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Abstract

The National Air Quality Forecast Capability (NAQFC) project provides tt& with opera-
tional and experimental real-time ozone predictions using two differeisiors of the three-
dimensional Community Multi-scale Air Quality (CMAQ) Modeling System. Routindeva =
ation using near-real-time AIRNow ozone measurements through 201ledHustter perfor- =
mance of the operational ozone predictions. In this work, quality-contteliedl -assured Air
Quality System (AQS) ozone and nitrogen dioxit)>) observations are used to evaluate the
experimental predictions in 2010. It is found that both ozonelsfd are overestimated over
the contiguous US (CONUS), with annual biasest&.6ppbv and+5.1ppbv, respectively.
The annual root mean square errors (RMSES) arefdigh# for ozone and 13.4pbv for NOs.
For both species the over-predictions are most pronounced in the suffimedocations of the
AQS monitoring sites are also utilized to stratify comparisons by the degreebahization.
Comparisons for six predefined US regions show the highest annisgsbiar ozone predic-
tions in Southeast10.5ppbv) and forNOs in the Lower Middle ¢-8.1ppbv) and Pacific —
Coast (+7.1ppbv) regions. The spatial distributions of the), biases in August show distinc-
tively high values in Los Angeles, Houston, and New Orleans areaslditi@n to the standard
statistics metrics, daily maximum eight-hour ozone categorical statistics ardatattusing
the current US ambient air quality standard pffbv) and another lower threshold (p@bv).
Using the 75pbv standard, the hit rate and proportion of correct over CONUS for thieeen -~
year are 0.64 and 0.96, respectively. Summertime biases show distinctkyvpatterns for *
ozone andNO,. Diurnal comparisons show that ozone overestimation is most severe in the
morning, from 07:00 to 10:00 local time. F&¥O,, the morning predictions agree with the
AQS observations reasonably well, but night-time concentrations areposdicted by around ©
100 %.
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The US National Air Quality Forecast Capability (NAQFC) started as a jofiorehetween
the National Oceanic and Atmospheric Administration (NOAA) and the US Enmental
Protection Agency (EPA) to provide advance notice for future air pollugeents with po-
tential adverse health effects. By linking the National Centers for Enmeorial Prediction
(NCEP) Eta Model with the Community Multi-scale Air Quality (CMAQ) modeling systta,
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NAQFC began providing next-day predictions of ground-level ozareentrations ata 12km

horizontal grid resolution for the Northeast US in 2004 (Otte etal, Z\Ogﬁ;nl%t al., 20d5).
In 2005, the CMAQ coverage was expanded to include the states east Riottky Moun-
tains \(Pleim and MathuF, ZOE)E; Davidson et al., 2008; Eder et al., 2008k next NAQFC
phase, operationally deployed in 2007, expanded coverage to the umurgidJnited States
(CONUS) and replaced the hydrostatic Eta Model with the non-hydrostasosoale model
(NMM) within the the Weather Forecasting and Research framework (Edﬁrj 200b). A pre-
diction system that includes an aerosol module version 4 (AERO-4) arlib@#&ond ver-
sion CBO05 gas-phase chemical mechanism (Sarwar et al., 2008) was irtiistigd in 2006
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(fGorIine and Lee, 2009a) and it has been producing experimentakq@edictions for several

years. Since 2007, both operational and experimental prediction syb#raseen continu-
ously updated (Stajner et al., 2012).

The real-time operational NAQFC predictions, which rely on the CarbordBdachanism
version IV (CBMIV) gas-phase chemical mechanism (Gery et aI.,\l%é)accessible through
NOAA's website at http://airquality.weather.gov/. These operational opoedictions are used
by state and local environmental agencies as a basis for air quality $tsebat they issue in
terms of the Air Quality Index (AQI) to protect public health from impending paio quality.
Public also obtains operational hour-by-hour predictions directly framwkeb site. Vulnera-
ble public uses NAQFC predictions to protect their health by adjusting their detlyities or
medications.

The experimental NAQFC ozone predictions, accessible at http://airquaktghemgov/expr/,
are produced using the newer CB05 chemical mechanism. Due to higher biases in the ex-

erimental predictions than those in the operational predictions througﬁ@ﬁeﬂi\(Savlor and Steifﬁ,

2012), these experimental predictions have not yet been transitiongebtations. Our study

3
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provides a detailed evaluation of the experimental ozone predictions, pretarsor species -
nitrogen dioxide NOy), in order to understand and improve performance of the expenmental

predictions system, with a view towards its potential transition to operations.

A large amount of information created by continuous predictions is amenalsieidy of
the chemical transport model (CTM) performance. A careful evaluatiothe model pre-
dictions over CONUS may help researchers better understand, agedssprove chemical
mechanisms, coupling methods between the meteorological model and the 63 Bmasion
inventories along with the processing algorithms.

The NAQFC ozone predictions up to 2009 have been extensively evdludder et al.
) compared the daily maximum eight-hour ozone predictions for ththdkst US with
AIRNow observations (http://www.epa.gov/airnow) from 1 June to 30 Sepe@®04. They
found that the NAQFC system over-predicted ozone with a domain-asgnagan bias (MB)
of +10.2ppbv and a root mean square error (RMSE) of Ijsphbv. The NAQFC predictions
in the expanded eastern US domain during the warm season from 2008 ta20e evaluated
using AIRNow observations (Eder etal, 2009). It was found that egational NAQFC pre-
dictions steadily and gradually improved year after year as demonstratéedogases in MB
and RMSE. The four-month MBs in the eastern US-afd .4ppbv, +10.9ppbv, +10.5ppbv,
and+7.9ppbv in 2004, 2005, 2006, and 2007, respectively. CorrespondinghRMEEs are
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16.8ppbv, 16.3ppbv, 15.6ppbv, and 14.pbv. They also showed that the MB and RMSE*

for the whole CONUS domain in the summer months (June, July, and August0at &re

+4.3ppbv and 13.Gpbv, respectively. The CONUS categorical statistical metrics for the same

three-month period in 2007 were presented using both thgB4 and the 7Hpbv daily max-

imum eight-hour ozone standards. With theppbv standard, the proportion of correct (POC),

critical success index (CSI) or threat score (TS), hit rate (HITY, fafse alarm rate (FAR) are
0.924, 0.232, 0.425, and 0.663, respectively. Recently, the NAQF@eoaedictions during
the summers of 2007, 2008, and 2009 were compared with the AIRNow reeasots by
Gorline and Lee (200%) In their study, the 2007 operational ozoedigitons with the CB-
MIV chemical mechanism were evaluated, while the 2008 and 2009 prediatiere obtained
from the experimental predictions using the CB05 chemical mechanism. ©hed that the
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MB in August 2009 was aboutghbv higher than that in August 2008, and abogifhv higher
than the MB in August 2007. The unusually cool summer of 2009 was kiedas a contribut-
ing factor to the deteriorating predictions in 2009. Recehtly, Saylor and @GMZ) presented
the NAQFC predictions in 2009 from both operational and experimentalores. They showed
that the use of CBO5 in the experimental version systematically increaseddytevel ozone
over-predictions. The primary causes of the differences betweenBhMINCand CBO5 sys-
tems were identified as two sets of reactions in the CB05 mechanism that erd¢ aibsn the —
CBMIV mechanism.

