A mimetic, semi-implicit, forward-in-time,
. finite volume shallow water model: .
comparison of hexagonal-icosahedral and cubed sphere grids

Reply to reviewers
J. Thuburs C. J. Cottef T. Dubo$

We repeat here the responses to reviewers given in theatiteraiscussion.

Reviewer 1
We thank the reviewer for their positive and constructivenogents on the manuscript.

1. Special handling on the cube edged\e use no special handling near the cube edges, or
near the pentagons on the hexagonal-icosahedral grid. &éedmphasized this in the revised
manuscipt at the end of section 2.) The scheme presentedastesdly an unstructured grid
scheme; part of the purpose of the work is to investigaterttnmsic performance of the scheme
on different grids with no special handling of particulaidgregions.

2. The necessary globally-implicit operation would then beyvieefficient in parallel... It
has been widely feared that the solution of global elliptichfems needed for implicit time
integration would be inefficient and scale poorly on maggiparallel computers, and this has
led most recent model development efforts to opt for a HEVrigontally explicit vertically
implicit) approach. However, there is growing evidence(eHeikes et al. 2013, Mler and
Scheichl 2014) that elliptic problems can be solved effityeaind scalably in parallel. We have
mentioned this in the revised manuscript (section 4, penate paragraph).

3. Are there any plans for some sort of monotonicity or posytieinforcement?There exist
limiters, guaranteeing local boundedness of advecteditraixing ratio, that could be used with
the advection scheme presented in section 5 and that wousttdaghtforward to implement
(e.g. Thuburn 1996 and improvements by Miura 2013). We hataised them here simply
because there was no evidence that they were necessangtdsts. Nevertheless, we have
added these two references to section 5.7.

...Is there any explicit artificial dissipation,...The only dissipation mechanism in the model is
the inherent dissipation in the upwind advection schemseation 2 we have referred the reader
to work by Kent and colleagues for a discussion of the effetthis dissipation on energy and
potential enstrophy cascades. Apart from this, no othermhsion mechanism (either explicit or
inherent in the numerics) is needed to maintain stabilityparontrol dispersion errors or other
numerical sources of noise. This is now emphasized in se2tad the revised manuscript, after
the list of desirable properties

Minor comments

4. Many figures are hard to read.Apologies for this. This was partly due to the change in
format between the preprint and the online version. We hayaved figure 6 as suggested.

5. (Specification of grid resolutionfhis is largely a matter of what you’re accustomed to.
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Some of us find the “C90” notation for the cubed sphere nontiw&i The important point is
that Table 1 allows the reader to quickly covert between remolb cells, degrees of freedom,
and grid spacing.

6. Why is the KE term treated as a backwards terrApart from the advective fluxes, the
scheme is essentially a Crank-Nicolson scheme. Thus, thelkis treated in a centred time-
averaged way (not really backwards). In particular, theesoh is actually quite different in
detail from the Lin-Rood (1997) scheme, though it sharesrtigoirtant property of computing
the nonlinear Coriolis term as a vorticity or potential voity flux.

7. Why build the stencils iteratively®ne could write down the stencil explicitly by hand
for particular cases. However, for higher degree polynofitea(requiring large stencils) near
pentagons or cube corners, there are many cases that waddimde considered, and the
process would become tedious (and error prone!) The Weratheme is very general and
easily automated, and appears to produce reasonablelsterall cases tested. Note that the
stencils are generated once at the start of a run, so costénssue.

8. Have you done the test of a spatially-uniform tracer field inan-divergent flow?Yes,
we have done the test. An initially uniform tracer densitynaéns uniform in a non-divergent
flow, and an initially uniform tracer mixing ratio remainsitorm in any flow, on both the
primal and dual grids. In the revised manuscript (secti@) e mention that these two design
requirements are verified in tests. See also the reply to Revi@ in the interactive discussion.

9. Tables 6 and 7, ...convergence ratQualitative rough estimates of the convergence rate are
already given in the text for both cases. The resolutiongdeare not high enough to obtain
clean estimates of the asymptotic convergence rate.

10. Could a couple of different resolutions be showidble 6 already shows how various
error norms depend on resolution. Note that grid imprintngrs are nothing but numerical
truncation errors whose pattern happens to reflect the lymuggrid structure.

11. Angle of the flow in test case Zhe default grid orientation (as noted in section 1.2) is
used; i.e., pentagons at the poles on the hexagonal grid;ubelcorners at latitude /4 on
the cubed sphere, and the flow parallel to the equator.

12. ... measures of the error ... may have little meaningAll.the evidence (from our models
and others in the literature) implies that the soluttwesconverge with finer space and time
resolution, (and to the same solution for different modesplying that the error measurase
meaningful.

