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Abstract

This paper investigates the development of a model, called CranSLIK, to predict the transport
and transformations of a point mass oil spill via a stochastic approach. Initially the various
effects on destination are considered and key parameters are chosen which are expected to
dominate the displacement. The variables considered are: wind velocity, surface water velocity,
spill size, and spill age. For a point mass oil spill, it is found that the centre of mass can be
determined by the wind and current data only, and the spill size and age can then be used to
reconstruct the surface of the spill. These variables are sampled and simulations are performed
using an open-source Lagrangian approach-based code, MEDSLIK II. Regression modelling
is applied to create two sets of polynomials: one for the centre of mass, and one for the spill
size. Simulations performed for a real oil spill case show that a minimum of approximately
80 % of the oil is captured by CranSLIK. Finally, Monte-Carlo simulation is implemented to
allow for consideration of most likely destination for the oil spill, when the distributions for the
oceanographic conditions are known.

1 Introduction

Whilst the frequency of spills occurring has dropped significantly in the last few decades, |[Etkin
(2001)), it does not diminish the inevitability of an oil spill occurring. Oil spills can cause large
scale destruction of the environment, they have significant economical effects, and can result
in human lives losses. They are inevitably the cause of environmental, economic, and human
disaster. The Deepwater Horizon spill, for example, has been analysed extensively by (Graham
et al.[(2011), members of the US National Commission on the BP Deepwater Horizon Oil Spill
and Offshore Drilling. There is therefore much interest in being able to accurately predict the
destination, transport, and transformation of an oil spill to minimise the resultant cost, both
financial and environmental.

There are many complex phenomena affecting an oil spill, creating an advection—diffusion—
transformation process. These consist of a large number of effects: the advection due to currents,
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wind and waves, the diffusion due to the turbulence and the transformation processes, such as
evaporation, natural dispersion, spreading etc., which need to be considered for accurate fate and
transport prediction. A diagram showing these effects can be seen in Fig. [I] (MEDESS-4MS;;
ITOPE). Also, as the spill ages, different effects become more important and a speculative mass
balance can be seen in Fig. 2] (Mackay and McAuliffe, [1989). There are numerous equations
available which are created to model these effects, based on both analytical and empirical ap-
proaches, however the complexity of the underlying physics is not yet fully understood. Reed
et al.| (1999) provide a very good summary of early models. Since then significant progress
has been made in acquiring a deeper understanding of the involved complex phenomena, for
example biodegredation is studied by McGenity et al.| (2012)).

Difficulty also arises from the side of uncertainty since exact quantities are not necessarily
known beforehand due to the stochastic nature of certain variables, for example the sea surface
velocity. The computational cost involved in running multiple cases, or Monte-Carlo simulation,
to consider the possible conditions is often far too great to be a viable approach. This becomes
a severe impediment in cases of real accidents where a quick, or even real time, prediction
becomes necessary.

1.1 MEDSLIK II

Many models have been developed and used to predict the transport and transformation of
an oil spill. These are either commercial, such as |Li et al| (2013)), or open-source, such as
De Dominicis et al.|(2013a)). Regardless of the software tools employed, these models are not
without their limitations. Often the computational cost involved in running a full simulation is
too high. Alternatively, in order to be able to have a prediction in near real time, the model has
to be simplified extensively, in terms of its physics, and therefore the simulation results are not
of high accuracy.

One such code is MEDSLIK II. This solves the advection-diffusion processes using a La-
grangian particle formalism, meaning that the oil slick is broken into a number of constituent
particles, while the transformation processes act on the entire oil slick surface. It has been
shown to provide accurate results in a number of real scenarios (De Dominicis et al., 2013a;
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Coppini et al.,[2011). Results are produced reasonably quickly which is favourable since many
simulations are necessary to apply the regression model.

There are four main inputs required: oil spill data, wind field, sea surface temperature, and
structure of sea currents. The frequency of the oceanographic data is an important factor since
these can change dramatically in a relatively short period of time. MEDSLIK II applies a linear
interpolation in time between two subsequent current and wind fields to calculate the current
and wind at the model time step.

