotina 

Quercus vultina Quercus vultina none 

Max. LAI (m2 m-2)  8.0 5.9 12.8 1.0 

Mean tree height 

(m) 

22 12 9 1 

Mean tree diameter 

at DBH 

(cm) 

35 16 16 2.5 (tree base) 

Stem density (trees 

ha-1)  

429 1492 1242 1683 

Aboveground tree 

biomass 

 (g C m-2) 

8416 4488 3236 22 

Forest floor (g C 

m-2)  

1211 545 745 83 

Forest floor 

thickness (cm) 

2.5 2.0 3.0 0.5 

Tree roots (>2 mm) 1920 923 502 5 

Litterfall 

throughout 

2004–2005 

(g C m-2 year-1) 

340–400 220–290 440–520 no data 

Soil type  Brunisolic 

Luvisol 

Brunisolic 

Luvisol 

Gleyed Brunisolic 

Luvisol 

Brunisolic 

Luvisol 

Soil texture  Fine sandy Fine sandy Fine sandy loam Fine sandy 

Soil pH (upper 20 

cm)  

5.5 5.5 6.2 7.4 

Soil C (g C m-2) 3700 3000 3400 3700 

800 

801 

802 

803 

804 

805 

806 

Data from Peichl and Arain (2006) and Peichl et al. (2007). 
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Table 2 Results of sensitivity of key variables to changes in climatic variables for 
different age temperate pine stands used in this study 

807 

808 

809  

Minimum 

Temperature 

Maximum 

Temperature 

Precipitation Pine stands 

+1℃ -1℃ +1℃ -1℃ +10% -10%

2 yr  

NPP +7.5 -4.1 +0.5 +0.7 +0.1 -0.2

Total biomass +9.2 -5.3 0.0 +1.1 +0.1 -0.2

Floor carbon  -2.1 +1.4 -2.2 +1.5 -0.2 +0.3

Soil Carbon -2.3 +2.3 -1.3 +1.1 -1.9 +2.3

DOC concentration in floor layer -3.2 +2.9 -3.1 +2.8 -1.4 +1.7

DOC concentration in Ah layer -3.7 +4.4 -1.6 +1.8 -4.6 +5.1

DOC concentration in mineral 50cm -3.8 +9.1 +0.2 +4.8 -1.0 +4.4

DOC leaching -2.8 +4.8 -1.4 +3.6 +15.7 -9.7

15 yr  

NPP +2.4 -2.0 -2.2 +2.0 +2.0 -2.1

Total biomass +3.3 -2.8 -2.9 +2.4 +2.4 -2.6

Floor carbon  +0.2 +0.3  0.0 +0.6 +0.9 -1.0

Soil Carbon -3.1 +3.1 -1.6 +1.3 -2.7 +3.5

DOC concentration in floor layer -1.4 +1.3 -0.5 +0.5 -2.1 +3.0

DOC concentration in Ah layer -1.7 +1.8 +0.3 -0.4 -3.8 +4.6

DOC concentration in mineral 50cm -5.2 +8.3 +2.7 -0.1 -5.5 +8.7

DOC leaching -0.1 +3.2 -4.3 +2.8 +19.6 -20.2

30 yr  

NPP +2.3 -1.7 -2.9 +2.7 +2.3 -2.4

Total biomass +3.0 -2.5 -3.5 +3.0 +2.7 -2.6

Floor carbon  +0.6  0.0 +0.4 +0.2 +1.0 -1.2

Soil Carbon -3.0 +3.2 -0.8 +0.7 -3.0 +3.8

DOC concentration in floor layer -0.1 +0.6 +1.4 -1.0 -2.8 +3.1

DOC concentration in Ah layer -1.7 +1.7 +1.1 -1.3 -4.6 +5.5

DOC concentration in mineral 50cm -3.8 +5.9 +3.9 -2.2 -6.6 +8.1

DOC leaching -0.9 -0.7 -4.5 -0.4 +35.7 -9.0

65 yr  

NPP +1.9 -1.3 -4.9 +4.5 +2.9 -3.4

Total biomass +2.8 -2.3 -5.1 +4.4 +3.1 -3.3

Floor carbon  +0.6  0.0 +0.5 +0.2 +0.9 -1.0

Soil Carbon -2.1 +2.6  0.0 +0.4 -2.1 +2.8

DOC concentration in floor layer -0.3 +0.5 +1.6 -1.4 -3.0 +3.9

DOC concentration in Ah layer -1.0 +1.3 +2.8 -2.4 -4.6 +5.7

DOC concentration in mineral 50cm -3.1 +4.8 +5.0 -2.9 -6.1 +8.8

DOC leaching -0.3 -4.9 -3.6 -4.4 +26.1 -22.8

810 

811 

Values given represent percent of change compared to the baseline scenario. 
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Figure 1: Modular structure of TRIPLEX-DOC. The model is composed of four 

submodels that predict forest growth, soil hydrologic and thermal conditions, C 

decomposition, and DOC dynamics. The simulations of forest growth, soil carbon, 

hydrological and thermal conditions were adopted from the Forest-DNDC model, the 

DOC dynamics simulation is the newly redesigned submodel. 
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Figure 2: Comparison of annual mean DOC concentrations in different soil layers 

between Forest-DNDC simulations (Li et al., 2000) and field measurements in a 15 

year-old temperate pine forest in southern Ontario. 
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Figure 3: Observed versus predicted C densities in foliage (green), wood (blue), 

forest floor (dark yellow), soil (orange), and the summed total (black) in an 

age-sequence of temperate pine forests in southern Ontario. 
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Figure 4: Time series of measured daily DOC concentrations versus simulated 

values in litter layer and Ah soils layer in an age-sequence of temperate pine forests 

in southern Ontario. 

 

 

 

 

 

 45



 857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

 

Figure 5: Measured versus simulated annual mean DOC concentrations in soils in 

65 and 15 year-old temperate pine forests in southern Ontario. Error bars denote 

standard deviations. 
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Figure 6: Comparison between measured and simulated annual DOC leaching in an 

age-sequence of temperate pine forests in southern Ontario. Error bars denote 

standard deviations. 
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Figure 7: Relationship between weekly soil DOC flux and water flux in litter layer 

and mineral soil.  
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Figure 8: Sensitivity analysis on the effects of land use on annual DOC leaching 

before and after 50% forest harvesting.  

 

 