Many operational air quality forecasting systems using 3D CTMs exist waatlel In Eu-
rope, atmospheric composition forecast products have been deliveded the Monitoring At-
mospheric Composition and Climate-Interim Implementation project as part oféhepgerational =
GMES Atmosphere Service (http://www.gmes- atmoshere eu, see also MldBlEasagnLet
) Similar forecasts are also available in Japan (| 2012) Ténttpri/tagm.epa.gov. tw/taq
and Canada (Talbot etal., 2008) Zhang etal. (2012) summarized st real-time air
quality forecasting evaluation results. Among all evaluation statistics forhh@zione, the
median positive MB, negative MB, and RMSE, are +4.5 ppbv, -8.1 pph,1%.8 ppbv, re- ©
spectively. For daily maximum eight-hour ozone categorical statistics, them&®DC, CSlI,
TS, and HIT, are 0.92, 0.18, 0.32, and 0.65, respectitely

The main goal of the paper is to continue the NAQFC evaluations as a reédi@rreal-time
regional air quality forecasts and future model developments. All theigueWAQFC eval-
uations have utilized near-real-time AIRNow measurements instead of qualityetied and
-assured Air Quality System (AQS) data, which is the US EPA's repositaaynbient air quality
data and is available through the agency’s Technology Transfer Neftbp://www.epa. gov/ttn/alrs
Rather than reporting in near-real-time as the AIRNow network requiresA@S only man-
dates the monitoring stations to report quarterly. In addition to ozone anidipare matter
(PMs 5 andPMy) observations available through AIRNow, a suite of other measuremeatis s
as nitrogen dioxidely 022, carbon monoxide (CO), and sulfur dioxid&({,) are also available.
As pointed out by Sillm n (19@9) the model uncertainty can be greatly eedéiobservations
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lWhen a range is presented, the midrange value is used in a@hguthe median value.
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of additional species besides ozone can be utilized in model evaluationiagmbsis. In this

study, the AQSNO, measurements along with the AQS ozone observations are used for ﬂm

NAQFC evaluationsNOs is not only an important ozone precursor, it is also one of the criticeij

air pollutants regulated through the National Ambient Air Quality Standards it 8ewith its
annual and hourly limits set as pbv and 10(pbv, respectively. In the current evaluation,
the NAQFC model predictions are the original predictions without any pastgssing.

The remainder of the paper is organized as follows. A brief descripti¢imeoNAQFC model
setup is given in Sect. 2. Section 3 presents the AQS observations, incladiomparison
between the AQS and AIRNow ozone measurements. Detailed comparisaegbéhe model
results and observations are provided in Sect. 4, followed by a summadrgiaoussion in
Sect! 5. A list of abbreviations and acronyms can be found in Appendix A.

2 Description of the NAQFC prediction system

The real-time NAQFC air quality prediction system during the year 2010 coetptiee CMAQ
modeling systerﬁ (Byun and Schere, 2006) driven by the NCEP’s Narthrisan Mesoscale
(NAM) meteorological predictions with the WRF-NMM core (JaanOSDnimr to that
described by Eder et al. (2009). A pre-processor to CMAQ, PREI,\/I[%«@pares the CMAQ
input files after taking WRF-NMM post-processor outputs (Otte et al., 005

Figure 1 shows the computational domain, which is covered by a grid with d4@nos
and 265 rows in the longitudinal and latitudinal directions, respectivelg grid has a 1Rm
horizontal grid resolution and follows the Lambert conformal conic ptajec There are 22
hybrid pressure/sigma layers extending from the surface tchlP@Dwhich combine those of
the WRF-NMM model (se\e Lee and Ngan, 2b11, for details). At laterahbaries, fixed pro-
files based on climatological averages are used at in-flow grid cells, exoeflmx-gradient is
imposed at the outflow locations. Howe\}er, Tang etal. (12009) showethih&AQFC surface
ozone predictions can be improved with the use of the MOZART global maddigiions to
better account long-range transport, especially over the US wedt @oasro-flux assumption
at the top boundary is made in the CMAQ computation. Not considering thesgitednc ozone

6

yde,

)TSSTIOSI

U(

a

2 UOTSSNOSI

yde J uorssnost



10

15

20

intrusion may cause ozone underestimations at high—latitlhdes (Browemét)aB). Note that
the real-time air quality predictions for the Alaska and Hawaii domains wereditesie desig-
nated operational in September of 2010, but they are not included in &heation presented
here. In 2010, real-time air quality predictions for CONUS were continlyopi®vided with
both the CBMIV and CB05 chemical mechanisms. In this study, only the expei@mnesrsion
based on CMAQ V4.6 with the CB05 chemical mechanism is evaluated. Eactheay are
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four different predicting cycles, initialized at 00Z, 06Z, 12Z, and 18#jch use the newest —

meteorological fields available. The cycles starting at 06Z and 12Z pequohedlictions for next
48 h. In this study, only the first 24 h of the NAQFC experimental predictioiislized at 12Z
are evaluated. Recently, Savage et al. (2013) demonstrated that titdedg#ference between
day 1 and day 2 ozone forecasts for all metrics using Met Office UnifiedéWiresults over the
period May 2010 to April 2011.

