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Abstract

This article presents the development and implementation of a spatio–temporal vari-
ational data assimilation system (4D-var) for the soil–vegetation–atmosphere–transfer
model “Community Land Model” (CLM3.5), along with the development of the adjoint
code for the core soil-atmosphere transfer scheme of energy and soil moisture. The5

purpose of this work is to obtain an improved estimation technique for the energy fluxes
(sensible and latent heat fluxes) between the soil and the atmosphere. Optimal assess-
ments of these fluxes are neither available from model simulations nor measurements
alone, while a 4D-var data assimilation has the potential to combine both information
sources by a Best Linear Unbiased Estimate (BLUE). The 4D-var method requires the10

development of the adjoint model of the CLM which was established in this work. The
new data assimilation algorithm is able to assimilate soil temperature and soil moisture
measurements for one-dimensional columns of the model grid. Numerical experiments
were first used to test the algorithm under idealised conditions. It was found that the
analysis delivers improved results whenever there is a dependence between the initial15

values and the assimilated quantity. Furthermore, soil temperature and soil moisture
from in situ field measurements were assimilated. These calculations demonstrate the
improved performance of flux estimates, whenever soil property parameters are avail-
able of sufficient quality. Misspecifications could also be identified by the performance
of the variational scheme.20

1 Introduction

Interaction processes between the atmosphere and the solid earth surface are one of
the examples, in which the large range of all time scales involved, from hours to cen-
turies, are of importance. The quality of both short term meteorological forecasts and
centennial runs with climate models strongly depend on the models’ ability to correctly25

simulate sensible and latent heat fluxes. However, skillful assessments of these fluxes
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over regional or global domains, or as integral quantities heat and moisture budgets,
are neither amenable by mere model simulations nor measurements. Model simula-
tions by Soil–Vegetation–Atmosphere–Transfer (SVAT) models are set up to provide
flux results on regular grids. The quality of simulations depends on moisture initial
values, temperature initial values in soil and atmosphere, as well as insolation and at-5

mospheric turbulence which are controlled by cloud and surface parameters, including
soil–vegetation properties. Misspecification of one of these quantities will result in bi-
ased flux simulations. There are also no flux measurements available which cover large
areas. Eddy covariance devices are sparse.

Rather, a combination of both information sources, models and observations, has10

the potential to optimally estimate fluxes, which are not directly observable. Neverthe-
less, advanced data assimilation can be considered a key technique to achieve best
estimates of heat and moisture fluxes (Houser et al., 2010). On the other hand, if there
are systematic discrepancies between model and data this clearly indicates deficien-
cies from at least one of these components. In this case, the identification can only be15

based on independent data of sufficient quality (Talagrand, 2010).
In meteorological applications, data assimilation is focussing on estimating optimal

initial values, tacitly assuming that available observations shall serve to analyse the
physical state of the atmosphere as the most important parameter set for the best fore-
cast. More precisely, initial values have a high impact on the forecast skill, while, at the20

same time, are insufficiently well known. In contrast, from a meteorological viewpoint,
soil data assimilation serves to provide optimal flux values of energy and moisture
fluxes as lower boundary condition of the forecast model.

Soil measurements are typically sparse. This is an incentive to apply advanced
spatio-temporal data assimilation techniques, which generally have the highest po-25

tential to exploit limited data sets (Evensen, 2007). Most prominently, these include
Kalman filtering and the 4-dimensional variational (4D-var) data assimilation scheme.
In typical soil data assimilation studies, the objective is to produce an improved, con-
tinuous land surface state estimate in space and time, from which fluxes between soil
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and atmosphere can be inferred as a secondary product. Yet fluxes are not typically
expressed as prognostic but diagnostic parameters in models.

An introduction to different data assimilation methods of SVAT models can be found
in Reichle (2008). The application of Kalman filters in soil data assimilation appears
prominently in tandem with remote sensing data assimilation. As early as Milly and5

Kabala (1986) presented an integration of models and remote sensing temperature
data using an Extended Kalman filter (EKF). Notably, numerically simulated vertical
and horizontal polarized passive microwave and thermal infrared observations were
assimilated by Entekhabi et al. (1994) into a one-dimensional soil moisture and tem-
perature diffusion model by Kalman filtering. Soil moisture profile estimates were pro-10

vided by Walker et al. (2001), assimilating near surface parameters by Kalman filtering.
A wealth of further Kalman filter studies has since then been published, demonstrating
the popularity of Kalman filtering in SVAT modelling.

