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Abstract

We explore the use of dry total energy norm in improving numerical weather prediction (NWP)
model forecast skill. The Ensemble Prediction and Parameter Estimation System (EPPES) is
utilized to estimate ECHAM5 atmospheric GCM closure parameters related to clouds and pre-
cipitation. The target criterion in the optimization is the dry total energy norm of three-day5

forecast error with respect to the ECMWF operational analyses. The results are summarized as
follows: (i) forecast error growth in terms of energy norm is slower in the optimized than in the
default model up to day ten forecasts (and beyond), (ii) headline forecast skill scores are im-
proved in the training sample as well as in independent samples, (iii) the decrease of the forecast
error energy norm at day three is mainly because of smaller kinetic energy error in the tropics,10

and (iv) this impact is spread into mid-latitudes at longer ranges and appears as smaller forecast
error of potential energy. The interpretation of these results is that the parameter optimization
has reduced the model error so that the forecasts remain longer in the vicinity of the analyzed
state.

1 Introduction15

Tuning of closure parameters in atmospheric modeling is a recurring topic. In research, the aim
is to improve physical realism of sub-grid scale physical processes and to maintain or improve
the general model behavior, such as reproduction of observed variability. In operational applica-
tions, such as numerical weather prediction (NWP), the aim is also to increase predictive skill.
Tuning procedures in modeling are predominantly manual and there are no generally applicable20

or accepted algorithmic tools in everyday use. One reason is that in multi-scale and multi-phase
systems the model response to closure parameter variations is very non-linear and general non-
stationary inverse problem tools can fail. Therefore results may be promising in idealized cases
but this does not seem to carry-on to more demanding real-world estimation cases. This diffi-
culty is nicely illustrated in Schirber et al. (2013) where the inverse problem realism is gradually25

increased from synthetic to fully realistic estimation in case of an atmospheric general circu-
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lation model. The parameter-augmented state filter works well in an idealized setup but is less
successful in realistic estimation cases.

The aim of this paper is by no means to declare that a final solution has been found to this
generic problem. Some success has nevertheless been obtained by applying the so-called En-
semble Prediction and Parameter Estimation System (EPPES; Järvinen et al., 2012; Laine et al.,5

2012). We have reported earlier (Ollinaho et al., 2013a) that the EPPES algorithm is able to rec-
ognize models with superior performance with respect to a given target criterion, even in case
of a highly tuned system of full complexity, such as the Integrated Forecasting System (IFS) of
the European Centre for Medium-Range Weather Forecasts (ECMWF). EPPES is thus clearly
a good candidate for a general-purpose tuning algorithm. The remaining key question is the10

definition of a proper target, the optimization of which can lead to a univocal improvement of
the model performance. Targeting improvements in all model fields would assure a model-wide
improvement, but construction of correct weights for the all the variables would be impractical.
On the other hand, a too simple target is not likely to lead to a univocally improved model. This
paper presents atmospheric dry total energy norm as a target for model optimization. In recent15

years, various energy norms have appeared in NWP literature mainly in the context of seeking
the fastest growing structures to be used as initial state perturbations in ensemble prediction
systems (e.g. Farrel, 1988; Palmer et al., 1994; Errico, 2000), as well as in forecast sensitivity
studies (e.g. Gelaro et al., 1998; Orrell et al., 2001; Mitchell et al., 2002). Here we apply the dry
total energy norm in the opposite sense of the former: we seek a model which tends to have the20

slowest possible forecast error growth in terms of dry total energy norm. As the energy norm is
computed as an integral over the entire model atmosphere, it is not selective to any particular
model variable, level, or geographical region. It is thus a potentially powerful target.

2 Experiment configuration

The ECHAM5.4 atmospheric general circulation model (Roeckner et al., 2003) is used here25

with a coarse horizontal resolution of T42 and 31 vertical layers, the model top being at 10
hPa. We consider the same four closure parameters (Table 1) that were estimated in Ollinaho
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et al. (2013b), and studied in Järvinen et al. (2010). These influence parametrized clouds and
precipitation, and, even though considered here only from the NWP viewpoint, they are also of
great interest when considering the model climatology.