Gaseous and particulate emissions from anthropogenic and naturegsevere divided into
four sectors (area, mobile, point, and biogenic) and were processagldata provided by var-
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ious agencies. Area emissions including off-road engine emissions sed ba the US EPA

2005 National Emission Inventory version 1 (NEIO5v1) for CONUS, thevimce-level 2000
Canadian Emissions Inventory for Canada, and the 1999 Mexico Natwnasision Invento-
ries for Mexico (http://www.epa.gov/ttn/chief/eiinformation.html, also see U.S. WAJ. for

details). These inventory data were processed using Sparse Matniat@piéennel Emission
(SMOKE) version 2.6 to represent monthly, weekly, daily, and holidaymaiday variations
that are specific for each yeér (Houyoux et al., iOOO). Emissions friddfires, prescribed
burning, and residential wood burning are based on a multi-year avéregntory for the years
from 1996 to 2002. Ignoring the temporal and spatial variability of the enmssdairces could
cause large ozone adO, biases (McKeen et al., 200
). The current operational NOAA Smoke Forecasting System)(&$t8blishes the loca-
tions and extents of the fires by utilizing fire and smoke data from sevenaudageostationary
satellites brought together by the Hazard Mapping Syﬁtem (Rolph et af; Radninski et al.,

). Incorporating the SFS to provide the CMAQ model with near-real-émissions from

large wildfire and agricultural burning is being explored. The EPA Offit€ransportation and

7
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Air Quality 2005 on-road emissions inventory was used to generate mobileiensigs/er the
US Both the Electric Generating Unit (EGU) and the non-EGU point soukegs based on
the NEIO5v1 data. Oxides of nitrogetNQy) and SO, emissions from the US EGU sources
rely on 2008 Continuous Emission Monitoring data. Annual Energy Outldd&) from the
Department of Energy released in April 2010 (U.S. HIA, 3010) wasl usgoroject the EGU
emissions to 2010 and was implemented on 6 July 2010. Before that date, a piojiéation
was made based on 2009 AEO data. Biogenic emissions were calculatedicdgihausing
the Biogenic Emissions inventory System version 3.13 (Schwede et al.), 2@@6h considers
variability in temperature and solar radiation to estimsi@, and volatile organic compound =
(VOC) emissions from forests and grasslands.
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3 Observations g
3.1 AIRNow and AQS observations .

Real-time ozone anBM, 5 measurement data across the US, Canada, and parts of Mexico ﬁr
provided by the US EPA through the AIRNow Gateway (http://www.airnowgagewg). Be-
cause of their easy accessibility, AIRNow observations are widely uddtbugh the AIRNow
data are only preliminary and not fully verified, they serve the purpasefd-time AQI report-
ing and forecasting. Observational data that have been subjectedtioraaldjuality control are
available from the EPA's AQS, which is designed to meet the needs of tegylacademic, and
public health research communities. Without the requirement to disseminate de#dime,
the AQS system includes monitors from many other surface networks andatsuneel species
extend from ozone and particulate mateMs 5 andPM;,) to multiple atmospheric chemistry =
components, such &80,, CO,SO2, and many VOC species. The AQS measurement data were
downloaded from http://www.epa.gov/ttn/airs/airsags/detaildata/downloaatagsiomn. f
Figurel 2 displays the daily count of hourly observations in 2010 for bahAQS (version
5/16/12) and the AIRNow systems. For both systems, there are almost twinargsozone -
measurements available in warm seasons as in cold seasons since somesrdomitiroperate

11O
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during the winter. The number of 0zone measurements in both the AQS andRiNo¥ data
sets typically exceeds 10 000 per day. It should be noted that some AlRidasurements are
not available from the AQS system. This could be caused by delays intireptw the AQS
system or elimination of poor-quality data during the validation period. Theatataonsidered
to “overlap” if the measurements are reported from the same monitor at thetsagjesven
if measurement values differ. The daily counts of “overlapped” measemt pairs are also
plotted in Fig! 2. A snapshot of differences between “overlapped” idad&played in Fig. 3a,
which shows the paired data between AQS and AIRNow at the same sitesaniscdhn 31 May
2010. While most data agree, some differences are seen, probabty thes quality control
work carried out after AIRNow reporting.

3.2 Consistency check of ozone observations

Upon the examination of consistency between the AQS and AIRNow datpstgstial prob-
lems with reporting of the measurement time are suspected at several isotated Addi-
tional quality control is applied to remove these questionable sites. In thisgsplcourly AQS
and AIRNow ozone observations from each monitor are separated iiyofites which run
from 00:00 EDT to 23:00 EDT, or 00:00 EST to 23:00 EST following the US daylgaving
time schedule. Consecutive hourly measurements at one location overagrferch a 24-
dimensional vector. At each location and for each day, the L2-riofikt) is calculated for
the difference vector between AQS and AIRNow ozone observatiotiseatnatching hours
(At =0), as well as for the lower-dimensional difference vectors obtainedhifiirgy AQS
vector forward or backward by 1 or 2 i\¢ = +1,+2), as given in the following Eq. (1).

[(At) = ||03495 (t+ At)— O3 ENow(1)|| At=0,+1,4£2h 1)

In addition to the shifting, missing data in either AQS and AIRNow ozone obsiens re-
sults in reduced dimensions of the difference vector. To account fatiems in the dimension
(V) of difference vector() is calculated in Eq. (2).

24
N(At)

Q(At) = (At At=0,+1,+2h, forN(At)>12 (2)

9
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Note thatQ(At) is calculated only when there are no less than 12 pairs of observations tc
form the difference vector. A monitor is flagged At) < %8) foranyAt=+1,42h. This &
condition indicates a closer match between AQS and AIRNow data sets affaetimirement
time is adjusted byAt of —2, —1, 1, or 2h for this monitor on the particular day, implying -
a possible inconsistency between measurement times reported in the twaslafatetal of 74  —
sites were flagged after checking the whole year. Observations frese flamged sites over the
entire year were then removed. Figure 3b shows the comparison betv@gradd AIRNow
after removing the questionable sites. The agreement between AQS ahNbwlIgbservations
improves after eliminating the measurements from the flagged sites, with thecieogfof -
determination?? increasing from 0.995 to 0.997. Ozone measurements from the monitor site:

l TOISSNO

that are unique to AQS cannot be examined in this fashion and they arechaded in the
following evaluation either. Figure 2 shows the data counts after these twhoseén criteria
are applied. Overall, more than 80 % of the AQS ozone data are retaingxfevaluation. The
observations are from 1124 AQS o0zone monitors.

