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Abstract.
Accurate estimates of soil organic carbon (SOC) stocks

are required to quantify carbon sources and sinks caused by5

land use change at national scale. This study presents a novel
robust kriging method to precisely estimate regional and na-
tional mean SOC stocks, along with truthful standard errors.
We used this new approach to estimate mean forest SOC
stock for Switzerland and for its five main ecoregions.10

Using data of 1033 forest soil profiles, we modelled stocks
of two compartments (0–30, 0–100 cm depth) of mineral
soils. Lognormal regression models that accounted for cor-
relation between SOC stocks and environmental covariates
and residual (spatial) auto-correlation were fitted by a newly15

developed robust restricted maximum likelihood method,
which is insensitive to outliers in the data.

Precipitation, near-infrared reflectance, topographic and
aggregated information of a soil and a geotechnical map were
retained in the models. Both models showed weak but signif-20

icant residual autocorrelation. The predictive power of the
fitted models, evaluated by comparing predictions with in-
dependent data of 175 soil profiles, was moderate (robust
R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–
100 cm). Prediction standard errors (SE), validated by com-25

paring point prediction intervals with data, proved to be con-
servative.

Using the fitted models we mapped forest SOC stock by
robust external-drift point kriging at high resolution across
Switzerland. Predicted mean stocks in 0–30 cm and 0–30

100 cm depth were equal to 7.99 kgm−2 (SE 0.15 kgm−2)
and 12.58 kgm−2 (SE 0.24 kgm−2), respectively. Hence,
topsoils store about 64 % of SOC stocks down to 100 cm
depth. Previous studies underestimated SOC stocks of top-
soil slightly and those of subsoils strongly. The comparison35

further revealed that our estimates have substantially smaller
SE than previous estimates.

1 Introduction

Greenhouse gas (GHG) reporting for the sector “LULUCF –
Land Use, Land-Use Change and Forestry” of the United Na-40

tions Framework Convention on Climate Change and the Ky-
oto Protocol requires national estimates of soil organic car-
bon (SOC) stock. SOC stock estimates are needed as baseline
and for quantifying carbon (C) sources and sinks caused by
land use change. Switzerland, as an example, uses a Tier-245

approach (IPCC, 2003) for SOC stock changes due to con-
version between settlements, wetlands, forest-, crop-, grass-
land and other land cover types (FOEN, 2012a). Respective
estimates are reported for the five ecoregions Jura, Central
Plateau, Pre-Alps, Alps and Southern Alps and for the whole50

country (Fig. 1, Brassel and Lischke, 2001).
Mean SOC stocks were estimated by various approaches

in previous studies: the simplest is to use the arithmetic mean
of the available SOC stock data as a national estimate (Weiss
et al., 2000). “Class-matching” (CM) estimates mean stocks55

for bioclimatic (Chiti et al., 2012), land use or soil map strata
(Xu et al., 2011; Krogh et al., 2003) or intersections thereof
(Arrouays et al., 2001; Lettens et al., 2004, 2005a; Meers-
mans et al., 2009) and combines them for a national estimate
by formulae for stratified random sampling (STR). Hence,60

CM capitalizes on benefits of spatial stratification, but Perru-
choud et al. (2000) demonstrated that respective gains may
be small.

Perruchoud et al. (2000) and other authors (e.g. Leifeld
et al., 2005; Meersmans et al., 2008, 2011, 2012a) used linear65
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models (LM) to relate SOC to covariates characterizing soil
formation by climate, vegetation, topography, geology and
land management. More recently, Grimm et al. (2008); Mar-
tin et al. (2011) and Wiesmeier et al. (2011) used non-linear
machine learning (ML) methods to the same end. Such sta-70

tistical modelling of SOC needs covariates that are available
contiguously in space because mean stocks are estimated
by averaging point predictions done by LM or ML for the
nodes of a fine-meshed grid over a region of interest, which
is equivalent to a discrete approximation of the geostatisti-75

cal block kriging approach (e.g. Gotway and Young, 2002).
The restriction to contiguous spatial covariates as only pre-
dictors generally limits the predictive power of fitted models
seriously. Accurate spatial information on important, soil-
related, SOC controlling covariates (pH, clay content, re-80

active aluminium and iron, mineral surface charge density,
soil temperature and moisture; Schmidt et al., 2011) is com-
monly unavailable.

If linear and ML models fit SOC data only poorly then
spatially structured variation in data becomes likely apparent85

as residual spatial autocorrelation. Besides ordinary kriging
(Mishra et al., 2009), regression kriging (RK, Hengl et al.,
2004), a variant of external-drift kriging (EDK), was used
by Mishra et al. (2010, 2012) and Kumar et al. (2012) to
map SOC stock at regional scale. Mishra et al. (2010, 2012)90

demonstrated that RK indeed improves on LM and CM by
exploiting autocorrelation when computing SOC predictions.
Considering autocorrelation is also essential for unbiased
significance testing of hypotheses on relations between SOC
and environmental covariates. Many studies that built statis-95

tical SOC models based on significance testing (e.g. Leifeld
et al., 2005; Meersmans et al., 2008, 2012a; Wiesmeier et al.,
2013) neglected autocorrelation. The studies by Perruchoud
et al. (2000) and Wiesmeier et al. (2012) are here notable
exceptions.100

Besides precise SOC estimates, standard errors of national
SOC stocks are needed for GHG inventories, e.g., to test
the statistical significance of estimated stock changes (Let-
tens et al., 2005a,b; Meersmans et al., 2009, 2011). Quantifi-
cation of uncertainties of spatial mean stock estimates (and105

changes) is straightforward for CM, where STR formulae can
be employed. However, care is needed when mean stock es-
timates are obtained by averaging LM, EDK or ML point
predictions: the point prediction errors for the nodes of the
prediction grid are then mutually correlated. This is true even110

if there is no residual autocorrelation because predictions are
computed from the same set of fitted parameters. Thus, ig-
noring the correlation of fitted regression coefficients of LM
as in Meersmans et al. (2008, 2011, 2012b, personal commu-
nication, 2013) likely biases the standard errors (SE) of esti-115

mated mean stocks. If there is residual autocorrelation then
the correlation of prediction errors at adjacent nodes of the
prediction grid is stronger. Neglecting residual autocorrela-
tion biases SE of estimated mean SOC stocks even more.