A more complete description of the ensemble prediction system (EPS) emulator is given in
detail in Ollinaho et al. (2013b). A concise overview is provided in the following: The opera-5

tional ensemble of initial states produced by ECMWF EPS (ENS) has been used to generate
initial uncertainties. 50 perturbed initial states, as well as the control state, are used for twice-
daily (00 and 12 UTC) forecasts over a period of three months (January to March 2011). The
initial-time parameter variations, sampled via the EPPES algorithm, represent the model error.

The Ensemble Prediction and Parameter Estimation System (EPPES) algorithm was intro-10

duced in Laine et al. (2012), who also demonstrated the algorithm use with a stochastic version
of the Lorenz-95 model (Lorenz, 1996; Wilks, 2005). The EPPES algorithm approaches the
problem of estimating model parameters θ by assuming it to be a realization from a background
parameter uncertainty distribution that is approximated by a multivariate Gaussian distribution,
with a mean vector µ (of dimension p) and a p×p covariance matrix Σ. For each time window15

i, the optimal parameters, θi, are a sample from this distribution as

θi ∼N(µ,Σ), i= 1,2, ... (1)

The estimation problem is thus shifted to estimating these unknown, but static in time, dis-
tribution parameters (or, hyper-parameters). The mean of the distribution µ corresponds to pa-
rameter values that perform best on average considering all weather types, seasons, etc., and Σ20

indicates how much these values vary between time windows due to inaccurate parametrization
schemes and other modeling errors. Thus, Σ provides objective information about uncertainties
related to the estimated parameters.

The algorithm first draws a sample from an initial distribution, and these parameter values
are used in an ensemble of forecasts. The likelihood of each forecast is then evaluated with25

respect to given criteria, and each parameter vector is weighted by the likelihood. A re-sample
is drawn from the weighted parameter sample, favoring parameter values associated with high

4



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

likelihood (known as importance sampling). Finally, the hyper-parameters µ and Σ are updated
with the weighted sample. A new sample is then drawn for the next time window from the
updated distribution. The algorithm steps can be written are as follows:

1. Initialize the hyper-parameters µ0 and Σ0. The distribution N(µ0,Σ0) acts as the prior
for θ for the first time window and as the proposal distribution for the first sample.5

2. For each time instance i, draw a sample of proposed values for the parameters θi -
call them θ̃

j
i - from the multivariate Gaussian distribution, θ̃

j
i ∼N(µi−1,Σi−1), j =

1, ...,nens, where nens is the ensemble size.

3. Using the parameters θ̃
j
i , generate an ensemble of predictions.

4. Evaluate the fit of each ensemble member with the cost function J(θ̃
j
i ) and calculate the10

importance weigths wj
i ∝ exp(−1

2J(θ̃
j
i )). Such that

nens∑
j=1

wj
i = 1.

5. Make a weighted re-sample of θ̃
j
i using the weights w(θ̃

j
i ) as θj

i , j = 1, ...,nens, and use
the sample to update the hyper-parameters (µi,Σi) by the EPPES update formulae (see
Laine et al., 2012)

6. For the next time-window i+ 1, specify the proposal distribution for parameter θi+1 as15

N(µi,Σi) and go back to step 2.

The initial distribution is defined according to expert knowledge (“Prior” in Table 2). Default
model parameter values provide practical values for µ0. The initial time parameter uncertain-
ties Σ0 can be set rather freely, though too small or too large uncertainties will slow down the
estimation process. If no prior information about parameter correlations is available, a diag-20

onal matrix can be used. The estimation process will reveal potential parameter covariances.
Parameter bounds are also set to prevent the selection of unrealistic parameter values (Table 2).
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3 Total energy norm

3.1 Target criterion

The dry total energy norm in discretized form can be written as

∆E =
1

2

p1∑
p0

∑
A

(
(∆u)2 + (∆v)2 +

cp
Tr

(∆T )2
)

dAdp+
1

2
RdTrpr

∑
A

(∆lnpsfc)
2dA. (2)

Here, u and v denote the zonal and meridional wind components, T the temperature, and lnpsfc5

the logarithmic surface pressure. ∆S indicates difference between two atmospheric states, i.e.
∆S = San−Sfc, where subscripts denote analysis (an) and model forecast (fc). cp is the specific
heat at constant pressure, Rd gas constant of (dry) air, Tr a reference temperature (280 K), pr a
reference surface pressure (1000 hPa) and dA areal element of the model grid. dp is the pressure
difference between two pressure levels, we use dp= 1 throughout the atmosphere. Thus every10

model layer has the same weight in the summation. This treatment emphasizes the surface pres-
sure term since the correct dp values in ECHAM5 with 31 vertical model levels vary between
10 - 50 hPa.