In contrast to soil data assimilation, Kalman filtering has gained less attention in
the operational meteorological forecast system. Rather, the 4D-var method is consid-15

ered as the most advanced of practicable technique. This was often the motivation
to complement the meteorological part in assimilation systems by the same varia-
tional method for the soil and SVAT section. Earlier examples of adjoint SVAT models,
sometimes simplified versions, include Marais and Musson-Genon (1992), Callies et al.
(1998), Rhodin et al. (1999) and Margulis and Entekhabi (2001). As a typical meteo-20

rological objective, Mahfouf (1991) and Bouyssel et al. (1999) applied the ISBA model
and its adjoint, assessing the potential of standardised 2 m temperature observations
to improve soil humidity simulations. In the former study, weather situations with strong
direct radiative impact were selected, where a tight coupling between atmosphere and
soil prevails. Under these conditions, meteorological data proved to be especially use-25

ful to improve soils analyses. Hess et al. (2008) report a similar observational condi-
tion, and additionally used precipitation data, demonstrating improvements in forecast-
ing 2 m temperatures and atmospheric low level humidity. As a large step forward to
satellite data assimilation, Reichle et al. (2001) introduced remotely sensed brightness
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temperature for assimilation with a radiative transfer model. In very recent years, an
enhanced number of studies on energy and moisture fluxes, applying advanced data
assimilation techniques were published. These include Bateni and Entekhabi (2012),
who implemented an Ensemble Kalman smoother. The authors demonstrated that this
algorithm is an efficient and flexible data assimilation procedure that is able to extract5

useful information on the partitioning of available surface energy from land surface
temperature measurements. Although the study was not based, but results were com-
pared to a dynamic variational model, the technique eventually provides reliable esti-
mates of turbulent heat fluxes. Traditional approaches consider soil and vegetation as
a combined source, not accounting for the difference between soil and canopy tem-10

peratures and turbulent exchange rates. In contrast, Bateni and Liang (2012) consider
the markedly different behaviour and analyse the contribution of soil and canopy to the
turbulent heat fluxes separately. Soil parameter and flux estimates by remote sensing
data assimilation is another area of recent progress, mostly based on microwave sen-
sors. Hain et al. (2012) examine the assimilation of a thermal infrared product based15

on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse
(ALEXI) model and the MW-based VU Amsterdam NASA surface soil moisture product
generated with the Land Parameter Retrieval Model (LPRM).

The general objective of this study is to evaluate the estimation of fluxes of energy
and moisture between soil and atmosphere with a state of the art SVAT model, based20

on soil temperature and humidity measurements. Given the 4D-var potential, to pro-
vide physically consistent flux process simulations within an assimilation interval, with-
out disturbing intermediate corrections at instances of available data, this method is
adopted here. As underlying model, the Community Land Model (CLM), version 3.5 is
applied (Oleson et al., 2008) for this task. This model simulates complex interactions25

between soil, vegetation, and atmosphere in terms of energy and humidity, and option-
ally also the carbon-nitrogen cycle. It is a specific objective of this study, to develop the
adjoint and evaluate the potential of 4D-var for flux estimates with this sophisticated
and widely-used SVAT model, and make it available.
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The following Sect. 2 briefly describes the theoretical basis of time-variational data
assimilation. Section 3 introduces the Community Land Model and the development of
its adjoint, while Sect. 4 provides a succinct discussion on model parameter impact.
Results are comprised in Sect. 5, and Sect. 6 includes the conclusions.

2 Theory of 4D-var data assimilation5

For consistency, this section delivers a short description of the 4D-var method, as ap-
plied in the study. More comprehensive expositions in the context of general data as-
similation may be found in, for example Talagrand (1997) and Bouttier and Courtier
(1999). A general combination of data assimilation in all earth compartments can be
found in Lahoz et al. (2010).10

Data assimilation seeks to combine the following information sources, to provide
a best estimate of states or processes:

1. A priori- or background knowledge, provided by forecasts or climatological infor-
mation sources,

2. measurements of geophysical states or parameters, and15

3. knowledge of governing process dynamics, as introduced to the model code.