Tode

3.3 AQSNO; observations o
Without AIRNow NO- data to check against the There are no AIRNS®W, data available f
to perform the similar consistency examinination between AIRNow and AQShas i& done
for ozone in section 3.2. All AQ® O, measurements are used in the following evaluation.”
It should be noted that most of the AQ8), measurements were from chemiluminescencé
monitors equipped with molybdenum converters, which systematically overésiNty con-
centrations\(DunIea etal., 2007; Steinbacher et al., 2007). Usin M &ity Metropolitan
Area (MCMA) field campaign data during April of 2003, Dunlea et al. (2Dfported that the
chemiluminescence monitor interference resulted in an aveage conceniatm@?2 % greater
than that from co-located spectroscopic measurements. In this studyQB&A, measure-
ments were used without any correction to account for this is3i{@; hourly measurements
are also shown in Fig. 2. Unlike ozone monitoring that has a seasonaioayithe dailyNOs
measurement count from 408 sites is almost constant throughout the year

19(0)
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4 NAQFC evaluation results

When comparing model predictions with AQS observations, model-predicadeatration
counterparts are taken from the monitor-residing grid cells. With suchtdiratching, there is
no interpolation applied and it is consistent with previous NAQFC evaluatiatest(Eder et al.,
s 2006, 2009; Gorline and Lee, 2009b). However, there is a slightrdiffee from what is de-
scribed in Eder et al. (20b9), where multiple observations inside a siniglegjt are averaged
as the representative measurement for the grid cell. In this paper, easurement is com-
pared against model prediction independently when there are two or mariétonsolocated
within one grid cell. In the following evaluations, the urbanization charadiesisf each mon-
o itor site are utilized to filter observations into urban, suburban, and rategories. Among
1124 ozone sites, there are 200 urban, 455 suburban, 462 rudal, @mknown stations. The
number ofNO, sites at urban, suburban, rural, and unknown settings are 13012@8and 4,
respectively.
In addition, separate evaluations in the six predefined regions shown.ifl &ig performed
s to investigate regional variability in model performance.

=

-

4.1 Annual performance

Figure/ 4 shows the daily and domain-wide average ozoneé\dhglconcentrations from AQS
and CMAQ. Similar to the 2009 NAQFC prediction results (Saylor and éteird)zme model
significantly overestimates ozone during the summer. Until the end of Mag theery good
20 agreement between model predictions and AQS observations for oasrtee NAQFCNO,
predictions are compared with the AQS observations for the first time, it sitoat the model
overestimate®N O, for all four seasons. ThEO, overestimation is more severe in the summe
than during the other seasons. The normalized monthly m&anbiases are 74.6 %, 79.8 %,
and 76.1 % for June, July, and August, respectively. January h&mtbst normalized monthly
25 meanNO; bias of 34.6 %.
Figurel 5 shows the annual performance in different local settingsdtr bzone andNOs.
The urban and suburban sites mostly resemble what is shown in Fig. 4ralrareas NO,

11
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concentrations are more than 50 % lower than those at urban sites, désplapeth the model
and the observations. However, NAQFC still significantly overestimites at the rural sites.
For ozone, the model overestimation in rural areas during the summer is mawreunced
than that in urban and suburban areas. As rural areas are mosfl{) irsensitive chemical
regimes\(Choi etal., 20h2), the overestimat&d, in the area, especially in the forest-dominant-
Southeast region, can produce ozone much more efficiently than in the ard suburban
areas. Figure 5 also shows that the average ozone concentratiosiightly larger at rural
sites than those at urban sites. The lower ozone concentrations in udzennmaay be due to
NOy titration at night-time. This also indicates that due to its long lifetime ozone pollution has
non-local impacts. Z

l TOTISSNOSI(

The time series of daily and regionally averaged ozoned are shown in Figs. 6 and 7. -
The ozone overestimation in summer is seen in all the regions, but it is the noosiuniced in
the Southeast regioiNO- is also overestimated in all the regions during the summer, ranging
from the highest biases in the Pacific Coast and Lower Middle regions to nliniregestima-
tion in the Rocky Mountain and Northeast regions.

The detailed monthly and annual average ozone biases and RMSEs iertiffegions are  ©
listed in Tables 1 and 2. Similar results fiNIO, are listed in Tables|3 and 4. Ozone biases in°
Lower Middle and Pacific Coast are the lowest, with the annual averdgg 8.7ppbv and  ~
+4.0ppbv, respectively. The most pronounced negative biases are seenrirafeim the Up- =
per Middle and Northeast regions, with monthly average biases8dppbv and—5.6ppbv,
respectively. The largest positive monthly average bias bI.6ppbv is seen in the Southeast ©
Region in August. Table 2 also shows that the Southeast region has testlarqual RMSE
of 17.6ppbv. The highest monthly RMSE of 22gpbv is seen in the Southeast in August.
In agreement with Fig. 7, Table 3 also points to Lower Middle and Pacific tGsathe worst
regions forNO, predictions, with their annual average biase.1ppbv and+7.1ppbv, re-
spectively. When normailized by the observation mean, the relative biasesmore than =
100 % overestimation in Lower Middle from April to August, and in Pacific Geéagdune and -
July. In July, the normailized monthly meaf0, bias reaches its peak in July (167.2 %). The-
Rocky Mountain region has the smallest anmiiél, model bias of 0.4pbv (4.2 %) among all
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regions and its monthly average biases range fromppl® (-7.1 %) in January to 1.@pbv
(33.0%) in July. All other regions show consistent positive biases ttnoutgthe year. The
CONUS RMSEs for NAQFQNOs, predictions, listed in Table 4, range from 12bv in May

to 15.4ppbv in September. In September, Pacific Coast and Lower Middle have theshigh

monthlyNO,; RMSEs of 19.pbv and 19.Ippbv, respectively.
4.2 Spatial patterns

The spatial distributions of the monthly average ozone g AQS concentrations, model
biases, and RMSEs at monitoring sites in August are shown in Fig. 8. Teesinailar to the
other summer months such as July (not shown here). Higher monthly average measure-
ments are mostly located in the California, Rocky Mountain, and Mid-Atlanti@&berdering
Northeast and Southeast regions) areas. Multiple sites in Los Angalesnaisolated one in

2 JPUOTSSNOSI(]
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Denver, Colorado show very highO, observations. The spatial distribution of ozone biases

in Fig./8 shows a broad spread of high positive ozone biases in the @sttiegion. This is
consistent with Fig. 6, which identifies Southeast as the region with the masesezone over-
estimation in summer. As this region is mostly covered with forest, the abundabamgenic

VOCs during the growing season helps to transh®, overestimations into high ozone biases

under theNO-sensitive regime.