The test case included with the program is for an oil spill in Algeria. This consisted of 680
tons of crude oil being spilled and validation was carried out to check the accuracy of the pre-
diction over a 36 h period. The accuracy was found to be in good agreement with the observed
results (De Dominicis et al.| [2013a). This model has also been validated for the Lebanon crisis
where the predicted oil slick at sea and coastal deposits were in agreement with observations
(Coppini et al., 2011).

Additional details regarding the development and validation of MEDSLIK II can be seen in
De Dominicis et al.|(2013b, ja)).

1.2 Aims

This paper investigates the use of stochastic methods to map the response from different in-
put variables to create a robust and efficient software tool capable of effective prediction. This
provides an estimation of the destination and spread of an oil spill subject to uncertain oceano-
graphic conditions. Also the minimal computational time required for the developed model
allows for Monte-Carlo simulation using non-deterministic values for current and wind veloc-
ities. This can then be used to calculate a region such that there is a high probability that said
region will contain the oil spill. This aids significantly in reducing the resultant financial and
environmental cost of oil spills, predicting their likely development.

Wind and current velocities are both continuous variables, and as such, it is impossible to
investigate all possible values. Therefore, it is necessary to sample these variables. This involves
creating a discrete set of values which is representative of the continuous variable. The sampled
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values then create the set of necessary simulations called a design hypercube (Myers et al.,
2009).
The key steps in developing our methodology can be outlined as follows:

1. identify the key parameters and their relative distributions necessary for short term oil
spill prediction.

Sample the considered parameters to create a design hypercube.
Generate simulation data using the design hypercube.
Fit regression models to map the inputs to the response.

Use aforementioned regression model to create a prediction code.

AN e

Test the developed code against a real scenario and analyse the results.

In order to generate simulation data, we have used the MEDSLIK II model. This choice was
based on a number of reasons, but predominantly due to its robustness and because it has been
validated on multiple real spills as discussed in [De Dominicis et al.|(2013b} a)).

2 Uncertainties and stochastic modelling

Another complexity in modelling arises from the uncertainty involved in prediction of oceano-
graphic conditions and spill parameters. Many parameters, which are known to have an im-
portant role in the destination of an oil spill, are stochastic in nature and therefore difficult to
accurately predict.

Wind forcing, i.e., the wind velocity components at 10 m above the sea surface, is provided
by meteorological models, while currents and temperature are provided by oceanographic mod-
els. The atmospheric forcing is provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF), with 0.25° space, and six-hour temporal resolution. The current veloc-
ities used in this work come from the Mediterranean Forecasting System (MFS) described in
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Pinardi et al.| (2003); |Pinardi and Coppini| (2010). The MFS system is composed of an Ocean
General Circulation Model (OGCM) at 6.5 km horizontal resolution and 72 vertical levels (To-
nani et al.,[2008};/Oddo et al., 2009). Every day MFS produces forecasts of temperature, salinity,
intensity and direction of currents for the next ten days. Once a week, an assimilation scheme,
as described in|Dobricic and Pinardi| (2008)), corrects the model’s initial guess with all the avail-
able in-situ and satellite observations, producing analyses that are initial conditions for ten days
ocean current forecasts. The modelled currents and wind fields can be affected by uncertain-
ties that arise from model initial conditions, boundaries, forcing fields, parametrisations, etc.
In this paper the hourly mean analyses have been used to eliminate the additional uncertainty
connected with forecasts for both atmospheric and oceanographic input data.

Whilst many of these parameters may be measurable at the initial time, prediction of the oil
spill destination requires reasonable estimation of the conditions over the simulation period.
There are numerous methods for circumventing this problem; usually the stochastic parame-
ters are extrapolated from previous values however this can frequently cause gross errors. This
hinders the accuracy of real time prediction.