The first two terms in r.h.s of (2) (u and v) are identifiable as kinetic energy, and the third
(T ) and fourth (lnpsfc) terms as available potential energy (Lorenz, 1955, 1960). (2) can also15

be extended to include a term related to the latent energy. We have restricted this study to the
dry total energy norm. Optimal inclusion of the latent energy term requires defining a vertically
changing weighting term (see Barkmeijer et al., 2001).

The ECMWF operational analyses are used in computation of (2). The target criterion, or
cost function, for the EPPES estimation is then the forecast error from analysis, the norm being20

the dry total energy norm.

J(θ) = w∆E72(θ), (3)
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where ∆E72 denotes the energy state difference between analysis and a 72-hour forecast,
and w is a ad hoc scaling term (value of 1/6 (J/kgm2Pa)−1 is used here). The scaling term
widens or narrows down the probability density function (pdf) of the analysis field errors. It
acts to prevent (i) that the ensemble member with the best fit to the analysis would solely affect
the distribution update, and (ii) that all ensemble members would appear as likely. The 72-hour5

forecast range is selected because it is beyond the tangent-linear regime of the system and not
seriously affected by spin-up/down of model hydrology, but not yet affected by the non-linear
forecast error saturation.

3.2 Model sensitivity

We first study (i) how the model performs in terms of energy norm, and (ii) how much impact the10

initial state and parameter perturbations have on forecasts with respect to the energy norm. Fig.
1 illustrates the ensemble spread of zonal mean energy norm at 72-hour forecast range, averaged
over 15 dates (1st to 15th of January 2011). We divide the dry total energy norm (dark blue) into
surface pressure (light blue), temperature (dark green) and kinetic energy (light green) terms
in order to better understand the respective contributions to dry total energy norm variability.15

The width of the colored area represents +/- two standard deviations from the mean, i.e. thus
indicating the impact of initial state and parameter perturbations on the system. Moreover, the
mean (continuous black lines) indicates how far the forecast is from the analyses in general.

The largest mean forecast error of the dry total energy is in the mid-latitudes, especially
so in the northern hemisphere (30◦N to 60◦N), where all three energy norm terms also reach20

their individual maximum values. There is also an increased ensemble spread associated with
both of the hemispheric maxima as well as in the tropics (shifted slightly towards the summer
hemisphere). The impact of initial state and parameter perturbations separately to the spread of
dry total energy norm was also tested by running the model with only one perturbation type
active at a time. Fig. 2 shows the ensemble spread caused by the combined effect of parameter25

and initial state perturbations (thick continuous lines), as well as the independent contributions
of parameter perturbations (thin continuous lines) and initial state perturbations (dashed lines).
Spread of the dry total energy (total), and the individual spreads of surface pressure (surf pres),

7
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temperature and kinetic energy (kinetic) terms are shown. The separate contributions to the
dry total energy norm are as follows: parameter variations dominate in the tropics, initial state
perturbations dominate in the southern hemisphere, and both sources are approximately equal
in the northern hemisphere.

The surface pressure term has three mean error maxima, two in the southern hemisphere5

(22◦S and 60◦S) and a broader one in the northern hemisphere (35◦N to 57◦N). The peaks
at 22◦S and 35◦N, namely the Andes and the Himalayas regions, are caused by orographical
differences between ECHAM5 and the originally higher resolution analysis data. Ensemble
spread is the largest within the peak areas of 60◦S and 40◦N to 57◦N. The southern hemispheric
maximum is dominated by initial state perturbations, whereas in the northern hemisphere both10

perturbations have an equal effect.
The temperature term has the least spread. The mean is quite flat with respect to latitude, but

at higher latitudes the model deficiencies start to appear, especially in the northern hemisphere.
Ensemble spread of the temperature term remains relatively small at all latitudes, and is gov-
erned by the initial state perturbations in the extra-tropics and by parameter variations in the15

tropics.
The mean error in the kinetic energy term has also multiple maxima; one in the mid-latitudes

in each hemisphere, and one in the tropics. The ensemble spread is large at all latitudes. Pa-
rameter perturbations dominate the spread in the tropics and extra-tropics, while initial state
perturbations dominate in the southern mid-latitudes. In the northern mid-latitudes, initial state20

and parameter perturbations generate roughly the same amount of ensemble spread.