Negative ozone biases are found around Los Angeles and New &rlehare high positive
NO- biases are shown in Figl. 8. It is possible that the emissions inventorieg fidlpaccount
for the actual emissions reduction due to the long-lasting economic aftermhathrafane Ka-
trina on New Orleans, thus resulting in the overestimation in that area. Theimatiob of

2 UOTSSTIOSI(

Jod

high positiveNO, biases with negative ozone biases suggests Los Angeles and NewsOrlear

are probably under a VOC-sensitive regime, in which the incred<@gimay lead to ozone re-

w

ductions. Such model behaviorlNOy-rich urban regions is common. For instar{ce; Toné et alz
m) showed that increasidO,, emissions actually reduced ozone in central Atlanta in their’;
sensitivity studies to assess ozone impacts N, emissions. Figure!8 shows that most of =~

the higher ozone RMSEs are seen in the Southeast region and arosi#hgeles. The Los
Angeles and New Orleans areas also have the high®stRMSEs, as shown in Fig. 8.
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4.3 Daily maximum eight-hour average ozone and its categorical statistics

Eight-hour running averages are calculated for both the model and tiseh®Qrly concentra-
tions. A minimum of six hourly observations in any eight-hour time window is reglior the

calculation. Otherwise, the eight-hour ozone observation is flagged asmiss the primary
ozone standard in the US, the daily maximum eight-hour average concemisatiorrently set

as 75pbv revised from its previous 0.G8m (effectively 84ppbv due to rounding) in March

2008 \(Environmental Protection Agency, 2008). Using the standardthaeshold for daily
maximum eight-hour average ozone, there are four possible scenarios:

(a) prediction is above, but observation is below the threshold (falseglar
(b) prediction and observation are above the threshold;

(c) prediction and observation are below the threshold;

(d) prediction is below, but observation is above the threshold.

In Fig.[9 a scatter plot of one day’s observations in CONUS and collodé#&€pFFC predic-
tions is presented and four quadrants are marked according to scemadithat they correspond
to. Hit rate (HIT), critical success index (CSI) or threat score (T&3e alarm rate (FAR), eq-
uitable threat score (ETS), and proportion of correct (POC) whiclefisrred as Accuracy in

Eder et al.\(2006), are calculated for the NAQFC predictions for theeeydiar. The definitions
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are shown in Egs. (3-7), whefé,, N}, N, andN, represent the number of incidences in each’

scenario a, b, c and d, respectively, as shown in Fig. 9.

HIT =

CSl=

FAR=

Ny
Np+ Ng

Ny,

Na+Np+ Nqg

Ny
Ny+ Ny
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Np— N, (Na+Nb)X(Nb+Nd)

ETS= , where N,= 6
Na+ Ny +Ng— N, Ny+ Np+ Ne+ Ny () f
Ny, + N, S
POC= bl @
Na—|—Nb+NC—|-Nd

The HIT, CSI (or TS), FAR, and POC for the NAQFC predictions in prasgigears have been =
reported\(Eder etal., 20086, 2009). HIT measures the fraction arebd above the threshold
events which are predicted correctly. It is also referred as probabiligetection. FAR is
the fraction of predicted above the threshold events that are wrongmé&sures the fraction -
of correctly predicted above the threshold events after removing ¢hyredicted below the =
threshold incidences. ETS measures the prediction skill more critically bgtingghe correct f
predictions by chance. While “ETS 1” means a perfect prediction, positive ETS values in-—
dicate skillful predictions relative to a random forecast (Schaef@()L9ETS< 0 denotes no
skill for the forecast. POC is the fraction of predictions that match the d@bel@v threshold
with the observations. —
Using the AQS observations and NAQFC predictions for the entire yeasamdher months .
(June—August), the categorical statistics for the daily maximum of eightdware exceeding
two thresholds are listed in Tables 5 and 6. Overall, the HIT values calcdtatedmmer are
better than those calculated for the entire year, but CSl, FAR, ETS,@a@dvBlues for summer
are worse. The Rocky Mountain region is an exception in that the CSI ARdv@lues for
summer are slightly better than those calculated for the entire year. Usingrileatctbppbv
standard as the threshold, out of the total 4085 4 N4 = 2616 + 1449) observed cases ex-
ceeding this threshold in AQS measurements, 2541 N4 = 1812 4 729) cases happened
during the summer months. HIT, CSI, FAR, ETS, and POC over CONUS éogithire year are &
0.64,0.17,0.81, 0.16, and 0.96, respectively; while the same statistictatetcaver CONUS ;
for the summer are 0.71, 0.17, 0.82, 0.15, and 0.91. The summer HIT valuelsbatier than
HIT =0.43 reported by Eder et al. (2009) for the 2007 summer months with the samesdand =
However, the CSI, FAR, and POC values during the summer are worsethgitturrent 0.17, =
0.82, and 0.91 compared with 0.23, 0.66, and 0.92. The ETS values of 1% ¥6 indicate ~
some skill in the NAQFC predictions. In all regions, the ETS scores argiyshowing that
15
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the predictions are better than predictions by chance. The highest Bféssge 0.24 and 0.23 -

for the Pacific Coast and Northeast regions. In the Rocky MountaiarmreBTS= 0.06 reflects
little skill of the model, mostly caused by the high FAR values (0.93 for summer &&ifOr
the entire year). The annual POC values are greater or equal to 0.95régians, but the
summer values drops to as low as 0.87 in the Pacific Coast Region.

2 ¢ l TOTISS1NO

The categorical statistics are sensitive to the threshold used to definectetarce events, '

as shown b% Eder etal. (2d09) using both thepBbv and the 7ppbv standards. Similar

metrics calculated using a P@bv threshold for daily maximum eight-hour ozone are also_.

listed for CONUS in Tables 5 and 6. With the new threshold, the exceedamuesse to
7577(Np+ Nq = 5753+ 2824) from 4065 with the 7pbv standard for the year. The annual
POC value drops from 0.96 to 0.93 and all other metrics improve for CONi$8olld be noted
that the large model biases greatly affect the categorical statistics. By immutiege bias-
adjustment techniqué, Kang et al. (2blO) showed significant improveimehe categorical
evaluation metrics, with increased HIT and decreased FAR at almost dildosaluring their
study period in 2008.