The truthfulness of reported SE is best checked with in-120

dependent validation data, along with the actual precision
of mean stock estimates. We are currently not aware of
any study that validated modelled SE of stock estimates.
As pointed out by Minasny et al. (2013) only few studies
(Mishra et al., 2009, 2010, 2012; Wiesmeier et al., 2011)125

tested the precision of the estimates with independent data.
Grimm et al. (2008); Martin et al. (2011) and Meersmans
et al. (2012b) used cross-validation to the same purpose,
which is clearly better than merely reporting notoriously
over-optimistic goodness-of-fit R2 values as done in most130

studies.
The choice of transformations for SOC data is a further is-

sue that requires some care. Statistical inference for CM, LM
and EDK relies on the assumption of normally distributed er-
rors with constant variance. Frequently, this assumption is135

violated by SOC data as empirical distributions are often
positively skewed (Minasny et al., 2013) and their disper-
sion increases with the mean (e.g. Mishra et al., 2009, 2010;
Chiti et al., 2012; Kumar et al., 2012; Wiesmeier et al., 2012,
2013). SOC data should then be log-transformed for statisti-140

cal analyses as in Mishra et al. (2010); Kumar et al. (2012)
and Wiesmeier et al. (2012). Neglecting data transformations
(Meersmans et al., 2009; Chiti et al., 2012) will likely affect
stock estimates only mildly but will invalidate reported SE.
Another error is to fit LM to untransformed SOC stocks, but145

at the same time to assume that the prediction errors have
constant relative dispersion (Meersmans et al., 2011).

Last but not least, outliers are a common nuisance in SOC
data sets (Meersmans et al., 2008; Mishra et al., 2009; Mar-
tin et al., 2011; Chiti et al., 2012; Wiesmeier et al., 2012,150

2013). In most instances, they are genuine observations that
do not follow the “majority pattern” of a data set. A common
but suboptimal recipe is to exclude such observations (Chiti
et al., 2012) from the analyses. Outlier deletion biases statis-
tical inference if not properly taken into account (Maronna155

et al., 2006, chap. 1). A better approach is therefore to use ro-
bust methods that are insensitive to outliers. Excepting Mar-
tin et al. (2011) and Wiesmeier et al. (2011), who used non-
parametric tree-based methods, no robust procedures were
used so far to estimate mean SOC stocks.160

This review shows that there is scope to improve on previ-
ously used statistical methodology for estimating SOC stocks
at the regional and national scales. When estimating SOC
stocks stored in the mineral soil of Swiss forests, our objec-
tives were therefore,165

i. to employ a statistically sound, robust lognormal EDK
approach that accounts for dependence of SOC stock on
environmental covariates and autocorrelation;

ii. to fit such models for mapping SOC stocks of two com-
partments (0–30 cm, 0–100 cm depth) of the mineral170

soil with 100m spatial resolution across Switzerland;
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iii. to rigorously validate both precision of predictions and
truthfulness of modelled SE with independent valida-
tion data, and

iv. to compute reliable estimates and associated SE of mean175

stocks for whole Switzerland and its ecoregions – strat-
ified further by altitude into the groups ≤ 600m, 600–
1200m, > 1200m above sea level – by robust lognor-
mal block EDK.

The present study is confined to mineral soils under forest.180

Comprehensive, harmonized and georeferenced SOC data is
for the time being available only for this land use. Data on
SOC stock stored in organic layers of Swiss forest soils is at
present too scarce to allow for a similar analyses, and com-
prehensive legacy data on SOC stocks of Swiss crop- and185

grasslands will become available in the future only, as this
data is currently being digitized and geo-referenced (NABO,
2014). Nonetheless, mineral forest soil stocks are important
for GHG reporting because forest cover 45.5 % of the veg-
etated area of Switzerland (Hotz et al., 2005). Furthermore,190

the currently available stock estimates for topsoils suggest
that forest soils store 1.5 times more organic carbon (OC)
than cropland and still 1.2 times more SOC than grassland
soils (FOEN, 2012a). Lastly, Martin et al. (2011) showed for
France that forest SOC stocks are more variable than stocks195

on cultivated land. These figures underpin the importance
of forest SOC stock, which, in our view, justifies a separate
analysis of the respective data.

2 Materials and methods

2.1 Study area200

As our study focused on forest soils, we had to delimit the
forest area of Switzerland (Fig. 2). We used the same criteria
as Giamboni (2008): six categories rendered by VECTOR25
(Swisstopo, 2011b) as forest plus former forest areas, dev-
astated in 1990 and 1999 by two hurricanes (Bundesamt für205

Umwelt BAFU, 2010) and currently not classified as forest
by VECTOR25. Areas shared with the National Mire Inven-
tory (FOEN, 2012b) were excluded. This removed some but
not all organic soils because the inventory does not cover all
bogs and fens under forest, in particular, if these had been210

drained in the past.
According to this definition, forests cover 11 800 km2

(29 % of total area of Switzerland). Forests extend over al-
titudes from 190m to 2390m above sea level (Swisstopo,
2011a). Climatic conditions therefore vary notably within215

this area: mean annual precipitation ranges from 600mm to
2900mm and mean annual temperature from −1 to 13 ◦C
(MeteoSwiss, 2011). Two thirds of the forested area is dom-
inated by coniferous trees, deciduous forests prevail only at
lower altitudes in the regions Jura, Central Plateau, Pre-Alps220

and Southern Alps (Swiss Federal Statistical Office, 2000b).