In this problem, it is necessary to apply sampling to ensure that the considered points are
representative of the domain. This problem cannot be approached deterministically due to the
continuous nature of the parameters making the consideration of every possible quantity unfea-
sible. There are numerous methods of sampling available. Monte-Carlo simulation is the sim-
plest. However, the associated high computational cost is a constraint in the context of of the
model development. Another alternative could be importance sampling, which adopts a Monte-
Carlo style simulation, but biases the output to favour areas of greater interest, for example the
tails of the distribution. This however is also inappropriate since the entire distribution is of
interest, and it is still relatively expensive. Instead, a Latin Hyper-Cube (LHC) method will be
used, where the distribution is separated into block of equal probability and then a random value
is chosen from each block. This has the advantage of requiring a smaller amount of necessary
simulations to create a good design and hence is relatively inexpensive. The main disadvantage
is that it does not necessarily guarantee a well stratified design (Myers et al., 2009).
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A simple 3rd order polynomial regression model is used to map the responses. It was found
that lower order models are too sensitive to the fluctuating component present in the simulation
data. This is the same reason which prevents the use of radius basis functions (RBF) in place of
a polynomial.

It is also possible that the input variables will possess cross correlation. Therefore mixed
variable terms, i.e. x1x2, have to be included in the model.

3 Methodology

As previously stated, the underlying physics of an oil spill is very complex. Existing solvers re-
quire resolving many of the underlying phenomena. To perform direct simulations of all possi-
ble conditions would be far too computationally expensive. For example, MEDSLIK II requires
several minutes per run. 1000 runs using different input parameters would therefore require
many hours. This approach avoids this problem by creating a polynomial which maps inputs to
a response resulting in 1000 runs being possible in approximately one second. This allows for
consideration of likely destinations of the oil spill using non-deterministic inputs. Note that the
phenomena which can be accounted for in CranSLIK is limited to the phenomena modelled by
MedSLIK II. The paper uses a non-intrusive method, whereby the regression model is devel-
oped using the results from the solver, and does not require being programmed into the solver
itself. There are numerous benefits from this approach. Primarily it is performed to simplify the
problem. However it also means that the developed methodology can easily be applied to data
from any source.

3.1 Choice of Variables

Three variables have been chosen: wind velocity, current velocity, and spill size.

It is necessary to express each variable as a distribution. Spill size will simply be assumed
uniform and various sizes tested. However velocities need to be separated into two components:
speed and angle.

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]



20

25

The angle can then be simplified by treating the current angle as an axis and only looking
at the wind angle with respect to this axis. Also symmetry can be applied meaning it is only
necessary to consider angles between 0 and 7, since other angles are a reflection in the current
axis . A uniform distribution can then be assumed for this variable.

The distribution for wind speed is widely accepted to be reasonably well represented by
a Weibull distribution with shape and scale parameters 2.26 and 9.02 respectively (de Prada Gil
et al., 2012). Morgan et al|(2011) suggest that a log-normal distribution is better for extreme
wind speeds. We are not looking at extreme seeds though, so the Weibull distribution is suffi-
cient. It is somewhat more complicated to find a distribution for the current speed as this varies
over the globe. Since the pattern is almost entirely that of wind driven circulation, it is likely
the same underlying distribution with varying coefficients based on location. Here, the current
velocity for the test case has been analysed and a Weibull distribution superimposed, leading
to the coefficients 1.9967 and 0.2132 for shape and scale respectively. The maximum velocity
is limited by the highest sampled value. Performing the prediction for a value outside the sam-
pled range is not recommended due to extrapolation errors. Therefore, if one wished to consider
a value outside of the sampled range, additional simulations would have to be performed.

3.2 Sampling the Variables

To develop the model, it is necessary to sample the chosen variables. In statistics and quan-
titative research methodology, a data sample is a set of data collected and/or selected from a
statistical population by a defined procedure. This has been done using the Latin-hyper cube
technique, which involves splitting the distribution into blocks of equal probability, then a ran-
dom value is chosen from each block. A brief experiment was conducted and it was determined
that a minimum of 6 samples are required to capture a reasonably complex shape, the Weibull
distribution. Note that it is not possible to predict the shape of the resultant graph beforehand.
However it is expected to be more simple than the test shape. A zero point has also been consid-
ered for investigation of simulation noise generated by MEDSLIK II. The variables have also
been decoupled by consideration of a point mass oil spill subject to oceanographic conditions.
The result was that the destination can be determined by the current and wind velocities. It was
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also found that the size of the spill only depends on the initial spill size as well as the spill age,
that is time since initial spill.