13. ... is the maintenance of sharp filaments and gradients autpnsequence of mimetic
properties?First and foremost, these properties come from the advestbeme; as you note,
such behaviour is typical of finite volume schemes. (The nicy@operties do help to ensure
that when we insert the PV fluxes in the momentum equatiorRthe/e diagnose does indeed
evolve in a way consistent with those fluxes.)

14. Does the mimetic scheme conserve energy better than (saylsBMB? The results for
available energy and potential enstrophy are very siml&@NDGame (for interest, see figure 1
of the reply to Reviewer 1 in the interactive discussion). Triteerent dissipation due to the
semi-Lagrangian advection scheme used in ENDGame is eegoerbe similar in its magnitude
and scale dependence to that due to the finite volume aduesttieme: both are (quasi-) third-
order upwind schemes. The similarity to ENDGame is mentianghe revised manuscript at
the end of section 6.6.



15. Use same contour interval in all paneBigure 6 has been replotted to use the same contour
interval in all panels and to indicate the position of the m@ain.

16. 1 would be interested in seeing the Rossby-Haurwitz wawe fact the mimetic properties

do not really help the model to hang on to a steady (or stegddpagating) but dynamically
unstable solution such as the Rossby-Haurwitz wave. Thenbation introduced by grid im-

printing is enough to trigger the dynamical instability. ndar thing happens in the Galewsky
test case, so we decided against showing results from théRétsurwitz wave. In the revised
manuscript we have expanded the discussion of the Galevesiy(énd of section 6.7) and
mentioned that similar grid-triggering of instability lfzgns for the Rossby-Haurwitz wave.

17. ... initializing with a fully-backward method ... yields a tegtresult... We must be care-
ful with our interpretation here. The test case as thoseoasittiefined it does include large
amplitude gravity waves (which are deterministic and rdpaible at high enough resolution)
generated by the initial condition. The correct result ¢fere includes those gravity waves.
However, here we want to know whether there is any spurionsrgéion of gravity waves by
the numerics. To see this, we must modify the test case to daenmitial condition gravity
waves, which would otherwise mask any numerically gendratees. We do agree that it is
important to understand the degree of initial balance orliaatice, even in such idealized test
cases; we have seen the consequences of imbalance boghtesttand in the isolated mountain
test case!

Reviewer 2 (Dr Gaf3mann)
We are grateful to Dr Galdmann for her comments on the mapascri

We agree that the extension of the proposed approach to dimesnsions is far from easy
(though this is probably true of all suitable numerical noel$). Dr Galimann highlights two
particularly interesting and challenging aspects.

1. We are aware of Dr Gal3mann’s very interesting work on thiéingsworth instability (ref-
erence given in the interactive discussion for others ¥alg the discussion). The instability
can affect schemes, like ours, that are based on the veetmiant form of the equations. In
particular, our scheme has much in common with the TRSK sclileatenanifests the instabil-
ity presented in her paper. However, as she says, unfodiyrtae instability does not arise in
the shallow water case; at the same time, a complete andnmamgianalysis on paper remains
elusive. Thus, the issue is hard to explore except throughenigal experimentation with a
three-dimensional dynamical core.

We are currently working on extending our approach to 3D, wadvill certainly be looking
out for signs of this instability. It is possible that ensgiaccurate PV advection will eliminate
or minimize the problem. Alternatively, it is possible thlé mimetic finite element approach
(which has much in common with the scheme we describe hetemipuoved accuracy) will
eliminate or minimize the problem. However, if the instabildoes arise we will certainly
explore the modifications suggested by Galimann (2013).

2. The second topic raised is extremely difficult and comphexeast conceptually, we can dis-
tinguish between (a) dissipation mechanisms needed tokeeylel stable, and (b) dissipation
mechanisms intended to represent real physical processasogrid scales. (In practice it may
not be so easy to separate these two.) Regarding (a), our asknefrly-energy-conserving



spatial discretization combined with a Crank-Nicolsondshime scheme gives us stability
without the need for additional ad hoc dissipation.

Issue (b) can be further dissected into the related questibf)) what is an appropriate form of
the subgrid model, and (ii) whether and how to conserve toatatgy.

On (i), the results of Kent et al. indicate that upwind adwmtbf (potential) vorticity gives us
least a partial implicit sugbrid model in the vortex-dontgtaenstrophy cascade regime, and itis
plausible that this will remain true in 3D; this is the appbave have used. Smagorinsky-type
schemes are widely used and accepted for LES of 3D turbukangde as that in the planetary
boundary layer. Although they are also used on larger stalasnospheric modelling, their
justification is less clear; they might not be sufficienthalseselective, and they might not
capture processes such as gravity wave energy cascadental feollapse, which might be
relevant in thek—>/3 energy spectrum range. We think the choice of suitable stibgpdels in
these regimes is an open research question. Neverthadess,ferm of eddy momentum flux
tensort is a plausible approach. tfis to depend on the rate of strain tensor then the referee
makes the valid point that, on the hexagonal C-grid (and afhgrids in general), although
the divergence and vorticity have natural, simple and catgproximations in terms of the
velocity, the other components of the rate of strain tensonat; then the most suitable form
for use in estimating is not obvious.