Considerable variation is also found in geologic parent mate-
rial for soil formation: predominantly limestones in the Jura
and in parts of the Pre-Alps, fluvioglacial sediments of sev-
eral quaternary glaciations and of the Tertiary on the Central225

Plateau and igneous and metamorphic rocks in the Alps and
Southern Alps. This large variation of pedogenetic factors is
reflected in the development of very diverse soils (Walthert
et al., 2004) with variable conditions for mineralization and
accumulation of SOC.230

2.2 Data

2.2.1 Soil data

Soil profiles

We used data of 1033 forest soil profiles (Fig. 2), studied
by the Swiss Federal Institute for Forest, Snow and Land-235

scape Research (WSL) in various surveys over the past 30 yr
(mostly 1990–2000). Use of legacy soil data is typical for
many SOC inventories (e.g. Krogh et al., 2003; Lettens et al.,
2004, 2005b; Kumar et al., 2012; Minasny et al., 2013). Two
WSL surveys chose 269 sites on square grids with 1 km and240

8 km spacing, respectively. The remaining sites were selected
purposively by field surveyors to best represent soils typi-
cal for given vegetation types. The position of the soil pro-
files was recorded in the field on topographic maps (scale
1 : 25000), hence the error in the coordinates is about±25m.245

We assigned 175 out of the 1033 soil profiles to the valida-
tion set, which was used to check the predictive power of the
fitted statistical models, and the remaining 858 soil profiles
were used as calibration set, used to build and fit these mod-
els. All except three sites of the validation set with organic250

soils lay on the 1 km (38 sites) and 8 km grid (134 sites),
respectively. This selection resulted in a fairly even and spa-
tially representative distribution of the validation sites across
Switzerland (Fig. 2). When splitting the data, we strived for
a balanced representation of soil map units and vegetation255

types between calibration and validation set.
The thickness of all soil horizons was recorded in the field

on the faces of soil pits and subsequent soil sampling and
laboratory analyses were all done by pedogenetic horizons.

Stone content260

The volumetric content of stones (particles with size >
2mm) was estimated visually on the face of soil profiles,
which is a common procedure (Baritz et al., 2010). These es-
timates are bound to some error that is very difficult to quan-
tify because surveys were done by different staff. However,265

neglecting stone content as in many other studies (e.g. Krogh
et al., 2003; Meersmans et al., 2008; Xu et al., 2011) would
lead to overestimation of SOC stocks as stone content is large
for many Swiss forest soils.
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Soil density270

The density of the soil fraction with particle size ≤ 2mm
was measured for 440 out of about 5000 mineral soil hori-
zons with soil samples of fixed volume (Walthert et al., 2004,
p. 702) collected from the soil profiles. In addition, a field
estimate (penetration resistance of blade) of soil density was275

available for all soil horizons (ordinal variable with 5 cate-
gories, Walthert et al., 2004, p. 695).

We computed the median of the measured densities for
each category of this variable and assigned these medians
to all soil horizons without density measurements. The accu-280

racy of this pedotransfer function (PTF) was evaluated by
tenfold cross-validation (by re-estimating and re-assigning
the median densities computed from 9 cross-validation sub-
sets to the 10th subset). The median of the cross-validation
errors was equal to 0.002 gcm−3 and the median absolute285

deviation (MAD, see below) was equal to 0.256 gcm−3. For
comparison, we used also the PTF by Adams (1973) and
Honeysett and Ratkowsky (1989), which performed best for
forest soils in the evaluations of De Vos et al. (2005) and
Baritz et al. (2010). Bias and MAD of the cross-validation er-290

rors ranged between 0.33–0.34 and 0.50–0.52 gcm−3 with-
out re-calibration and if the coefficients of the PTF were re-
estimated with our own data these measures were 0.06 and
0.30 gcm−3. Hence, our PTF had better predictive power
than the PTF by Adams, but it was worse than the one by Jal-295

abert et al. (2010) who recalibrated their PTF by ML meth-
ods.

SOC content

SOC content was measured for all mineral soil samples by an
elemental C/N-analyser (combustion at 1000 ◦C, Walthert300

et al., 2010). When pH of a soil sample was larger than
6.0 then carbonates were removed by fumigation with hy-
drochloric acid prior to measuring C. Below this pH car-
bonates were assumed to be absent, and the OC content of
the sample was assumed to be equal to its total C content305

(Walthert et al., 2010).

SOC stock

The SOC stock Si stored in horizon i per unit area [kgm−2]
was calculated from the thickness Di of the horizon [m],
its volumetric stone content Gi [m3m−3], soil density ρi310

[kgm−3] and its SOC content Ci [kgkg−1] by

Si =Di(1−Gi)ρiCi, (1)

and the stock S in a given depth compartment was summed
by

S =

h∑
i=1

wiSi, (2)315

where h is the number of horizons fully or partly included
in the compartment and wi is the fraction of the thickness of
horizon i within the compartment.

2.2.2 Covariates for statistical modelling

Parent material and soil320

Detailed information on soils and parent material is not avail-
able for whole Switzerland. Therefore, an overview soil map
discriminating 25 units (map scale 1 : 200000, Swiss Federal
Statistical Office, 2000a) was used as a coarse representation
of geologic and pedogenetic conditions. Being mainly de-325

signed for agricultural usage, certain map units did not well
reflect contrasting conditions of forest soil development. To
lessen this drawbacks five additional units were created by
intersecting the soil map with selected polygons of the Ge-
ological Map of Switzerland (map scale 1 : 500000, Swis-330

stopo, 2005) and the maps of the Last Glacial Maximum
(map scale 1 : 500000, Swisstopo, 2009) and of the Biogeo-
graphic Regions of Switzerland (see Table S2 in Supplement,
Gonseth et al., 2001). Besides, we used the geotechnical map
(map scale 1 : 200000, BFS, 2001) to extrapolate soil infor-335

mation available only at the 1033 soil profile sites (for details
on sampling see Appendix 2, Walthert et al., 2004) to whole
Switzerland. Median values of soil properties measured at
those sites that lay within a given geotechnical map unit were
assigned to the respective unit. Then we checked whether340

these newly generated covariates correlated with SOC stocks.
This was true for cation exchange capacity, iron and cal-
cium stocks and mass of soil particles < 2mm that we con-
sequently retained for the statistical analyses.