The sampled values for wind and current velocities, and the angles can be seen in Table [T}
Note that to simplify the required number of simulations, the developed model will displace the
spill depending on the angle between the current and wind velocities, with the current velocity
treated as an axis, and then translated to meaningful coordinates. Data has been generated from
the stated input values for a simulation time of 36 h.

3.3 Response Mapping

In order to map the responses, a third order polynomial approximation was calculated using the
method of least squares. It has been found that the zero point fluctuations from the random walk
procedure appear to skew the results disproportionally with lower order models.

For the spill size, a slightly different approach was taken, where the developed equation
comes from r = g(#), i.e. a radial function is developed, as opposed to a Cartesian. This assists
in ensuring a periodic, or near periodic model. Note that both a polynomial and sinusoidal
functions were investigated and the polynomial appears to produce less skewed results in the
central region and hence the polynomial function was chosen. But as outer rings are of greater
interest either choice could be acceptable.

Seven values have been sampled for the wind and current magnitudes however only five
angles have been considered. This is because the angle refers to the angle between the wind and
current velocities, and since the current velocity is used as an axis, symmetry can be applied to
reduce the number of necessary values in this parameter. Therefore five values over a semi-circle
are chosen, which corresponds to 8 values over a circle.

3.4 Developed methodology

Once the polynomials have been created, it is necessary to outline the developed methodology
for prediction of an oil spill, using the calculated coefficients. The flow chart of the developed
model can be seen in Fig. |3| The actual code has been written in the commercial software
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package MATLAB®® (2011) and the statistics toolbox is used for the Monte-Carlo simulation
to generate the random numbers.
An overview of the methodology is as follows:

— Interpretation of oceanographic data. The key parameters in the prediction are the wind
and current velocities. MEDSLIK II produces column structured data for these from the
raw NetCDF files. The prediction code is capable of reading these and converting them to
block structure and converting from latitude and longitude to metres. A modified version
of this code has also been written for the purposes of Monte-Carlo simulation, where the
user inputs a desired wind and current velocity directly.

IodeJ UOISSNOSI(]

— Centre of mass. To investigate the behaviour of the centre of mass, the wind, current and
angle variables have been considered. A polynomial has been developed which links these
variables to predict displacement in the x and y planes. The oceanic data is interpolated
to find the parameters at the spill location and these are fed into the regression model to
predict a new centre. Since the current direction is treated as an axis, the displacement with
respect to this is first calculated, and then translated into more meaningful coordinates.

IodeJ UOISSNoSI(]

— Reconstruction of surface. Now the centre of mass has been predicted, the surface recon-
struction of the oil spill can be considered. Since this is not linked to the destination of the
centre of mass, the rings are created around the origin and then displaced by the calculated
displacement of the centre of mass. If desired, a contour can then be fitted according to
these concentration rings. These are 4th order polynomials and require the initial spill size
(tons) and the spill age (hours).

IodeJ UOISSNOSI(]

— Set values for next iteration. For the next time step, it is necessary to set the new cen-
tre of mass for the oil spill. At this stage, the centre of mass can be corrected based on
observation to produce more accurate results.
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4 Case study

In order to validate CranSLIK, it is necessary to investigate its performance when applied to
oceanographic conditions. The accuracy of CranSLIK is evaluated by the volume of oil cap-
tured, where this is calculated as the volume of oil explained by the model, divided by the total
oil volume. Note the model has been verified against the sampled points and over 99.5 % of
the oil was captured for each case after 1 h of simulation. It was also found that the prediction
becomes less accurate for extended periods. The wind and current velocities were both found
to produce near-linear displacement with respect to time, when considered individually. The
developed model works by hourly prediction which causes cumulative errors in extended simu-
lation. Hindcast modelling, updating the centre of mass every hour, is therefore recommended to
minimise error. The spill size prediction remains very accurate, above 99 %, over a 36 h period
suggesting that hindcast modelling is not required to be applied to this part of the code.

