Geosci. Model Dev. Discuss., 6, C1373-C1375, 2013
www.geosci-model-dev-discuss.net/6/C1373/2013/

© Author(s) 2013. This work is distributed under

the Creative Commons Attribute 3.0 License.

$$900y uadQ

Interactive comment on “CUDA-C implementation
of the ADER-DG method for linear hyperbolic
PDEs” by C. E. Castro et al.

Anonymous Referee #2

Received and published: 1 September 2013

This paper shows several aspects (mainly the convergence behaviour on GPU) of a
GPU implementation (using CUDA C and Fortran modules) for a previously published
high order Discontinuous Galerkin numerical 2D solver of linear hyperbolic PDEs on
unstructured meshes. Some of the main aspects of the CUDA implementation are
briefly shown but they are not suitably argued and the authors do not explain the rea-
sons behind the main design decisions.

It is noteworthy that the paper dedicates 11 pages to describe the already published nu-
merical scheme and only 4 pages to describe the CUDA implementation of the scheme
(the most important section together with the numerical experiments). Authors give a
vague and brief desription of the CUDA C implementation of the numerical scheme.
With this description, it is not possible to understand how the numerical scheme is

C1373

mapped onto the GPU and to evaluate the actual contribution of the paper.

Section 4 is dedicated to study the convergence behaviour of the GPU solver in a
Fermi GPU (Tesla C2070) in comparison with several CPU solvers. This study (with
single and double precision and testing the numerical scheme for different convergence
orders) is interesting and the data analysis which is included can be useful to scien-
tists and engineers that work in the GPU acceleration of similar high order numerical
solvers. However, without a clear description of the implementation details and a more
suitable performance analysis, this section loses meaning and relevance.

On the other side, the numerical results section does not include a suitable study and
analysis of the performance of the GPU solver. Figures 9, 11,13,14 are interesting
to show the convergence behaviour but make difficult for the reader to evaluate the
speedup with respect to the CPU solvers. Additional Figures showing the speedup
obtained (although the CPU solver is not optimized) would be useful (at least to watch
the speedup with respecto to SeisSol in Figure 14 and the speedup for order 2 in
the remaining tests). A brief description of the CPU implementations would also be
necessary to understand why the authors think that it is not optimized. Moreover, the
speedup with respect to the CPU solver (even considering non optimized versions)
does not seem very high, taking into account the power of the considered GPU plat-
form and the structure of the numerical algorithm. In order to evaluate the efficiency
of the GPU solvers (for several orders and precision), the computation of the GFLOPS
and the transfer rate in GB/s on GPU would make it possible to compare against the
theoretical peak compute in GFLOPS ((in single and double precision)) and peak trans-
fer rate in GB/s of the Tesla C2070 GPU.

It would be very important to include in Section 4, the characteristics of the host plat-
form (CPU model and DRAM size) and the particular software tools used to process
the languages employed in the implementations of the numerical scheme (compilers,
runtime systems, compilation switches etc.) because this information makes it possible
to evaluate suitably the experimental results. On the other hand, | think that Section

C1374

3.1. should be extended and could be included as part of the Appendix (for readers
that are not familiar with GPU programming).

The authors promise a more detailed description of the kernels but this description is
not included in the appendix (I think that this information is extremely important and it
should be included in Section 3). As a consequence, several important implementation
details are unclear, such as:

- Why do the same execution configuration parameters are used in both kernels
(TimelntegrateDof and FluxComputation) and how the data locality is improved? -
The mapping of the numerical scheme calculations to GPU threads is not given. The
connection between the numerical scheme and the CUDA kernels should be clearly
specified in the paper. - The shared work of the kernel threads of a block to recover
the state of the corresponding element is not described.

In my opinion, the paper includes an interesting study about the convergence behaviour
on GPU of a CUDA implementation of a relevant unstructured-mesh high order numer-
ical scheme that can be used in several applications in Geosciences. However, this
study loses meaning without a much more complete description of the implementation
and a better performance analysis that make it possible to understand the details and
quality of the mapping of the numerical scheme to the GPU platform.

Minor aspect: In Section 3.1, SIMD is considered as a programming model to program
GPUs but SIMD is actually a parallel architecture model that matches well with the ar-
chitecture of a CUDA-based GPU Streaming Multiprocessor. The programming model
followed to program CUDA-based GPUs is the Single Program Multiple Data (SPMD)
Programming style.

Interactive comment on Geosci. Model Dev. Discuss., 6, 3743, 2013.

C1375