Climate345

Three climate data sets were available to us with spatial infor-
mation on mean annual/monthly temperature and precipita-
tion, cloud cover, sunshine duration, radiation, degree-days,
continentality index (Gams, 1935), temperature variation, ra-
tio of actual to potential evapotranspiration and site-water-350

balance (Grier and Running, 1977). Two data sets contained
spatial information (resolution 25m and 2 km, respectively)
on climatic means for period 1961–1990 (Zimmermann and
Kienast, 1999; MeteoSwiss, 2011) and the third for 1975–
2010 (spatial resolution 250m). Since it was not a priori355

clear, which data set would be best, we used them all as co-
variates in the statistical analyses.

Vegetation

The percentage of coniferous trees was derived from spec-
tral imagery (Swiss Federal Statistical Office, 2000a) and360

species composition data of the National Forest Inventory
(NFI, Brassel and Lischke, 2001, both covariates rasterized
with 25m resolution). The SPOT5 mosaic of Switzerland
(Mathys and Kellenberger, 2009) with spectral reflectance in
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green, red and near-infrared bands, band ratios, IHS colour365

space transformations and the Normalized Differenced Veg-
etation Index (NDVI, Kriegler et al., 1969) were available.
Moreover, canopy height (difference of digital surface to dig-
ital elevation model of 2m resolution, Swisstopo, 2011a)
was included in the set of covariates.370

Topography

Two digital elevation models (DEM, resolution 2 and 25m,
Swisstopo, 2011a) allowed to compute a broad range of ter-
rain attributes covering multiple scales: elevation, slope an-
gle, aspect, north- and eastness, planar, profile and combined375

curvatures and smoothed versions of these attributes. Fur-
thermore, topographic position indices were calculated based
on Zimmermann (2000) and Jenness (2006) with radii rang-
ing from 6m to 2 km. Flow accumulation area and topo-
graphic wetness indices were computed by single and multi-380

flow algorithms (Tarboton, 1997).

Accounting for errors in locations of soil profiles

We mentioned above that coordinates of soil profiles had
been recorded with a likely error of about ±25m, which
exceeds the resolution of the highly resolved DEM clearly.385

Therefore, the values of all covariates were averaged for cir-
cular neighbourhoods, centred on the recorded profile loca-
tions and having radii equal to 13m, 19m or 26m. Depend-
ing on the type of data, different summary statistics were
computed: arithmetic means for real numbers, medians for390

integers and the most frequent category for nominal or ordi-
nal variables. However, values of covariates aggregated with
the different radii were highly correlated, Therefore, we used
for statistical analyses only summaries computed with a ra-
dius of 26m.395

2.3 Statistical analyses

2.3.1 Model

Given past experiences (Mishra et al., 2010; Kumar et al.,
2012; Wiesmeier et al., 2012) and exploratory analyses
(Fig. 3), we decided to use a lognormal model for the SOC400

stock S(s) at location s:

Y (s) = log(S(s)) = x(s)Tβ+Z(s)+ ε(s), (3)

where x(s)Tβ is the external drift that accounts for depen-
dence of S on environmental covariates x, (with β the re-
gression coefficients), T denotes transpose and Z(s) is a sta-405

tionary autocorrelated Gaussian random field with zero mean
and isotropic exponential variogram with sill σ2 and range α

γ(h) = σ2 (1− exp(−h/α)) . (4)

ε(s) is a zero mean, spatially uncorrelated variable with
nugget variance τ2. In our robust geostatistical approach410

ε(s) need not be Gaussian, allowing thereby for outliers in
the data. The coefficients β, the variogram parameters θT =
(τ2,σ2,α) and the values ZT = (Z(s1),Z(s2), . . . ,Z(sn))
at the n soil profile locations si are unknown and must be
estimated from the data.415

2.3.2 Model building

We used only the calibration set for model building, which
involved the following steps:

1. Positively skewed covariates (e.g. some terrain at-
tributes) were transformed by square root or natural log-420

arithm.

2. Strongly correlated and therefore redundant covariates
were eliminated based on correlation-biplots (Gabriel,
1981).

3. The least absolute shrinkage and selection operator425

(LASSO, Hastie et al., 2009, Sect. 3.4) – an algorithm
that likely excludes non-relevant covariates – was used
with various sets of covariates, partly enriched by first-
order interactions between pairs of covariates, to find
an external drift that minimized the mean squared error430

(MSE) in tenfold cross-validation.

4. The parameters of the geostatistical model (Eq. 3) were
then estimated by a novel robust restricted maximum
method (REML, Künsch et al., 2011, 2013) for the ex-
ternal drift selected by LASSO.435

5. Using still the external drift of the optimal LASSO fit,
an optimal value of the tuning constant c that controls
the robustness of REML was chosen by tenfold cross-
validation. We used the continuous ranked probability
score (CRPS, see below and Gneiting et al., 2007) as440

main criterion for choosing the tuning constant (and for
selecting covariates in step 6). We further tested whether
other variogram functions (spherical, Whittle-Matérn,
etc., e.g. Diggle and Ribeiro, 2007) improved the fit but
this was not the case.445

6. Non-relevant covariates were then removed step by step
by tenfold cross-validating the robust REML fit (and
added back along with interaction terms at later stages
if cross-validation results justified this).