4.1 Algeria test case

The case considered uses the oceanographic data for the Algeria spill on the 6 August 2008 and
a point mass oil spill is released from latitude 38.240° and longitude 5.981°. Current velocities
were updated every hour and wind velocities every 6 hours. It is found that the proportion of
oil captured becomes poor when a full 36 h prediction is performed, the accuracy rapidly drops
after the 4 h mark as shown in Fig. 4 However, under the application of hindcast modelling,
where the centre of mass is updated every hour based on model data, the minimum accuracy is
greatly improved. This is likely due to cumulative errors during prediction. These errors could
be present in the developed model, however, since the model has been verified, it may be an error
due to the oceanographic data. The model assumes that the oceanographic conditions at the start
of the simulation period are representative of the conditions over the period. This however is
not necessarily true and therefore the prediction is less accurate when these conditions change
greatly over the simulation period. It is possible in this case to apply an interpolation since the
quantities for the next time step are known however this would not be possible in a real scenario.
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Figure [5] shows the displacement error of the centre of mass, when this value is updated at
different intervals. It is clear that the error is far smaller when the simulation is only predicting
for an hour and then updating.

With regards to the spill size only, the accuracy appears to be very good, as seen in Fig. [6]
Compared to the accuracy of the centre of mass prediction, this appears to be far more accurate
suggesting that the weakest component of this model is the centre of mass prediction; however
the overall accuracy appears to be reasonably good, a minimum of 80 % when hourly prediction
is used as seen in Fig. 4] This also justifies the decoupling of variables.

The supplementary animation shows the predicted oil spill (black rings) and the MEDSLIK
II result (background contour) for a 36 h simulation period for this test case. The centre of mass
for the prediction is updated every hour. The lowest proportion of oil captured is approximately
80 % with the average being about 91 %.

4.2 Sensitivity analysis

It is also of interest to consider the sensitivity of CranSLIK with respect to the different input
parameters. This is summarised in Table

The most sensitive variables appear to be the current magnitude and angle. This is expected
since the displacement due to current velocity is far greater than that due to the wind velocity,
and since the majority of the oil is contained close to the centre, the dispersed elements do
not skew the results significantly and hence there is some leeway with the spill size. This was
expected since the current is more displacing than the wind, and it was concluded the wind is
less important when the sensitivity of variables was investigated in MEDSLIK II (De Dominicis
et al.l [2013a).

4.3 Monte-Carlo simulation

CranSLIK assumes that the wind and current data at the start of the hour are representative of
the full hour. This however is not necessarily true since oceanographic conditions may change.
Therefore more accurate prediction may be possible if an interpolation is applied to the data and
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expected fields are created. However this is not relevant for prediction of real-time oil spills. In
such scenarios it may be of interest to generate an expected region for the oil spill.

Due to the incredibly low computational cost required by CranSLIK, a Monte-Carlo simula-
tion can be performed in a very low time frame, approximately 1000 simulations per second on
an AMD Phenom II X4 3.6 GHz processor. This can be used to generate an expected region for
the oil spill and aid in clean up and recovery operations.

For the Algeria test case, the Monte-Carlo simulation was performed using input distributions
developed from the available data. However, due to the 60h period of data, there exists a bi-
modal peak in the simulation results representative of the alternating current forcing as shown in
Fig.[/] This is becomes more clear when the simulation is performed using 10,000 and 100,000
samples, as shown in Figs. [§] and [J] respectively. This result is not too helpful because of the
bimodal peak. However, it does demonstrate the versatility and robustness of CranSLIK. If the
distribution for a location is known, more meaningful results can be produced.