4 Results

4.1 Parameter evolution

The evolution of the parameter subset during 1st January to 31st March 2011 (2011JFM) is
shown in Fig. 3. The parameter perturbation distribution mean µ (continuous line), width (+/-25

two times standard deviation, thin dashed lines), and default parameter values (thick dashed

8
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line) are presented. A vertical column of markers represents a set of 50 parameter values evalu-
ated at the corresponding date, and the marker shading is indicative of the importance weight in
the distribution update. Two of the parameters (CAULOC and CPRCON) shift fairly quickly to
higher parameter values, followed by saturation. CMFCTOP and ENTRSCV on the other hand
change more conservatively throughout the evaluation period. The posterior distribution mean5

µ and standard deviation after the final iteration are given in Table 2.

4.2 Validation

4.2.1 Skill scores

To validate the parameter distributions, the model is run applying the parameter posterior mean
values. Three time periods are covered: i) the dependent period of 2011JFM, ii) an indepen-10

dent period of April 2011 (2011A), and iii) an independent period of January to March 2010
(2010JFM). We first study how the optimized model compares with respect to the target crite-
rion. Figure 4 represent the energy norm differences between the default and optimized model
for the three time periods and up to forecast day 10. Mean difference (continuous line) and the
95% confidence interval of the mean (gray vertical bars; the bar width is two times the standard15

deviation of the differences divided by the square root of number of cases) are shown. The first
thing to note is that the energy norm at forecast day three for 2011JFM is improved at the 95%
confidence level, implying that the EPPES algorithm is able to find a model that is improved
with respect to the target criterion. In fact, there is an improvement at all ranges. The energy
norm improvement is statistically significant also for forecast ranges beyond two days in the20

independent sample 2011A, and beyond five days in the three-month sample 2010JFM.
Next, the model is validated against the standard headline score of 500 hPa geopotential

height. In addition to RMSE, also Anomaly Correlation Coefficient (ACC) is shown. ACC is
a verification quantity which is sensitive to the forecast patterns. Notation is the same in Fig.
4 and 5. Positive values for both RMSE and ACC indicate where the optimized model is per-25

forming better than the default one. The RMSE scores for all three datasets are improved at
the 95% confidence level for all forecast ranges. Interestingly, the mean RMSE scores of the

9
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independent sample of 2011A are improved more than in the dependent sample. ACC scores
in the dependent sample are improved for forecast range longer than two days, statistically sig-
nificantly at forecast ranges 2.5 - 8 and 9.5 - 10 days. The ACC scores are also improved from
forecast day five onwards for the independent sample of 2011A, although this does not hold at
the 95% confidence level. For the second independent sample the ACC is mostly neutral with5

some statistically insignificant improvements for forecast range beyond seven days.

4.2.2 Scorecard

A more general validation of the model changes with the optimized parameters is provided
by a scorecard (Fig. 6). It is a concise but comprehensive presentation of a large number of
scores for various geographical regions, variables, levels, and forecast ranges. The notation is10

such that green (red) colors indicate the optimized model scoring better (worse) than the default
model. Small and large arrow heads up (down) indicate the result is significant at 95% or 99%
confidence level, respectively, for the optimized (default) model to score better. White boxes
indicate the models performing equally well.

The main features of Fig. 6 are as follows. First, RMSE scores of all forecast fields (with ex-15

ception of temperature at 100 hPa) in the northern hemisphere are improved beyond a forecast
range of two days. In the southern hemisphere the same holds at forecast ranges longer than
three and a half days. ACC scores in the northern hemisphere closely follow those of RMSE,
whereas, in the southern hemisphere, wind fields at 2.5 - 4.5 day range and cloud cover at upper
levels differ from their respective RMSE improvements. There is a general tropical improve-20

ment in RMSE scores, with the exception of geopotential height at forecast range 3 - 7 days
at 1000 and 850 hPa levels, temperature at 100 hPa level, and surface temperature. The tropi-
cal ACC scores are affected similarly to the RMSE scores, the exception being cloud fraction,
which is negatively affected at nearly all forecast ranges.