7. The levels of categorical covariates (in particular of the450

soil map) were merged based on partial residual plots
(e.g. Faraway, 2005) and cross-validation CRPS to ob-
tain a final parsimonious geostatistical model.

The improvement of the cross-validation MSE from step 3 to
7 is shown in Fig. S1 of the Supplement.455
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2.3.3 Evaluating predictive performance of statistical
models

The predictive power of the fitted geostatistical models was
tested by comparing predicted (Eq. 15) with calculated SOC
stocks (Eq. 2). The same criteria were used in model build-460

ing by cross-validation (see above). Marginal bias and overall
precision were assessed by

BIAS =− 1

n

n∑
i=1

(S(si)− S̃(si))
S(si)

, (5)

robBIAS =−median1≤i≤n

(
S(si)− S̃(si)

S(si)

)
, (6)

RMSE =

 1

n

n∑
i=1

(
S(si)− S̃(si)

S(si)

)2
1/2

, (7)465

robRMSE = MAD1≤i≤n

(
S(si)− S̃(si)

S(si)

)
, (8)

where S(si) stands for calculated, S̃(si) for predicted SOC
stocks and MAD for median absolute deviation. We com-
puted summaries of the relative prediction errors because the470

lognormal model implies constant relative dispersion, i.e.,
constant coefficient of variation. We standardized the predic-
tion errors by S instead of S̃ to have a common standardiza-
tion when comparing different models.

We also computed a standard and robust R2 by475

R2 =
Cov[S(si), S̃(si)]2

Var[S(si)]Var[S̃(si)]
, (9)

robR2 = 1−

( ∑n
i=1 |S(si)− S̃(si) |∑n

i=1 |S(si)−median1≤i≤n(S(si)) |

)2

.

(10)

Although the latter is tailored for robust L1 regression (Croux
and Dehon, 2003), we found it useful for our approach.480

In addition, we computed the strictly proper scoring cri-
terion CRPS (Gneiting et al., 2007), which is equal to the
integral over the Brier score (BS):

CRPS =

∞∫
−∞

BS(u)du≈
n∑
i=1

BS(S(i))·(S(i+1)−S(i−1))
2/2,

(11)

where S(i) is the ith largest calculated stock, S(0) = S(1),485

S(n+1) = S(n) and

BS(u) =
1

n

n∑
i=1

{F̃i(u)− I(S(si)≤ u)}2, (12)

with F̃i(u) the (estimated) lognormal predictive distribution
function of the ith datum and I(A) an indicator equal to one

if A is true and zero otherwise. CRPS measures the sharp-490

ness of predictive distributions (smaller values signal sharper
F̃i), hence depends both on prediction precision and quality
how prediction uncertainty is modelled. Modelling of pre-
diction uncertainty was further tested by counting how many
observation fall into two-sided 95 %-prediction intervals and495

by checking the empirical distribution of the probability in-
tegral transform (PIT, Gneiting et al., 2007)

PITi = F̃i(S(si)), (13)

which should be uniformly distributed.

2.3.4 Mapping SOC forest soil stocks across Switzer-500

land

To get better parameter estimates for finally mapping SOC
stocks by EDK we fitted the model to the merged calibration
and validation data. This was done after computing valida-
tion statistics (see above). SOC stocks were then predicted505

by robust lognormal kriging (Cressie, 2006; Künsch et al.,
2013) for the nodes of a 100 m grid by

S̃(s) = exp(Ỹ (s)+ 1/2{τ̂2 + σ̂2−Var[Ỹ (s)]}), (14)

with

Ỹ (s) = x(s)Tβ̂θ̂ +γ θ̂(s)
TΓ−1

θ̂
Ẑθ̂, (15)510

whereˆdenotes robust REML estimates, γ θ̂(s) is the vector
with the estimated covariances between Z and Z(s), Γθ̂ is
the estimated covariance matrix of Z and

Var[Ỹ (s)] =
(
γ θ̂(s)

TΓ−1
θ̂
,x(s)T

)
(16)

·Cov
[(

Ẑθ̂
β̂θ̂

)
,
(
ẐT
θ̂
, β̂T

θ̂

)](Γ−1
θ̂
γ θ̂(s)

x(s)

)
.515

Künsch et al. (2011) give in their Eq. (19) an approximation
for the covariance matrix of (ẐT

θ̂
, β̂T

θ̂
). Approximate, lognor-

mal kriging variances were obtained from

Var[S(s)− S̃(s)] = exp
(
2x(s)Tβ̂θ̂ + τ̂2 + σ̂2

)
(17)

520

· {exp(τ̂2 + σ̂2)− 2exp(Cov[Ỹ (s),Y (s)])

+ exp(Var[Ỹ (s)])},

where

Cov[Ỹ (s),Y (s)] =b
(
γ θ̂(s)

TΓ−1
θ̂
,x(s)T

)
(18)525

·M−1
(
γ θ̂(s)

XTγ θ̂(s)

)
and b, X, M as in Künsch et al. (2011). Since outliers re-
ceive small weight when computing β̂θ̂ and Ẑθ̂ by the robust
REML algorithm, the prediction of SOC stock by Eqs. (14)530

and (15) is also insensitive to outlying observations.



8 M. Nussbaum et al.: SOC estimation by robust external-drift kriging

2.3.5 Predicting regional and national mean SOC stocks

The mean SOC stocks in the five ecoregions (and for whole
Switzerland), stratified by altitude, were computed from the
robust lognormal point kriging predictions at the nodes of the535

100 m grid by

S̃(Bk) = 1/Nk

∑
si∈Bk

S̃(si), (19)

where the notation
∑
si∈Bk

means summation over the Nk

nodes of the grid falling into region Bk. Equation (19) is
a discrete approximation to the lognormal block kriging540

predictor (e.g. Cressie, 2006, Eq. 14). The block kriging
variance, i.e., the variance of the prediction error, S(Bk)−
S̃(Bk), for region Bk can similarly be approximated by the
covariance (Eq. S2 in Supplement)

Var[S(Bk)− S̃(Bk)] =
1

N2
k

∑
si∈Bk

∑
sj ∈Bk

(20)545

Cov[S(si)− S̃(si),S(sj)− S̃(sj)].