4.4 Weekly patterns of NAQFC performance

CTM predictions are highly sensitive to the model-ready emissions inputshwahécgenerated
using a large number of month-of-year, day-of-week, and howagfiemporal profiles. Sec-
tion 4.1 already showed that the NAQFC performance for ozoneMNadgl predictions varies
significantly by month. These monthly variations in model performance areeimdkd by dif-
ferences in the meteorological conditions, specifically the temperaturgetsesm month to
month. It is difficult to separate the emissions-induced effects causedebyohnth-of-year
profile from the meteorological impacts. However, it has been well doctedehat the ozone
concentrations in urban areas peak at weekends, while nitrogen @idegOC emissions are

enerally lower at weekends than those on Weekdays (Marr and Haney; Murphy et dl.,
éﬁ' Pierce et al., 2010). Instead of focusing on the “weekendeoetiect”, here we study
the weekly patterns of NAQFC performance in order to investigate possibteraatic errors
in weekly profiles that are used in emissions processing.

16
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In this section, the NAQFC predictions during the warm months, i.e. from ttuSeptember
are grouped into days of the week. Strong weekly patterns are showr ioztine biases
for different days of the week listed in Table 7. Over CONUS and mosbnsgO3 biases
are higher on weekends than on weekdays. The RMSEs calculatecefdiffirent days of
the week do not show a clear weekly pattern. This indicates that the variabiligediction
errors is influenced by interactions among the emissions, chemistry and oletgorather
than stemming from the emissions alone. —

Similarly, the day-of-week biases for NAQRQO,, predictions are listed in Table 8. Contrary
to ozone, th&VO, biases over CONUS are lower on weekends than on weekdays. Thstlowe
biases iNNO, predictions occur on Saturdays in all regions except Northeast. Thkdag- f
weekend contrast is especially evident in Pacific Coast, where thegaveradel biases are no -
less than 9.bpbv on weekdays and no greater than bv at weekends. "

2 ¢ [ TOTSSNOSI(

d

45 Diurnal cycles

Ozone and its precursors have distinctive diurnal cycles. Examinatioorsésponding cycles
in a CTM may help identify and correct shortcomings in the model and thus iraprmdel
predictions{ van Loon et al. (2007) showed large diurnal cycle vanatnong seven different
regional air quality models. The diurnal patterns of the NAQFC predictiosdsiaare also
studied here. Unlike the weekly patterns that mainly exhibit the emissions sigmaldiurnal
patterns of model performance are greatly affected by many diurnedctegistics coming from =
the meteorological inputs. Diurnal profiles are obtained by averaging lhabdervation pairs
by their local time (LT). Note that LT here is based on the official time zon@aoh&QS site and
daylight saving regime is not considered. In order to remove the impact ofhiyovariations
in meteorological conditions, the diurnal patterns are studied separatedg¢b month.
The diurnal profiles of ozone af¥iO,, for August, stratified by the degree of urbanization are-
shown in Figl 10. Ozone is overestimated for all hours, except at 19:06rLsuburban sites =
and 18:00—20:00 for urban sites. The domain-averaged ozone predietiaural sites have -
positive biases throughout the day. Ozone model biases peak in therearling, from 07:00 =
to 10:00 LT in all three urbanization settingsO,, biases are positive for all hours at urban and

17
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suburban sites, dipping to lowest levels between 08:00 and 13:00 LT. &sathe time period,
there are slight underestimations at rural sites. W&, overestimation is most pronounced
at night, from 18:00 to 06:00 LT, by around 100 % for all urbanization sgstinfThe standard
deviations of model predictions exceed those of the observations at aihbsurs forNOs,.
Meanwhile, the ozone variations in the model and observations are cdrigara

Figures 11 and 12 show the regional diurnal profiles in August fonezmdNO,, respec-
tively. Ozone biases in the Southeast region are positive for all 24& offter regions display
large positive ozone biases from morning until noon and minimal positive thtgtiggative
biases between 18:00 and 20:00 LT, similar to the urban and suburbae dzonal profiles
in Fig./[10. Note the close agreement between predicted and observee with respect to
the average values and the variability during nighttime in the Pacific Coast acid/Rloun-
tain regions. The regional diurnal profiles ¥, in Pacific Coast, Lower Middle, Southeast,
and Upper Middle exhibit good agreement between the model and thevatises from early
morning until early afternoon, but show large biases at night-time, resegntiigmnurban and
suburbarNO,, diurnal profiles in Fig. 10. In Northeast, the diurnal profile is similar, Nai;
biases at night are much smaller. Good agreement between averageONAQJ-and AQS
observations for most hours of the day is found in the Rocky MountaiomedgioweverNO,
is still overestimated at 19:00 and 20:00 LT by more than 100 % in this region.

5 Summary and discussion

In this paper, the NAQFC experimental ozone predictions and real-time testprgdiction

of precursor specieNO, in 2010 are evaluated against quality-assured AQS observations ?531

ozone andNOs.
It is found that the CONUS- and daily-averaged predictions for botmezmdNO, are
overestimated throughout the year, with peak overestimation in the summer.s@dssnal
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pattern persists when sites are stratified by the degree of urbanizationriben, isuburban, =

and rural sites. In August, over-prediction is more pronounced fal tlhan for urban and
18



suburban sites. The highest regional ozone biases were found hedstiduring the summer. -
NO, over-prediction is pronounced in the Pacific Coast and Lower Middiensg The spatial -
distributions during the summer show the largest positi®, biases in Los Angeles and New
Orleans, where ozone levels were underestimated. This suggests t@asaf@Sitive regimes
prevailed during those months in 2010 for these two areas. S
The ozone categorical statistics using the current US ambient air qualiasth(v5ppbv) i
for daily maximum eight-hour average ozone show mixed results when corgpae 2010
experimental ozone predictions generated using CB05 mechanism witheregtiopal ozone .
predictions for earlier years that rely on CBMIV mechanism. For a lowessthold of 7gGpbv, =
HIT, CSI, FAR, and ETS evaluated over CONUS for 2010 experimemgadiptions improve, -
but POC deteriorates in comparison to the same statistics evaluated forjthewthreshold. =
The ozone an®O- biases show distinct weekly patterns in summer. While ozone biases are
larger during the weekends than they are on weekds{s, biases show the opposite patterns=
in most regions. Diurnal patterns show that ozone overestimation is me@sesavhe morning,
from 07:00 to 10:00 local time, lower overnight, and the lowest in the evendugsh around
19:00 local time. FolNOs, the morning predictions are in close agreement with the AQS
observations, but night-time concentrations are over-predicted bydrba0 %. <!
Comparisons on regional or domain-wide scales together with monthly oabevaiuations -
aim to eliminate influence of dynamical meteorological and chemical conditidmgshwary =
significantly from site to site and from day to day. The averaging avoids langertainties as- =
sociated with each individual site and time, thus exposes systematic mods| adnich could :
be reduced in the future to improve NAQFC predictions. For exanip(@; overestimation
throughout the year in almost all regions may have contributed to the oeealle estimation
for the entire year. This is especially true during the growing season indhth&ast region -
where forests are predominant. Under %@ ,-sensitive chemical regime with abundant bio- -
genic VOCs, theNO, overestimations likely caused the severe positive ozone biases from Ma;
to September. HighéXO, biases were found in the summer, and they are believed to contribute
to the larger ozone overestimations seen in the summertime in all regions. Theetdy sig-
nals shown by both ozone a™D, model biases suggest that weekly profiles resulting from

