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Reply to reviewers
J. Thuburn1 C. J. Cotter2 T. Dubos3

We repeat here the responses to reviewers given in the interactive discussion.

Reviewer 1

We thank the reviewer for their positive and constructive comments on the manuscript.

1. Special handling on the cube edges...We use no special handling near the cube edges, or
near the pentagons on the hexagonal-icosahedral grid. (We have emphasized this in the revised
manuscipt at the end of section 2.) The scheme presented is essentially an unstructured grid
scheme; part of the purpose of the work is to investigate the intrinsic performance of the scheme
on different grids with no special handling of particular grid regions.

2. The necessary globally-implicit operation would then be very inefficient in parallel... It
has been widely feared that the solution of global elliptic problems needed for implicit time
integration would be inefficient and scale poorly on massively parallel computers, and this has
led most recent model development efforts to opt for a HEVI (horizontally explicit vertically
implicit) approach. However, there is growing evidence (e.g., Heikes et al. 2013, M̈uller and
Scheichl 2014) that elliptic problems can be solved efficiently and scalably in parallel. We have
mentioned this in the revised manuscript (section 4, penultimate paragraph).

3. Are there any plans for some sort of monotonicity or positivity enforcement?There exist
limiters, guaranteeing local boundedness of advected tracer mixing ratio, that could be used with
the advection scheme presented in section 5 and that would bestraightforward to implement
(e.g. Thuburn 1996 and improvements by Miura 2013). We have not used them here simply
because there was no evidence that they were necessary in these tests. Nevertheless, we have
added these two references to section 5.7.

...is there any explicit artificial dissipation,...?The only dissipation mechanism in the model is
the inherent dissipation in the upwind advection scheme; insection 2 we have referred the reader
to work by Kent and colleagues for a discussion of the effectsof this dissipation on energy and
potential enstrophy cascades. Apart from this, no other dissipation mechanism (either explicit or
inherent in the numerics) is needed to maintain stability orto control dispersion errors or other
numerical sources of noise. This is now emphasized in section 2 of the revised manuscript, after
the list of desirable properties

Minor comments

4. Many figures are hard to read...Apologies for this. This was partly due to the change in
format between the preprint and the online version. We have improved figure 6 as suggested.

5. (Specification of grid resolution)This is largely a matter of what you’re accustomed to.
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Some of us find the “C90” notation for the cubed sphere non-intuitive! The important point is
that Table 1 allows the reader to quickly covert between number of cells, degrees of freedom,
and grid spacing.

6. Why is the KE term treated as a backwards term?Apart from the advective fluxes, the
scheme is essentially a Crank-Nicolson scheme. Thus, the KE term is treated in a centred time-
averaged way (not really backwards). In particular, the scheme is actually quite different in
detail from the Lin-Rood (1997) scheme, though it shares the important property of computing
the nonlinear Coriolis term as a vorticity or potential vorticity flux.

7. Why build the stencils iteratively?One could write down the stencil explicitly by hand
for particular cases. However, for higher degree polynomial fits (requiring large stencils) near
pentagons or cube corners, there are many cases that would need to be considered, and the
process would become tedious (and error prone!) The iterative scheme is very general and
easily automated, and appears to produce reasonable stencils in all cases tested. Note that the
stencils are generated once at the start of a run, so cost is not an issue.

8. Have you done the test of a spatially-uniform tracer field in anon-divergent flow?Yes,
we have done the test. An initially uniform tracer density remains uniform in a non-divergent
flow, and an initially uniform tracer mixing ratio remains uniform in any flow, on both the
primal and dual grids. In the revised manuscript (section 5.8) we mention that these two design
requirements are verified in tests. See also the reply to Reviewer 3 in the interactive discussion.

9. Tables 6 and 7, ...convergence rate...Qualitative rough estimates of the convergence rate are
already given in the text for both cases. The resolutions tested are not high enough to obtain
clean estimates of the asymptotic convergence rate.

10. Could a couple of different resolutions be shown?Table 6 already shows how various
error norms depend on resolution. Note that grid imprintingerrors are nothing but numerical
truncation errors whose pattern happens to reflect the underlying grid structure.

11. Angle of the flow in test case 2.The default grid orientation (as noted in section 1.2) is
used; i.e., pentagons at the poles on the hexagonal grid, andcube corners at latitude±π/4 on
the cubed sphere, and the flow parallel to the equator.

12. ... measures of the error ... may have little meaning, ...All the evidence (from our models
and others in the literature) implies that the solutiondoesconverge with finer space and time
resolution, (and to the same solution for different models), implying that the error measuresare
meaningful.

13. ... is the maintenance of sharp filaments and gradients trulya consequence of mimetic
properties?First and foremost, these properties come from the advection scheme; as you note,
such behaviour is typical of finite volume schemes. (The mimetic properties do help to ensure
that when we insert the PV fluxes in the momentum equation, thePV we diagnose does indeed
evolve in a way consistent with those fluxes.)