However, Nk is usually too large (in our case: 104–105) to
evaluate the double sum of Eq. (20) in acceptable comput-
ing time. We used therefore a Monte-Carlo approximation550

for Eq. (20), where the covariances were repeatedly com-
puted and averaged for randomly selected subsets of nodes
in Bk. Full details can be found in the respective appendix of
the Supplement. Of course, this approximation can also be
used if there is no residual autocorrelation, and it is straight-555

forward to derive analogous expression for untransformed
data. For sufficiently large regions, one can safely assume
– due to the central limit theorem – that the prediction errors
S(Bk)− S̃(Bk) are normally distributed, in spite of the fact
that point prediction errors follow lognormal laws.560

All statistical computations were done in R (R Core Team,
2013), using several add-on packages, in particular georob
(Papritz, 2013) for robustly fitting geostatistical models and
for robust kriging. Processing and mapping of spatial data
was done in ArcGIS 10.0 (ESRI, 2010).565

3 Results

3.1 Calculated SOC stocks

SOC stock stored in the top 30 cm of the mineral soil at
the 1 033 sites varied considerably from 0.8 to 36.1 kgm−2

(median 6.3 kgm−2), and to 100 cm depth stocks ranged570

from 1.0 to 96.4 kgm−2 (median 9.2 kgm−2). Stocks in both
depths were strongly correlated (Spearman correlation 0.91).
On average, calculated stocks were slightly larger for the val-
idation set (Table S1 of Supplement). Except for the Cen-
tral Plateau and the Southern Alps, mean stocks down to575

1m depth increased with altitude (Fig. 3). For most strata,
the frequency distribution of stocks was positively skewed

and dispersion increased with the mean, calling for log-
transformation for the statistical analyses.

3.2 Models for SOC stocks in 0–30 cm and 0–100 cm580

depth

Not surprisingly, given the strong correlation of stocks in the
two depths, the structure of the external drifts did not differ
much. Both drifts were parsimonious, with 10 and 12 fitted
coefficients, respectively, and included covariates character-585

izing soils, vegetation, climate and topography (see Table 1
as well as Tables S3 and S4 of Supplement).

Tenfold cross-validation resulted for both depths in simi-
lar robR2 (0.31). However, based on CRPS, the fit was better
for topsoil stocks (0.238 vs. 0.252). Residuals of both mod-590

els were spatially autocorrelated, but spatial dependence was
rather weak with nugget/total-sill ratios and effective ranges
of 0.37 and 600m for 0–30 cm and 0.41 and 660m for 0–
100 cm depth (see Table S5 of Supplement).

The optimal tuning constant was equal to c= 2 for both595

models, and robustly estimated parameters fitted the data
slightly better than customary Gaussian REML estimates
(cross-validation CRPS of 0.239 for non robust model fit for
0–30 cm and of 0.253 for 0–100 cm depth).

3.3 Validation of SOC stock predictions with indepen-600

dent data

Figure 4 shows calculated SOC stocks in 0–30 and 0–100 cm
of the mineral soil, plotted against respective predictions for
the independent validation set. The solid lines of the loess
scatterplot smoothers (Cleveland, 1979) are close to the 1 : 1-605

lines, indicating absence of conditional bias. This is con-
firmed by the BIAS and robBIAS statistics (Table 2). Irre-
spective how the statistics were computed, relative marginal
bias was less than 15 %. However, variation of the data
around the 1 : 1-line was quite large, which was reflected610

in large root mean squared relative errors. robRMSEs were
about 40 % and non-robust RMSE 49 % for topsoils and 56 %
for stocks down to 100 cm. As seen from the robust R2, the
models explained about 34 % of the variation of calculated
SOC stock in 0–30 cm and 40 % of calculated SOC stock in615

0–100 cm. The kriging variances overestimated the predic-
tion errors somewhat: only 3.4 % of the validation observa-
tions (both models) were outside of 95 %-prediction intervals
(Fig. S5 in Supplement). Overestimation of prediction uncer-
tainty was also indicated by convex-shaped PIT histograms620

(Fig. S6 in Supplement), which had more probability mass in
the centre than in the tails.

3.4 Prediction of SOC stocks for Swiss forest soils

For computing the predictions, the parameters of the final
models (Table 1) were estimated with data of 1022 sites625

(combined calibration and validation sets, excluding 11 sites
with missing covariate information). Robust lognormal krig-
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ing predictions of stocks stored to 100 cm depth are mapped
in Fig. 5 for the nodes of the 100 m grid. The map with the
predicted topsoil SOC was very similar and is therefore not630

shown. Block kriging predictions of the mean stocks for the
five ecoregions and for the entire Swiss forest area are shown
in Fig. 6.

Largest SOC stocks were predicted for higher altitudes
and for the Southern Alps in general. Predicted stocks were635

smallest for the Central Plateau and for lower altitudes of
the Pre-Alps, where stocks down to a depth of 100 cm re-
mained below 10 kgm−2. For whole Switzerland, predicted
mean SOC stocks in 0–30 cm were equal to 7.99 kgm−2 (SE
0.15 kgm−2, 95 %-prediction interval [7.69, 8.29] kgm−2).640

Down to 100 cm a SOC stock of 12.58 kgm−2 SOC was pre-
dicted (SE 0.24 kgm−2) resulting in a 95 %-prediction inter-
val of [12.11,13.05] kgm−2. Thus, about 4.5 kgm−2 SOC
are stored in subsoils (30–100 cm) of Swiss forests.