10
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4.2.3 Geographical validation

Next, the geographical distribution of the energy norm differences between the optimized and
default model are presented. The kinetic energy mean forecast difference for day three forecasts
from 2011JFM is shown in Fig. 7. Positive values indicate where the optimized model is better
than the default model. The main improvements are concentrated in the tropics (South-East5

Asia, the western coasts of Africa and South America). A weakly positive region is close to the
Atlantic storm track. The Atlantic and Indian Oceans around 40◦S are somewhat degraded.

Figure 8 illustrates the zonally-averaged mean energy norm difference in the dependent sam-
ple (2011JFM) for forecast ranges of three, six, and ten days (Figs. 8a, b, and c, respectively).
Total energy norm (dark blue), and surface pressure (light blue), temperature (dark green) and10

kinetic energy (light green) terms are presented. Mean error (continuous black line), and the
95% confidence interval of the mean (width of the coloured area) are also shown.

At forecast day three (Fig. 8a), most of the improvements in the dry total energy take place
in the tropical belt, but there is also a favorable impact on the northern mid-latitudes (north of
45◦N). A forecast degradation is seen in the southern hemisphere (25◦S to 50◦S). In the tropics,15

the surface pressure term displays oscillations arising from orographically-induced noise as the
analysis data is at higher resolution than the forecasts, and the term stays negative excluding the
high latitudes (south of 55◦S and north of 45◦N). The temperature term displays a broad positive
signal for all latitudes. Improvements in the tropics are dominated by the kinetic energy, with
positive impacts for all latitudes expect 25◦S to 50◦S. Figure 9 represents the vertical distribu-20

tion of the zonally-averaged total EN differences between the default and optimized model. Pos-
itive values indicate where the optimized model is performing better. The tropical total EN im-
provements seen in Fig. 8a are located between 850 - 150 hPa layers. The biggest improvements
are found in the upper troposhere centered around 200 hPa, and lower in the troposhere around
700 hPa. The largest extra-tropical improvements occur between 400 - 300 hPa pressure levels.25

The southern hemispheric degradation is situated near the tropopause above 100 hPa.
At longer forecast ranges, the improvements are spread from the tropics to the mid-latitudes

and they grow larger. By the forecast day six (Fig. 8b), the largest values are at mid-latitudes

11
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and are dominated by the kinetic energy term, and later by the surface pressure term (Fig. 8c).
Note the different scale in the panels of Fig. 8.

5 Discussion

The EPPES methodology was able to find a parameter set corresponding to an improved model
with respect to the target criterion, and thus demonstrates that the algorithm works as intended.5

This improvement is not confined to the sampling period, as it is also present in the independent
sample 2011A, and to some extent also in the 2010JFM sample.

Figure 4 illustrates how the optimized model stays closer to the verifying analyses than the
default model. The energy norm is optimized at day three but the improvements are maintained
at longer forecast ranges, too, and the optimized model seems to outperform the default model10

the longer is the forecast lead time. This indicates that the optimization procedure has managed
to reduce the model error since the forecasts are launched from the same initial conditions. Fig.
8a indicates that the model error reduction primarily affects the evolution of kinetic energy in
the tropical region in the forecasts up to three days. This is likely to be because the set of four
parameters optimized here mostly impact convective circulation in the tropics. After the three15

day optimization period, the tropical kinetic energy improvements spread by non-linear model
dynamics into mid-latitudes (Fig. 8b), and begin also to appear as improvements in the distri-
bution of potential energy via the surface pressure term. Note, that there is a tropical maximum
in the kinetic energy distribution at day six (Fig. 8b). The interpretation of this maximum is
that the reduced model error continues to operate in the tropics and feeds more realistic kinetic20

energy evolution via better tropical circulation throughout the 10 day forecast range.
Ollinaho et al. (2013b) estimated the same ECHAM5 model parameters as here with the

EPPES methodology but using mean-squared forecast error of the 500 hPa geopotential height
at forecast day three and ten as a target criterion. Those experiments showed that the EPPES
methodology is capable of optimizing a given target in an atmospheric GCM of full complexity.25

The posterior mean parameter values of Ollinaho et al. (2013b) are within two standard devi-
ations of the values found here. In particular, the posterior mean of the parameter CAULOC