19



10

15

20

25

emissions processing may need adjustments. It should be noted that otbies, fsuch as chem-
ical mechanism, not considering long range transport at lateral baesda ozone intrusion
from stratosphere at domain top, all contribute to the current modelserror

However, drawing conclusions on the exact causes for the curresi¢lpooblems requires
further studies. There are several limitations in our current evaluatialy.st&or instance, the
AQS stations are quite sparse in some regions, especially formhiiditoring. Uncertainties in
emission rates, photochemical reaction rates, and meteorological inphtassarface temper-
ature, wind speed and direction, and cloud cover all contribute to untizgtain NAQFC ozone
andNO,, predictions. Further analyses would benefit from meteorological mewmsnts, ob-
servations of VOC species, and vertical profiles of most parameterdén tur fully explain the
evaluation results.

The type of analysis presented here has guided recent updates to @eNgystem that
produces experimental ozone predictions. Concurrently with the upttatae NCEP NAM
model and the land use and land cover data for emissions in October 2044 atifditional
updates were made with the goal of reducing ozone biases discusgedPnevious constant
lateral boundary condition profiles for most chemical species wereaeghaith monthly mean
profiles from GEOS-CHEM global model simulations for 2006 that follow thehodology
of\Bey etal. \(2001). Dry deposition was modified based on the Monirku similarity
theory kWu et aI.LM?)) as well as by including canopy height and dehaigd on recent
Moderate Resolution Imaging Spectroradiometer and the GeoscienceAlaseter System
satellite observations (Lefs 10). Planetary boundary layer YPBight was constrained
to be at least 560. This mitigated the previous high ozone bias problem due to low PBLs
areas close to large water bodies. It also allows dilution of the mobile emisseamsurban
centers and lessened the severity of ozone titration at nighttime. Testingy doersummer
of 2011 has shown shown positive impacts of these changes and theyaiv@rcorporated
into the experimental ozone predictions for 2012. The emission data setokan updated

in June 2012, with about 35% decrease in total maBil®, emissions. Preliminary evaluation .

of the latest experimental predictions shows improvements from this combiraitigrdates.
Examples of additional modifications that may prove beneficial for ozoadigtions include:

20
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assimilation of observed chemical composition data, increase of the modeiti@s, inclusion
of newer versions of chemical and meteorological models, as well aser dosgpling among
system components.
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Appendix A List of abbreviations and acronyms.

AEO
AERO-4
AQI
AQS
CBO05
CBMIV
CMAQ
CONUS
Csl
CTM
EDT
EGU
EPA
EST
ETS
FAR
HIT

LM

LT

MB
NAM
NAQFC
NCEP
NE
NEIO5v1
NMM
NOAA
NOXx
PC
PBL
PM10
PM2.5
POC
PREMAQ
RM
RMSE
SE
SFS
SMOKE
TS

UM
VOC
WRF

Annual Energy Outlook

Aerosol module version 4

Air Quality Index

Air Quality System

Carbon Bond Mechanism with 2005 updates
Carbon Bond Mechanism version IV

Community Multi-scale Air Quality modeling system
Contiguous United States, Alaska and Hawaii not included
Critical Success Index

Chemical Transport Model

US Eastern Daylight saving Time

Electric Generating Unit

US Environmental Protection Agency

US Eastern Standard Time

Equitable Threat Score

False Alarm Rate

Hit rate

Lower Middle

Local Time

Mean bias

North American Mesoscale

National Air Quality Forecast Capability

US National Centers for Environmental Prediction
Northeast

US EPA 2005 National Emission Inventory Version 1
Non-hydrostatic Mesoscale Model

US National Oceanic and Atmospheric Administration
Oxides of nitrogen

Pacific Coast

Planetary boundary layer

Particles that are 10 micrometers in diameter or smaller
Particles that are 2.5 micrometers in diameter or smaller
Proportion Of Correct

CMAQ pre-processor

Rocky Mountain

Root Mean Square Error

Southeast

Smoke Forecasting System

Sparse Matrix Operator Kennel Emission

Threat Score

Upper Middle

\olatile Organic Compound

Weather Forecasting and Research model
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Table 1. Monthly and annual average ozone biases in different ragaoidl CONUS in 2010. Unit: ppbv.

Year

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Pacific Coast 5.6 3.7 0.3-2.6 04 39 63 52 71 52 71 48 4.0
Lower Middle -03 -02 -16 -23 21 84 104 97 86 26 45 18 37
Southeast 4.7 29 3.3 3.7 9.8 140 154 176 139 104 98 625 1
Rocky Mountain 6.2 3.7 37-11 -03 31 69 52 87 70 73 6.5 47
Upper Middle -30 -81 -06 -1.8 06 66 82 93 80 37 36-15 44
Northeast -1.0 -56 -35 -11 15 70 105 104 110 69 52 02 51
CONUS 2.9 0.8 0.5 -0.6 26 75 98 99 97 63 64 37 56

Table 2. Monthly and annual average ozone RMSEs in different regaovts CONUS in 2010. Unit:

ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Pacific Coast 147 144 153 140 128 151 17.8 174 18.7 18®9 138 157
Lower Middle 127 129 150 139 152 16.3 173 188 179 16133 118 154
Southeast 115 120 132 140 163 19.6 203 225 19.6 17.03 1525 17.6
Rocky Mountain  14.1 138 13.8 125 125 140 154 151 16.3.81442 138 143
Upper Middle 88 129 134 121 131 147 16.2 173 143 12691 86 143
Northeast 84 10.6 123 128 129 151 178 175 16.3 13.04 1183 144
CONUS 12.7 131 140 132 139 16.0 176 184 17.1 151 14.03 1454

Table 3. Monthly and annual averagedlO, Biases in different regions and CONUS in 2010. Unit:

ppbv.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Pacific Coast 6.2 63 62 49 56 83 87 92 89 70 59 81 71
Lower Middle 8.6 84 82 71 70 72 81 87 97 82 79 76 81
Southeast 4.3 46 34 29 37 40 37 50 41 35 43 48 4.0
Rocky Mountain -09 -04 03 02 04 11 17 13 07 05-02 00 04
Upper Middle 4.6 56 6.2 42 57 59 59 6.1 6.1 57 59 55 5.6
Northeast 4.0 49 34 29 29 24 22 30 37 39 43 36 34
CONUS 4.7 50 48 39 44 52 55 60 6.1 51 48 5.2 51
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Table 4. Monthly and annual averagesiO, RMSEs in different regions and CONUS in 2010. Unit:

ppbv.
Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Pacific Coast 155 148 154 127 128 156 16.0 175 19.6 1660 16.1 158 —
Lower Middle 16.0 16.0 173 157 156 142 150 178 19.1 1816.8 152 16.4
Southeast 104 113 110 95 87 96 95 105 104 104 1091 1103
Rocky Mountain  12.0 113 110 85 81 80 85 86 96 96 9851097
Upper Middle 11.0 125 136 110 116 116 124 129 126 1306 11.1 121
Northeast 111 121 124 114 95 94 96 101 103 103 1132 110.7

CONUS 135 135 141 121 117 124 128 141 154 142 13.53 1334

le J uworssnosi(y
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Table 5. Daily maximum eight-hour ozone categorical statistics¥0t 0, with the 7pbv and 70ppbv
thresholds. See text for details.

1ode J UOISSIOSI(]

Region, standard (ppbv) N, N, N, N4 HIT CSI FAR ETS POC

Pacific Coast, 75 2047 977 47796 681 059 026 068 0.24 0.95

Lower Middle, 75 1156 168 44875 217 0.44 011 0.87 0.10 0.97 -
Southeast, 75 2774 345 54107 132 072 011 089 0.10 0095

Rocky Mountain, 75 939 70 42667 88 0.44 006 093 006 098 -
Upper Middle, 75 1963 281 52056 171 062 0.12 0.87 0.11 0.96 7
Northeast, 75 2232 770 42637 157 0.83 024 0.74 023 0.95 &
CONUS, 75 11119 2616 284706 1449 0.64 017 081 0.16 0.96 =
CONUS, 70 18192 5753 273121 2824 0.67 021 0.76 0.19 0.93 o
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Table 6. Daily maximum eight-hour ozone categorical statisticsfommer months (June—August) in

2010, See text for details.

Region, standard (ppbv) N, Ny N Ng HIT CSI FAR ETS POC
Pacific Coast, 75 1507 632 12427 424 060 0.25 0.70 0.20 0.87
Lower Middle, 75 763 85 11138 49 0.63 0.09 090 0.09 0.93
Southeast, 75 1835 219 16984 22 091 011 0.89 0.09 0.90
Rocky Mountain, 75 712 61 12001 62 050 0.07 0.92 0.06 0.94
Upper Middle, 75 1599 226 20356 77 075 0.12 0.88 0.11 0.92
Northeast, 75 1799 584 13703 92 0.86 0.24 0.75 020 0.88
CONUS, 75 8223 1812 86747 729 0.71 0.17 0.82 0.15 091
CONUS, 70 12810 3764 79758 1179 0.76 0.21 0.77 0.17 0.86

Table 7. Ozone biases for the different days of the week in the six gfiedd regions and CONUS.

June—September 2010. Unit: ppbv.

Region Sunday Monday Tuesday Wednesday Thursday Fridayurdagt Week
Pacific Coast 7.3 6.0 4.9 4.9 4.9 5.3 6.2 5.6
Lower Middle 10.1 9.7 9.3 8.7 8.3 9.1 9.9 9.3
Southeast 16.0 15.6 15.1 14.8 14.4 15.2 15.7 15.2
Rocky Mountain 6.6 5.7 4.8 5.9 6.6 6.1 6.3 6.0
Upper Middle 8.7 8.4 7.6 8.8 7.4 7.1 8.3 8.0
Northeast 10.8 9.4 9.2 10.8 10.2 8.5 9.1 9.7
CONUS 10.1 9.4 8.7 9.3 8.8 8.8 9.5 9.2
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Table 8. NO- bhiases for the different days of the week in the six predefiregions and CONUS.
June—September 2010. Unit: ppbv.

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Region Sunday Monday Tuesday Wednesday Thursday Fridayurddst Week
Pacific Coast 7.5 9.3 9.4 9.1 9.4 9.2 7.2 8.8
Lower Middle 8.3 8.7 8.5 8.7 8.6 8.3 7.8 8.4
Southeast 4.2 4.6 4.8 4.6 4.1 3.9 3.1 4.2
Rocky Mountain 1.0 1.6 1.4 1.5 1.3 1.2 0.3 1.2
Upper Middle 5.5 6.5 7.0 6.4 6.2 5.4 5.1 6.0
Northeast 3.2 2.5 3.1 2.9 2.5 2.7 2.8 2.8
CONUS 5.3 6.0 6.1 6.0 5.9 5.7 4.7 5.7
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Fig. 1. NAQFC computational domain and six predefined US regionsifie&oast (PC), Rocky Moun-
tain (RM), Southeast (SE), Lower Middle (LM), Upper MiddlgN!), and Northeast (NE).
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Fig. 2. Data counts of ozone arl§iO, hourly measurements for each day during 20105 tWerlap”
shows the number of overlapping ozone observation pairs@gaverlap*” is the number of observa-
tion pairs after removing measurements from the 74 questiensites (see text for details).
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Fig. 3. Comparison between AIRNow and AQS data on 31 May 2010 bé&rand after(b) removing
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the 74 questionable sites using density plots, in whichra@presents the count of observation pairs at
each pixel. The data between 00:00 EDT to 23:00 EDT are irdunbre.
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