4.4 Discussion

Whilst CranSLIK appears to perform well for the tested scenarios, it is necessary to identify the
assumptions made while modelling. Firstly, the displacement of the centre of mass is correlated
to the wind and current velocities only, while the spill area is determined by the quantity of
oil spilled and the age. Although these variables are considered dominant, in an fully robust
model further simulations considering different variables should be performed. This would lead
to an even more accurate prediction, however would require more complicated approximations
to account for these variables and their correlations. Additional variables could be included to
account for more complicated flow physics such as non-radial oil spill expansion. Secondly, fur-
ther from MEDSLIK II which was employed, other oil spill prediction codes and softwares may
be used and compared identifying their performance in aspects of accuracy and computational
effort and at the same time highlight efficiency of the proposed non-intrusive methodology.
Finally, only one particular type of oil spill has been considered: point-mass. Since the devel-
oped model moves a centre of mass, and then reconstructs the surface, it is possible to mark
several centre of masses and predict their destinations. The problem then becomes surface re-
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construction which would require additional simulations. Also, as with any stochastic problem,
additional simulations could lead to a better regression fit and hence better prediction.

5 Conclusions

This paper describes the development of CranSLIK, a model for the prediction of the destination
and spread of an oil spill via a stochastic approach. The key parameters were identified as wind
velocity, current velocity, spill size and time, and a design square was created for the required
samples. The simulations were then performed using MEDSLIK II and regression modelling
was applied to create two equations: one to predict the centre of mass, and one to predict the
spill size. The developed code has been presented and discussed. It was then validated against
a real test case. Finally, the efficiency of the model is exploited using Monte-Carlo simulation
for the purposes of generating maximum likelihood regions. This has limited use when applied
to the Algeria test case due to insufficient current and wind velocity data to more accurately
fit a distribution. Note that CranSLIK is limited to the same physical phenomena which are
modelled by MEDSLIK 1I.

The developed model appears to perform well when applied to the Algeria test case consid-
ered, with a minimum of 80 % of the oil captured when using hourly prediction. The major
strength of the developed model is the efficiency and the minimal time required to perform
Monte-Carlo simulation and generate maximum likelihood regions. However, for this to pro-
vide useful results, it is necessary for a distribution or a reasonable estimate of expected oceano-
graphic conditions. This paper serves as a demonstration of an alternative method for fast pre-
diction of the advection-diffusion-transformation of an oil spill. The assumptions have been
discussed and areas for further work highlighted. Whilst the key variables were considered, it
has been identified that consideration of additional variables could result in improved accuracy.
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6 Code availability

The oil spill model code CranSLIK v1.0 is available as an open source code that can be
downloaded together with test case data and output example from the website fhttp://public.
cranfield.ac.uk/e102081/CranSLIK. CranSLIK is available under the GNU General Public Li-
cense (GNU-GPL Version 3, 29 June 2007). The code is written in the commercial software
package MATLAB®® (2011). The model code can run on any computer and operating system
that supports Matlab.

The Supplement related to this article is available online at
do0i:10.5194/gmdd-0-1-2014-supplement.

Acknowledgements. We gratefully acknowledge the two anonymous reviewers and the topical editor, Dr.
Robert Marsh, for providing constructive comments that improved this manuscript. The service charges
for this open access publication have been covered by Cranfield University.
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Table 1. Sampled values for centre of mass prediction.

Wind magnitude Current magnitude Angle
(inms™1) (inms™1) (in radians)
0 0 0

2.0887 0.0505 /4

5.7691 0.1497 /2

6.1600 0.2488 3 /4
7.7913 0.3480 0

10.1252 0.4472 -

15.2786 0.5464 -
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Table 2. Sensitivity of variables for the first hour of the Algeria scenario. Upper and lower ranges for

90 % accuracy are given.

Variable Lower limit  Upper limit  Observed
Wind magnitude —2.0423 9.3860 4.3454
Current magnitude 0.0065 0.1130 0.0653
Wind angle —2.5844 —0.2280 —1.5202
Current angle —1.7279 —0.6605 —1.4048
Spill size 163.2 NA 680
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Figure 7. Monte-Carlo simulation of the Algeria test case contoured by cell frequency, 1000 iterations,

1 h simulation.
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Figure 8. Monte-Carlo simulation of the Algeria test case contoured by cell frequency, 10000 iterations,

1 h simulation.
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Figure 9. Monte-Carlo simulation of the Algeria test case contoured by cell frequency, 100000 iterations,

1 h simulation.
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