12
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assumes a very similar value using either of the two targets, while the parameter CPRCON
results in a value almost 1.8 times higher using 500 hPa height rather than energy norm as a
target. However, the 500 hPa skill optimized model developed a significant bias above the 500
hPa level, visible for instance as inferior 100 hPa height skill scores compared with the default
model. A scorecard presenting tropical RMSE scores of the two optimized models is shown in5

Fig. 10. Comparison of the models reveals that the version optimized using the energy norm is
superior especially with respect to the winds. One reason for this result is the ambiguity of 500
hPa skill as a target: the upper troposphere and lower stratosphere circulation is not properly
constrained and there are many model realizations (i.e. the same model structure at 500 hPa
level but different closure parameter values) that fulfill the target.10

Analysis of the model moisture fields implies that applying moist energy norm
(see e.g. Barkmeijer et al., 2001, for the formula) as the target criterion would further empha-
size the tropics in the estimation process. Contribution of the moisture term to the total EN
would be of the same order as the temperature term. We speculate that including the term into
the cost function would have a small effect on the final parameter distributions. Although, with-15

out constructing a weighting function for the moisture part we cannot predict what the magni-
tude of the impact would actually be.

Since the target criterion can be chosen quite freely, changes in specific regions can also be
targeted for optimization with the EPPES algorithm. For instance, in the current experimen-
tations with the IFS parameter variations have a rather small impact on calculated EN scores20

outside tropics. Thus, a cost function constructed from the tropical EN scores only might be
more efficient for optimization purposes.

The choice of target criterion has to be considered carefully prior to the parameter estima-
tion. Tuning of the physical processes could be done by e.g. focusing on the direct effects of the
parametrizations only, i.e. cloudiness and precipitation in this study. However, this can lead to25

models where a (seemingly) good representation is reached at the expense of other model fields.
Hence, a target criterion focusing on the model forecast skill in more general terms seems more
practical when the goal of the tuning is a univocal model improvement. The total energy norm

13
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offers a potential target for parameter optimization since it takes into account the model changes
in all model fields, and focuses on key features of the model.

6 Conclusions

This article explores the use of atmospheric dry total energy norm in improving NWP model
forecast skill. The Ensemble Prediction and Parameter Estimation System (EPPES; Järvinen5

et al., 2012; Laine et al., 2012) is utilized to estimate four ECHAM5 model parametrization
closure parameters related to clouds and precipitation. The ensemble runs are generated using
the ECHAM5 model to evolve the perturbed initial states generated by the ECMWF for their en-
semble prediction system. Here, model error is represented (and thus ensuring sufficient spread
of the ensembles) by perturbing the ECHAM5 closure parameters which are being estimated.10

The twice-daily 50 member ensembles are generated over a period of three months and each
ensemble member is used in the sequential parameter distribution update according to their re-
spective weights obtained by calculating the dry total energy norm of the three day forecast
error against the ECMWF analyses.

We first study the impact of initial state and parameter perturbations on the ensemble spread15

in terms of energy norm of three day forecast error in a sample of 30 forecasts using the default
model. On average, the forecast departures from the analyses are largest at the northern (win-
ter) hemisphere mid-latitudes. In the tropics, the ensemble spread is mostly due to parameter
variations whereas at higher latitudes initial state perturbations either dominate or are equally
important as parameter perturbations.20

The optimization is performed in a 3-month period (Jan - Mar 2011), and the optimized
model is validated with respect to the optimization criterion, typical head-line scores, and a
comprehensive scorecard. First, the optimized model is an improvement with respect to the
target criterion. Moreover, the improvement is propagated to three to ten day forecasts. Sec-
ond, head-line scores are improved in dependent and independent samples. Third, the scorecard25

shows improvements on a broad range of individual scores, such as clearly improved tropical
winds. The improvements of the energy norm are found to stem from better representation of
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tropical kinetic energy in short (up to three day) forecasts. This improvement spreads in three
to six day forecasts to mid-latitudes and starts to appear as better representation of the potential
energy distribution.