Advanced data assimilation methods include the solution of partial differential equa-
tions, as for example in this study, the parabolic equations of moisture and heat fluxes.
Placing emphasis on the 4D-var method, this technique is briefly described in the fol-
lowing. The promise of this approach is that a physically consistent and continuous20

state evolution estimate can be attained within an assimilation interval of choice, which
has not discontinuities at data points and times, as the Kalman filter. This is considered
as essential for flux estimates. However, the expenditure for the coding in this method
is high.
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Let x be the control vector containing the variables to be optimised, which may be
model initial conditions, model parameters, or both. The optimal state estimate, com-
monly termed as analysis xa, is found by the minimisation of a quadratic cost function
J .

J(x0) = Jb + Jo =
1
2

[x0 −xb]TB−1[x0 −xb]5

+
1
2

N∑
i=0

[H(Mi (x0))−yi ]TR−1[H(Mi (x0))−yi ], (1)

with background costs Jb and observational costs Jo. Matrix B is the background error
covariance matrix, containing the estimated errors of background knowledge and its
covariances. In this study, B is a diagonal matrix.10

Observational costs Jo measure the differences of model values and observations
over the entire assimilation interval. To compare observations yi of time step i with
the corresponding model prediction Mi (x0), the model state must be projected onto
the observation space by the observation operator H , which is linearized, if applicable.
Matrix R denotes the observation error covariance. To minimize the cost function J , the15

gradient with respect to the initial state x0 is calculated by adjoint calculus, prior to the
minimisation step, which is typically provided by quasi-Newton techniques (for example
by the L-BFGS (Limited Memory Broyden–Fletcher–Goldfarb–Shanno) algorithm (Liu
and Nocedal, 1989). The gradient ∇x0

J of total costs J reads:

∇x0
J =

∇x0
Jb︷ ︸︸ ︷

N∑
i=0

B−1[x0 −xb]+

∇x0
Jo︷ ︸︸ ︷

N∑
i=0

M∗
iH

TR−1[H(Mi (x0))−yi ] (2)20

where M∗ is the adjoint model and HT denotes the transposed linear observation oper-
ator.
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For the calculation of the gradient at initial time of the assimilation window, ∇x0
J , the

adjoint model is required, sometimes also quoted as backward model. It is the devel-
opment of this adjoint model, which renders the 4D-var method work and maintenance
intense.

This study applies the 4D-var method for individual soil columns and time. Strictly5

speaking, this results in a 2-D-var approach. As this term is typically reserved for spatial
data assimilation, the term 4D-var is used furthermore.

The adjoint model can be understood as follows: Variation δJo of observational costs
by variation of the state δxi during the i th time step is linearly approximated by

δJo ≈ 〈∇xi
J ,δxi〉 , (3)10

with 〈 · , · 〉 denoting the scalar product, and Eq. (3) the tangential-linear equation, valid
if δx is sufficiently small.

Let Mi be the the model operator, which projects the model state from time 0 to
time i , here CLM, xi =Mi (x0). Then an initial perturbation δx0 evolves to time i by
δxi ≈M ′

iδx0 .15

Introducing this to Eq. (3), we find

δJo ≈
〈
∇xi

J ,M ′
iδx0

〉
=
〈
M ′T

i ∇xi
J ,δx0

〉
. (4)

One obtains

∇x0
J =

∑
i

M ′T
i ∇xi

J =
∑
i

M∗
i ∇xi

J . (5)

Hence, by ∇xi
Jo = H′TR−1[H(xi)−yi ] and adjoint model M∗

i := H′T, the sought after20

gradient ∇x0
J of the cost function with respect of the initial values is available.