On (ii), as the referee says, some climate modellers congitieghly desirable to be able to
close the energy budget. To do this, we must fully includeeaéirgy source and sink terms in
our governing equations (thev - Ot and—t1 - -[v terms mentioned by the referee). We must
also either use fully energy conserving numerics (which e@ye at a price, e.g. in terms of
advective dispersion errors), or keep track of all energgidated by the numerics (which is
difficult in practice) and restore it somehow. This is corogled by the fact that numerical
dissipation (and also dissipation by subgrid models) isrofixcessive and at too large scale,
raising the question of in what form to restore the lost epéirgternal or kinetic, rotational or
divergent ...?) and at what scales.

Moreover, energy is a nonlinear function of the prognostigables usually used, and so has un-
resolved as well as resolved contributions. The equaticrgtioned in the referee’s comment
(poiK = ... —v-Ut, potEint = ... — 1--0v) assume that sources and sinks of the unresolved
contribution are instantaneously in balance; a more compteatment would carry a prog-
nostic equation for the unresolved contribution with segrand sinks that need not balance
instantaneously.

The referee suggests that we might mention possible 3D aj@vent of the scheme in the
manuscript, particularly the Smagorinsky diffusion terdowever, as is clear from the above
(and we have barely scratched the surface!), we could nailggsio justice to such a vast and
complex topic. We therefore prefer to leave such discussianother place where it can be
treated more completely.

Reviewer 3 (Dr Ullrich)
We thank Dr Ullrich for his positive comments on the manysicri

1. Scalability. Yes indeed, all serious model development efforts are gordeabout scala-
bility! Something of the order of 1000 columns per processerthe sort of numbers we hear



talked about before models start to run out of scalabiliti€ther or not they require elliptic
solves). We are encouraged by the results aflét and Scheichl (2014) for geometric multi-
grid, particularly as the elliptic problem that arises fronplicit time stepping has an inherent
length scalesAt (csis the sound speed), so that, unlike the Poisson probleragblyHeikes et
al. (2013), we only need 3 levels of coarsening, thus avoiding the need to gatherdaesened
domains onto a smaller number of processors.

2. Stability. In short, we don’t have a simple answer to this question. Q@elg one could
ask why is the scheme stable at all. Although a Crank-Nicolssstment of linear fast waves
is unconditionally stable, and the advection scheme in 1f&able for Courant numbers up to
1, it is not immediately obvious that the two, combined in tey we have done, should be
stable — that is why we did the normal mode stability analyg¥e should emphasize that for
advective Courant numbers between 0.75 and 1 the instabilibyth rate is extremely small.
Moreover, in 2D on irregular grids there are no analyticargumtees about the stability limit of
the advection scheme on its own, but practical experienggesis it is very close to 1. (If a
flux limiter were used then stability of the advection schemeld be guaranteed for advective
Courant numbers up to 1).

3. Advection and grid imprintingWe agree that the cosine bell test is not the most challenging
for advection schemes. However, the test suggested byfdgreeds actually just a consistency
check for the way we have formulated our advection schenwi¢es 5.7 and 5.8). A tracer
initialized on the primal grid to be the same@semains the same asthereafter. Initializing

a tracer on the dual grid by averaging the primal grigsing equation (28) and then advecting
it gives the same result as advecting the primal gr{dr the@-like tracer) and then averaging
the result to the dual grid using (28). Figures 1-3 in theratve discussion confirm this for
the barotropic instability test. Since Reviewer 1 also izgoint about tracer advection and
preservation of constant mixing ratio, we have added aeatar to the importance of mass-
tracer consistency at the end of section 5.8.

Around the time we submitted the paper we were concernedatt@mtracy of the advection
scheme, linked to grid imprinting errors, was the primaryssof the errors seen in in the
barotropic instability test case. In particular, the patagram approximation of the swept
areas might be inaccurate in strongly sheared flow, as steghbg Ullrich et al. (2013). We
therefore extended the advection scheme to use more genadilateral swept areas (but still
with straight edges). It made no difference to the resultsitier investigation (switching off
the initial height perturbation and looking at the step by revealed that the primary source
of errors was the perp operator, which gives the mass fluxexs tasadvect potential vorticity.
Thus the errors do take on a grid imprinting pattern, but amiog not from the advection
scheme itself but from the mass fluxes input to the advectiberse. These tests were actually
done with a finite element model that uses the same advediwmee but has a consistent perp
operator; even so, grid imprinting in the perp operator appto be the factor limiting accuracy
in the bartropic instability test. For the finite volume mbdescussed in the paper, with its
inconsistent perp operator, it would be surprising if thts bt remain true.