14. Does the mimetic scheme conserve energy better than (say) ENDGame? The results for
available energy and potential enstrophy are very similar in ENDGame (for interest, see figure 1
of the reply to Reviewer 1 in the interactive discussion). Theinherent dissipation due to the
semi-Lagrangian advection scheme used in ENDGame is expected to be similar in its magnitude
and scale dependence to that due to the finite volume advection scheme: both are (quasi-) third-
order upwind schemes. The similarity to ENDGame is mentioned in the revised manuscript at
the end of section 6.6.

2



15. Use same contour interval in all panels. Figure 6 has been replotted to use the same contour
interval in all panels and to indicate the position of the mountain.

16. I would be interested in seeing the Rossby-Haurwitz wave,...In fact the mimetic properties
do not really help the model to hang on to a steady (or steadilypropagating) but dynamically
unstable solution such as the Rossby-Haurwitz wave. The perturbation introduced by grid im-
printing is enough to trigger the dynamical instability. A similar thing happens in the Galewsky
test case, so we decided against showing results from the Rossby-Haurwitz wave. In the revised
manuscript we have expanded the discussion of the Galewsky test (end of section 6.7) and
mentioned that similar grid-triggering of instability happens for the Rossby-Haurwitz wave.

17. ... initializing with a fully-backward method ... yields a better result... We must be care-
ful with our interpretation here. The test case as those authors defined it does include large
amplitude gravity waves (which are deterministic and reproducible at high enough resolution)
generated by the initial condition. The correct result therefore includes those gravity waves.
However, here we want to know whether there is any spurious generation of gravity waves by
the numerics. To see this, we must modify the test case to dampthe initial condition gravity
waves, which would otherwise mask any numerically generated ones. We do agree that it is
important to understand the degree of initial balance or imbalance, even in such idealized test
cases; we have seen the consequences of imbalance both in this test and in the isolated mountain
test case!

Reviewer 2 (Dr Gaßmann)

We are grateful to Dr Gaßmann for her comments on the manuscript.

We agree that the extension of the proposed approach to threedimensions is far from easy
(though this is probably true of all suitable numerical methods). Dr Gaßmann highlights two
particularly interesting and challenging aspects.

1. We are aware of Dr Gaßmann’s very interesting work on the Hollingsworth instability (ref-
erence given in the interactive discussion for others following the discussion). The instability
can affect schemes, like ours, that are based on the vector invariant form of the equations. In
particular, our scheme has much in common with the TRSK schemethat manifests the instabil-
ity presented in her paper. However, as she says, unfortunately the instability does not arise in
the shallow water case; at the same time, a complete and convincing analysis on paper remains
elusive. Thus, the issue is hard to explore except through numerical experimentation with a
three-dimensional dynamical core.

We are currently working on extending our approach to 3D, andwe will certainly be looking
out for signs of this instability. It is possible that ensuring accurate PV advection will eliminate
or minimize the problem. Alternatively, it is possible thatthe mimetic finite element approach
(which has much in common with the scheme we describe here, but improved accuracy) will
eliminate or minimize the problem. However, if the instability does arise we will certainly
explore the modifications suggested by Gaßmann (2013).

2. The second topic raised is extremely difficult and complex. At least conceptually, we can dis-
tinguish between (a) dissipation mechanisms needed to keepa model stable, and (b) dissipation
mechanisms intended to represent real physical processes on subgrid scales. (In practice it may
not be so easy to separate these two.) Regarding (a), our use ofa linearly-energy-conserving
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spatial discretization combined with a Crank-Nicolson-based time scheme gives us stability
without the need for additional ad hoc dissipation.

Issue (b) can be further dissected into the related questions of (i) what is an appropriate form of
the subgrid model, and (ii) whether and how to conserve totalenergy.

On (i), the results of Kent et al. indicate that upwind advection of (potential) vorticity gives us
least a partial implicit sugbrid model in the vortex-dominated enstrophy cascade regime, and it is
plausible that this will remain true in 3D; this is the approach we have used. Smagorinsky-type
schemes are widely used and accepted for LES of 3D turbulencesuch as that in the planetary
boundary layer. Although they are also used on larger scalesin atmospheric modelling, their
justification is less clear; they might not be sufficiently scale-selective, and they might not
capture processes such as gravity wave energy cascade or frontal collapse, which might be
relevant in thek−5/3 energy spectrum range. We think the choice of suitable subgrid models in
these regimes is an open research question. Nevertheless, some form of eddy momentum flux
tensorτ is a plausible approach. Ifτ is to depend on the rate of strain tensor then the referee
makes the valid point that, on the hexagonal C-grid (and otherC-grids in general), although
the divergence and vorticity have natural, simple and compact, approximations in terms of the
velocity, the other components of the rate of strain tensor do not; then the most suitable form
for use in estimatingτ is not obvious.