We conclude that the EPPES algorithm is a viable option in optimization of atmospheric
GCMs of full complexity. The optimization target of the algorithm can be selected rather freely.5

The dry total energy norm seems promising in this respect. Please note that the EPPES codes
used here and some examples are available on-line at http://helios.fmi.fi/˜lainema/eppes/.
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Fig. 1. Mean error and ensemble spread of zonally-averaged and areal-weighted energy norm (unit J/kg
m2 Pa) for 15 days (1st to 15th of January 2011) from +72 h forecast. Dry total energy norm (dark blue),
and individual terms; surface pressure (light blue), temperature (dark green) and kinetic energy (light
green). Continuous black line indicates the mean model error. Width of the colored area represents +/-
two standard deviations from the mean.
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Fig. 2. Ensemble spread (two times standard deviation; unit J/kg m2 Pa) at forecast day three averaged
over 30 ensembles. Spreads of dry total energy norm (total), and surface pressure (surface pres), tem-
perature and kinetic energy (kinetic) terms. Experiments with only parameter perturbations active (thin
continuous lines), only initial state perturbations active (dashed lines), and both sources of uncertainty
active (thick continuous line).
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Fig. 3. Evolution of parameter subset during 1st January 2011 to 31st March 2011. The distribution mean
µ (continuous line), +/- 2× standard deviations (thin dashed lines), and default parameter value (thick
dashed line). A vertical column of markers represents parameter values evaluated at the corresponding
date, the marker shading is indicative of the weighting in the distribution update. For clarity only every
fourth ensemble is plotted.
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(c)

Fig. 6. A forecast validation score card for 180 forecast cases between 1st January and 31st March 2011
for a) northern hemisphere, b) southern hemisphere, and c) the tropics. Forecast performance is color
coded as: green is good for the optimized model while red is good for the default model. Small (large)
arrow head indicates 95% (99%) level of statistical significance of the score difference. The 1st column
indicates the area, 2nd variable, 3rd pressure level, and 4th and 5th columns RMSE and ACC score for
forecast days 1-10.
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Fig. 7. Forecast day three kinetic energy mean difference (unit J/kg m2 Pa) of the optimized and default
model from January to March 2011. Positive values indicate improved day-three forecasts after parameter
optimization.
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Fig. 8. Zonally-averaged and areal-weighted energy norm difference (unit J/kg m2 Pa) between default
and optimized model from January to March 2011. a) Forecast day three, b) forecast day six, and c)
forecast day 10. Dry total energy norm (dark blue), and surface pressure (light blue), temperature (dark
green) and kinetic energy (light green) terms individually. Continuous black line indicates the mean error,
and width of the colored area represents the 95% confidence interval of the mean.
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Fig. 9. Pressure-latitude cross section of forecast day three zonal mean energy norm differences (unit
J/kg m2 Pa) between default and optimized model from January to March 2011. Positive values indicate
where the optimized model is performing better.
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Fig. 10. Comparison of forecast validation score cards for the tropics. Left column: model optimized
with dry total energy norm as target criterion, right column: model optimized with geopotential height
MSE at 500 hPa level as target criterion. 180 forecast cases between 1st January and 31st March 2011 .
Forecast performance is color coded as: green is good for the optimized model while red is good for the
default model. Small (large) arrow head indicates 95% (99%) level of statistical significance of the score
difference. The 1st column indicates the area, 2nd variable, 3rd pressure level, and 4th and 5th columns
RMSE scores for forecast days 1-10.
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Table 1. ECHAM5 closure parameter subset used in model optimization.

Parameter Description

CAULOC A parameter influencing the accretion of cloud droplets by precipitation
(rain formation in stratiform clouds)

CMFCTOP Relative cloud mass flux at the level above non-buoyancy
(in cumulus mass flux scheme)

CPRCON A coefficient for determining conversion from cloud water to rain
(in convective clouds)

ENTRSCV Entrainment rate for shallow convection
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Table 2. Parameter values for ECHAM5 (T42L31) in EPPES tests.

Parameter Prior Bounds Posterior

mean std. dev. mean std. dev.
CAULOC 2.0 7.0 0 - 30 10.79 4.29
CMFCTOP 0.3 0.2 0 - 1.0 0.42 0.12
CPRCON 1.5 x 10−4 4.0 x 10−3 0 - 1.5 x 10−2 3.63 x 10−3 1.43 x 10−3

ENTRSCV 3.0 x 10−4 1.0 x 10−3 0 - 5.0 x 10−3 2.12 x 10−4 0.91 x 10−4
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