Complex models as the CLM are composed of long routines of partly several hun-
dreds of lines of code. The development of the adjoint is facilitated by adjoint compilers
(see Sect. 3.2).
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3 Model description

3.1 Community Land Model

The Community Land Model (CLM, Bonan et al., 2002b; Oleson et al., 2008) is a land
surface model originally developed for coupling with the Community Earth System
Model (CESM) and the Community Atmosphere Model (CAM). Model components5

of CLM include biogeophysics, the hydrological cycle, biogeochemistry, and dynamic
vegetation, where the latter two are not part of this study. The underlying fundamental
equations for soil temperature T and soil humidity Θ read

c
∂T
∂t

=
∂
∂z

(
λ
∂T
∂z

)
(6)

and10

∂Θ
∂t

= − ∂
∂z

[
k
(
∂Θ
∂z

∂Ψ
∂Θ

)
−1

]
+S(z), (7)

respectively. Here, c denotes soil heat capacity, λ thermal conductivity, z soil depth,
and k hydraulic conductivity. The soil water or capillary potential is Ψ, while S gives
the local net effect of sources and sinks.

The land surface representation distinguishes between five primary land cover types15

(glacier, lake, wetland, urban, and vegetated) in each grid cell. The vegetated area
of a grid cell is described by plant functional types (PFTs), which are characterised
by their typical leaf and stem area index and canopy height and a number of other
physiological parameters. Each subgrid land cover type and PFT patch presents at
least one separate column for energy and water calculations (Bonan et al., 2002a).20

CLM features the hydrological cycle over land by interception of water by plant foliage
and wood, throughfall and stemflow, infiltration, runoff, soil water, and snow. These
processes are directly linked to temperature, precipitation, and runoff, and affects the
biogeophysics module as well.
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In this study, CLM version 3.5 is used. The most important difference to the previous
version (CLM3.0) addresses the representation of the hydrological cycle. Alterations
include an improved canopy integration scheme (Thornton and Zimmermann, 2007),
a new frozen soil scheme (Niu and Yang, 2006), a basic groundwater model for iden-
tifying the water table depth (Niu et al., 2007), a set of features as a novel surface5

datasets derived Moderate Resolution Imaging Spectroradiometer (MODIS) products
(Lawrence and Chase, 2007), scaling of canopy interception (Lawrence et al., 2007),
and a simple TOPMODEL-based model for surface and sub-surface runoff (Niu et al.,
2005).

The CLM comprises 10 soil layers which are thin close to the surface and thicker10

with increasing soil depth (see Table 1).

3.2 Adjoint compiler TAPENADE

The tangent-linear and adjoint code of CLM were created using the adjoint compiler
TAPENADE (Hascoët and Pascual, 2004). The latter is designed to create tangent-
linear or adjoint code automatically from given FORTRAN code. However, there are15

some structures that cannot be differentiated by TAPENADE. In these cases, the orig-
inal code has to be modified to be compatible with the adjoint compiler. Examples
for incompatible FORTRAN structures are pointers and allocatable arrays. In CLM, all
global variables are stored in pointer structures. Consequently, all pointers have to be
converted to subroutine arguments before using TAPENADE.20

Since the adjoint code should be as compact as possible, there are several levels
of shortening the differentiated code. In this case, certain variables are not buffered or
even used in the adjoint code. This is possible for variables that are not adjoint variables
and have no impact on other adjoint variables.
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3.2.1 Validation of the adjoint code

The correctness of the adjoint code is decisive for achieving proper analyses. The
occurrence of errors cannot be excluded during the automatic differentiation procedure.
Therefore, the automatically differentiated code must be tested in any case.

To verify the adjoint code, the derivatives of the cost function with respect to the initial5

state can be calculated using different methods. Here, the gradient ∇x0
J with respect to

the initial states as calculated by the adjoint model has been tested by finite differences
and by tangent–linear model integration.

Using the finite differences method, the gradient ∇x0
J for small ∆x0k can be approx-

imated as10

∂J
∂x0k

≈
J(x01,x02, . . . ,x0k +∆x0k , . . . ,x0n)

∆x0k

−
J(x01,x02, . . . ,x0k , . . . ,x0n)

∆x0k

(8)

In Eq. (8), J has to be continuously differentiable at x0. Here, x0k is one component
of the vector of the initial state x0. Equation (8) shows that, for each variable, one
additional run of the forward model is required to calculate the gradient. However, this15

method does not deliver an exact result. The quality of the result depends on the choice
of ∆x0k .