Our estimates do not include carbon stored in forest floor645

horizons. Spatially explicit estimation was not possible for
this compartment because we largely lacked C and soil
density measurements. Based on the available data, Nuss-
baum et al. (2012) estimated that about 1.7 kgm−2 (SE
0.08 kgm−2) of C are stored in forest floors of Swiss forests.650

4 Discussion

4.1 Model building and covariate selection

The model building procedure effectively reduced the 360
potential covariates and their first-order interactions to
a small and meaningful set. Precipitation was a covariate of655

both models (with positive coefficients, Figs. S2 and S3 in
Supplement). Perruchoud et al. (2000); Martin et al. (2011);
Meersmans et al. (2012b); Kumar et al. (2012); Chiti et al.
(2012) and Wiesmeier et al. (2013) previously reported that
wet climate favours SOC accumulation. Near-infrared re-660

flectance of the forest canopy was also selected for both mod-
els: smaller reflectance of conifers for wavelength of 750
to 1300nm (Cipar et al., 2004) and negative regression co-
efficients imply larger SOC stocks under conifers than de-
ciduous trees. Additionally, information on parent material665

was important for SOC prediction: aggregated units of the
overview soil map were meaningful covariates despite repre-
senting the heterogeneous pedogenetic conditions typical for
Switzerland only coarsely (see Figs. S2 and S3 in Supple-
ment).670

4.2 Residual spatial autocorrelation

Spatial autocorrelation of residuals remained weak in both
models, suggesting that spatial patterns in calculated SOC
stocks were reasonably well modelled by the external drifts.
Due to short-ranged spatial dependence, only 5 % of the675

nodes of the prediction grid were within a distance equal
to the effective variogram ranges of the soil profile sites.

From the validation set only 14 of 175 sites were within these
zones. Neglecting spatial autocorrelation but using the same
set of covariates would slightly lower the precision of SOC680

stock estimates for the 0–30 cm and increase precision for
the 0–100 cm depth compartment (Table 6 in Supplement).
Although kriging predictions differ only within the estimated
range of spatial dependence from predictions obtained by the
regression models, consideration of autocorrelation was im-685

portant for accurate modelling of prediction uncertainty.

4.3 Robust parameter estimation

Moderate robustification of the parameter estimation proce-
dure (tuning constant c= 2) increased the predictive power
of the fitted models in cross-validation slightly compared to690

customary REML and kriging. This is reflected in the slight
increase of robRMSE (0.6 % for SOC stock predictions in
0–30 cm and 0.5 % for stocks in 0–100 cm) compared to
a non-robust fit of the model with the same covariates (Ta-
ble 6 in Supplement). A further advantage of robust estima-695

tion is clear labelling of data that are fitted only poorly by
the models. Scrutinizing environmental conditions for those
observations revealed that these were: (i) sites on calcare-
ous bedrock in inner Alpine valleys where recurring drought
hinders OC mineralization, resulting in thick forest floor and700

SOC rich A horizons (Walthert et al., 2004), and (ii) sites in
the Southern Alps with acid podsolic soils that show pro-
nounced humus translocation down the profile. Moreover,
these sites are influenced by forest fires (leading to accu-
mulation of black carbon) and stabilize SOC effectively by705

large content of aluminium and iron weathered from silicate
rich bedrock (Blaser et al., 1997). Using robust procedures
ensured that SOC data resulting from sites subject to such
special conditions did not confound statistical analyses.

4.4 Predictive performance of fitted models710

Random dispersion of the prediction errors remained large
as our robRMSEs of 39 % and 42 % demonstrated. This was
also reflected in rather modest R2 of 0.35 and 0.48 (Table 2).
Further validation data from Swiss soil monitoring networks
were predicted with somewhat larger errors (Nussbaum et al.,715

2012, cf. sec. 3.4). Other studies found (cross-)validation R2

(all non-robust) of similar magnitude: Martin et al. (2011)
obtained by cross-validation R2 = 0.36 for predicting top-
soil SOC stocks of forests in France. Mishra et al. (2009)
found R2 = 0.46 for stocks in 0–50 cm and R2 = 0.56 for720

0–100 cm, and Kumar et al. (2012) reported R2 = 0.36 for
stocks down to 100 cm depth. The latter two studies validated
with independent data predictions of OC stocks in soils under
various land-uses in the US states Indiana and Pennsylvania.

On the one hand, incompleteness and partly insufficient725

quality of covariates is likely responsible for the modest pre-
dictive power of the fitted models. In particular, spatial in-
formation on soil or vegetation parameters controlling SOC
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turnover was completely lacking in our set of potential co-
variates. Also, data on forest management and land use his-730

tory (e.g. stand age), found to be relevant by Schroeder et al.
(2009) and Schulp et al. (2013), was missing.

On the other hand, causes for the moderate precision of
our predictions lie in the missing soil density measurements
(Schrumpf et al., 2011). For most horizons soil density was735

derived from a PTF, which proved to be unbiased, but never-
theless added additional variation to the data.

4.5 Spatial structure of SOC stock predictions

So far, no maps of SOC stocks have been published for Swiss
forests that could be used for verification of Fig. 5. Nev-740

ertheless, several patterns in our SOC stock map matched
our expectations: small SOC stock was predicted for acid
soils at lower altitude on the Central Plateau. Very small to-
tal SOC stock was estimated for areas in the Eastern Pre-
Alps and Alps where Permian Verrucano sand stones form745

the bedrock. On these sites, SOC accumulates in the forest
floor. The map shows large stocks up to 40 kgm−2 in parts
of the Eastern Pre-Alps where large annual precipitation and
water-logged soils prevail, and also in the Jura region, where
large stocks are likely related to organic matter stabilisation750

by calcium (Walthert et al., 2004). Very large SOC stock was
predicted for the Southern Alps, where a combination of for-
est fires and Al-rich soil on metamorphic parent material led
to an accumulation of organic matter, even in deeper soil
horizons. Excepting the special conditions in the Southern755

Alps, predictions of the mean stocks by ecoregions and alti-
tudinal class (Fig. 6) reflected the increase of SOC stock with
altitude described by Hagedorn et al. (2010).