On (ii), as the referee says, some climate modellers consider it highly desirable to be able to
close the energy budget. To do this, we must fully include allenergy source and sink terms in
our governing equations (the−v ·∇τ and−τ · ·∇v terms mentioned by the referee). We must
also either use fully energy conserving numerics (which maycome at a price, e.g. in terms of
advective dispersion errors), or keep track of all energy dissipated by the numerics (which is
difficult in practice) and restore it somehow. This is complicated by the fact that numerical
dissipation (and also dissipation by subgrid models) is often excessive and at too large scale,
raising the question of in what form to restore the lost energy (internal or kinetic, rotational or
divergent ...?) and at what scales.

Moreover, energy is a nonlinear function of the prognostic variables usually used, and so has un-
resolved as well as resolved contributions. The equations mentioned in the referee’s comment
(ρ∂tK = . . .− v ·∇τ, ρ∂tEint = . . .− τ · ·∇v) assume that sources and sinks of the unresolved
contribution are instantaneously in balance; a more complete treatment would carry a prog-
nostic equation for the unresolved contribution with sources and sinks that need not balance
instantaneously.

The referee suggests that we might mention possible 3D development of the scheme in the
manuscript, particularly the Smagorinsky diffusion term.However, as is clear from the above
(and we have barely scratched the surface!), we could not possibly do justice to such a vast and
complex topic. We therefore prefer to leave such discussionto another place where it can be
treated more completely.

Reviewer 3 (Dr Ullrich)

We thank Dr Ullrich for his positive comments on the manuscript.

1. Scalability. Yes indeed, all serious model development efforts are concerned about scala-
bility! Something of the order of 1000 columns per processorare the sort of numbers we hear
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talked about before models start to run out of scalability (whether or not they require elliptic
solves). We are encouraged by the results of Müller and Scheichl (2014) for geometric multi-
grid, particularly as the elliptic problem that arises fromimplicit time stepping has an inherent
length scalecs∆t (cs is the sound speed), so that, unlike the Poisson problem solved by Heikes et
al. (2013), we only need∼ 3 levels of coarsening, thus avoiding the need to gather the coarsened
domains onto a smaller number of processors.

2. Stability. In short, we don’t have a simple answer to this question. Conversely, one could
ask why is the scheme stable at all. Although a Crank-Nicolsontreatment of linear fast waves
is unconditionally stable, and the advection scheme in 1D isstable for Courant numbers up to
1, it is not immediately obvious that the two, combined in theway we have done, should be
stable – that is why we did the normal mode stability analysis. We should emphasize that for
advective Courant numbers between 0.75 and 1 the instabilitygrowth rate is extremely small.
Moreover, in 2D on irregular grids there are no analytical guarantees about the stability limit of
the advection scheme on its own, but practical experience suggests it is very close to 1. (If a
flux limiter were used then stability of the advection schemecould be guaranteed for advective
Courant numbers up to 1).

3. Advection and grid imprinting.We agree that the cosine bell test is not the most challenging
for advection schemes. However, the test suggested by the referee is actually just a consistency
check for the way we have formulated our advection scheme (sections 5.7 and 5.8). A tracer
initialized on the primal grid to be the same asφ remains the same asφ thereafter. Initializing
a tracer on the dual grid by averaging the primal gridφ using equation (28) and then advecting
it gives the same result as advecting the primal gridφ (or theφ-like tracer) and then averaging
the result to the dual grid using (28). Figures 1-3 in the interactive discussion confirm this for
the barotropic instability test. Since Reviewer 1 also raised a point about tracer advection and
preservation of constant mixing ratio, we have added a reference to the importance of mass-
tracer consistency at the end of section 5.8.

Around the time we submitted the paper we were concerned thataccuracy of the advection
scheme, linked to grid imprinting errors, was the primary cause of the errors seen in in the
barotropic instability test case. In particular, the parallelogram approximation of the swept
areas might be inaccurate in strongly sheared flow, as suggested by Ullrich et al. (2013). We
therefore extended the advection scheme to use more generalquadrilateral swept areas (but still
with straight edges). It made no difference to the results! Further investigation (switching off
the initial height perturbation and looking at the step 1 errors) revealed that the primary source
of errors was the perp operator, which gives the mass fluxes used to advect potential vorticity.
Thus the errors do take on a grid imprinting pattern, but are coming not from the advection
scheme itself but from the mass fluxes input to the advection scheme. These tests were actually
done with a finite element model that uses the same advection scheme but has a consistent perp
operator; even so, grid imprinting in the perp operator appears to be the factor limiting accuracy
in the bartropic instability test. For the finite volume model discussed in the paper, with its
inconsistent perp operator, it would be surprising if this did not remain true.
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