4.6 Comparison with SOC stock estimates of previous
studies760

Perruchoud et al. (2000) estimated for whole Switzerland
a mean SOC stock of 7.59 kgm−2 (SE 0.30 kgm−2) for
the top 30 cm of the mineral soil and 9.82 kgm−2 (SE
0.53 kgm−2) for mineral soils down to bedrock, which are
both significantly smaller than our current estimates (p val-765

ues of one-sided z tests: 0.004 and < 10−12, respectively).
The estimate of 11.86 kgm−2 (SE 0.54 kgm−2) by Bolliger
et al. (2008) for total SOC stock (forest floor plus mineral
soil down to bedrock) of Swiss forests is also smaller than
our estimate for 0–100 cm. Our standard errors (0–30 cm:770

0.15 kgm−2; 0–100 cm: 0.24 kgm−2) are smaller (by a fac-
tor of about two) than those of Perruchoud et al. (2000) and
Bolliger et al. (2008). Since we validated uncertainty mod-
elling for point predictions and used a coherent framework
to quantify the uncertainty of our regional and national mean775

estimates, one can trust that these figures accurately represent
the uncertainty of our estimates.

Perruchoud et al. (2000) estimated that about 77 % of SOC
stock of Swiss forests is stored in the mineral topsoil (0–

30 cm), whereas we predicted a proportion of only 64 %,780

which matches the proportion of 64.3 %, computed directly
from the observed SOC data (n= 1033) very well.

5 Summary and conclusion

Greenhouse gas reporting requires estimates of regional or
national mean SOC stocks that are computed from observa-785

tions with quasi-point support. The geostatistical block krig-
ing approach is method of choice for such change-of-support
problems as it guarantees that estimates are unbiased and pre-
cise and prediction standard errors correctly account for the
spatial averaging. Rather surprisingly, our study seems to be790

the first to employ such an approach in the context of GHG
reporting.

Based on spatially referenced data about 1 033 soil pro-
files, we built parsimonious, pedologically interpretable,
geostatistical models for SOC stocks in two depth compart-795

ments (0–30 cm, 0–100 cm) of mineral soils of Swiss forests.
The models relate calculated stocks to environmental covari-
ates that characterize the pedogenetic conditions at the profile
sites and account for residual spatial auto-correlation. The fit-
ted models were rigorously validated by comparing predic-800

tions with independent data. Using the models, we mapped
forest SOC stock across Switzerland by robust external-drift
kriging at high spatial resolution and aggregated the kriging
results coherently to come-up with reliable block kriging es-
timates (and standard errors) of national mean SOC stocks in805

Swiss forests.
A comparison with earlier studies on SOC in Swiss forest

revealed that previous estimates of SOC stock down to 1m
depth were distinctly smaller than our estimate. Moreover,
our (independently validated) standard errors were only half810

as large as the previously reported SE. As we used a sub-
stantially larger database and sound geostatistical methods
we trust our estimate more and conclude that SOC stocks of
Swiss forests have been considerably underestimated in the
past.815

Supplementary material related to this article is
available online at: http://\@journalurl/\@pvol/\@
fpage/\@pyear/\@journalnameshortlower-\@pvol-\
@fpage-\@pyear-supplement.pdf.
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Table 1. Covariates of external drift selected by model building procedure for soil organic carbon (SOC) stocks in 0–30 cm and 0–100 cm
depth.
table

SOC stock 0–30 cm SOC stock 0–100 cm

soil categorical covariate with 5 aggregated soil map units categorical covariate with 9 aggregated soil
map units

mass of soil particles < 2mm assigned to geotechnical
map units

climate mean annual precipitation (square root) mean March precipitation (square root)

vegetation near-infrared band (SPOT5 mosaic) near-infrared band (SPOT5 mosaic)

topography topographic position index with radius 500m (Jeness,
2006) for soil map units rich and poor in clay

slope (resolution 2m)

Table 2. Statistics of relative prediction errors of soil organic carbon (SOC) stocks in two depth compartments (0–30 cm, 0–100 cm) for the
validation set.

BIAS RMSE R2 robBIAS robRMSE robR2 CRPS

0–30 cm 0.135 0.488 0.346 0.070 0.388 0.337 0.221
0–100 cm 0.152 0.556 0.477 0.066 0.420 0.403 0.247

Fig. 1. Ecoregions of Switzerland, stratified by altitudinal class.
figure

Fig. 2. Locations of the 1 033 soil profiles and Swiss forest area (subdivided into calibration and validation sets).

Fig. 3. Boxplots of calculated soil organic carbon (SOC) stocks in 0–100 cm depth by ecoregion and altitudinal class (n: number of sites).

Fig. 4. Scatter plots of measured against predicted soil organic carbon (SOC) stocks in 0–30 cm (a) and 0–100 cm (b) of the mineral soil,
computed with the calibration data for the sites of the validation set (solid line: loess scatter plot smoothers, n: number of sites).

Fig. 5. Robust lognormal kriging prediction of the soil organic carbon (SOC) stock in 0–100 cm of the mineral soil of Swiss forests (computed
with best-fit model with covariates according to Table 1 and tuning constant c= 2, smoothed with focal mean with a radius of 1 pixel=
100m).

Fig. 6. Block kriging predictions of the soil organic carbon (SOC) stocks in 0–30 cm and 0–100 cm soil depth in the five ecoregions stratified
by altitude asl [m] into three classes (vertical lines: prediction intervals).