The second possibility for calculating ∇x0
J requires the tangent-linear model M ′. The

derivative ∂J
∂x0k

can be calculated using the chain rule:

∂J
∂x0k

=
∂J
∂xi

∂Mi

∂x0k
=

∂J
∂xi

(M ′·ek)i . (9)20

Here, ek is the kth unit vector. Like in the first method, one model run has to be
performed per entry in x0.
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The adjoint model M∗ is the third possibility to obtain the gradient. All components of
the gradient can be calculated in one single run of the adjoint model by Eq. (5).

4 Parameter impact

Data assimilation as a branch of inverse modelling seeks to optimize initial values, as
soil humidity and temperature in this study. It is tacitly assumed that these parameters5

are both insufficiently known and of high impact on the forecast skill. On the other
hand, all other parameters are considered as sufficiently well known. However, in real
cases this is often not true and significant model biases can be introduced. For the core
differential equations of CLM, important parameters in Eqs. (6) and (7) include soil heat
capacity, thermal conductivity k, hydraulic conductivity λ, and soil water or capillary10

potential Ψ, which are often coupled by soil classification with typical values. Further,
local net effect of sources and sinks of water, the latter mostly boundary conditions
like precipitation, evaporation, ground water level variation, vegetation states and their
impact, and horizontal run-off can be difficult to observe and determine. In principle, all
these parameters can be estimated by inverse modelling, given a first guess estimate of15

reasonably well quality, that is, the validity of the respective tangent-linear assumption.
However, a situation with multiply ill defined parameters will render the generalized
optimisation problem extremely ill-posed, especially if vegetation parameters and not
observed, yet highly volatile meteorological parameters like cloud modulated insolation
and turbulence are included. Surface albedo, in addition, will change with vegetation20

and soil moisture.
A pragmatic and practical way out of this problem can be found by test runs, where in-

dividual parameter variations exhibit parameter specific perturbation fields in the model
results. These exercises are especially valuable, when time scales of error sources in-
volved are strictly different. As an example, the modified soil heat conductivity exhibits25

distinct amplitudes of heat during a diurnal cycle, provided surface forcing engenders
a strong enough signal.
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A statistical approach to identify a sufficiently consistent analysis is given by assimi-
lation diagnostics (Talagrand, 2010), most prominently by the cost function, normalized
by the number of observations p, which is χ2 = J(x0)/p = 1/2. Degradations by biased
parameters are readily visible in sequences of variational data assimilation results,
where a zigzag like time series emerges, following the chain of data assimilation in-5

tervals. Upon redefinition of related parameters, this feature reduces significantly. In
this study, several test runs have been performed with moderately varied soil param-
eters and surface albedo. The best parameter setting was chosen for the assimilation
runs. This procedure reduces model biases, though this basic method can not deliver
optimized parameters like a data assimilation algorithm.10

5 Results

5.1 Idealized experiments

This section presents results from experiments with virtual measurements in an ide-
alised environment. These experiments examine the assimilation algorithm in different
configurations to expose its potential and limitations. In this way, the impact of changes15

in single parameters can be investigated without secondary effects.
A synthetic meteorology is used, which represents a day in June at midlatitudes

(say 51◦ N) under clear sky conditions. For diurnal variations of solar radiation Ri and
temperature T , the following sine functions

Ri (t) = aR sin4(πt) (10)20

and

T (t) = T0 +aT sin4(πt), (11)
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respectively, are used. Here, t denotes time in days. The amplitudes are set to aR =
700 Wm−2 for insolation and aT = 10 K for temperature. T0 is set to 290 K. A constant
breeze of 2 ms−1 and a constant atmospheric humidity of 0.01 kgkg−1 are assumed.

All soil levels hold the same soil texture. The chosen soil type is loam, containing
40 % sand and 25 % clay. At the beginning of an assimilation interval, the relative hu-5

midity of the soil is set to the uniform value of 70 % in all soil levels. The soil is treated
as bare, that is, there is no vegetation. This setup follows Schwinger et al. (2010), who
performed sensitivity studies using the tangent-linear version of the CLM.

The experiments presented in this section contain the following steps: First, a forward
run of the CLM is performed, which will be called background run or first guess in10

the following. Then, virtual measurements are defined, which markedly differ from the
background run. After this, an assimilation run is performed and the resulting analysis
is compared to the virtual observations and the background run. Error (co)variances
in the cost function are considered to be similar for background and observations. For
this reason, the impact of the observations on the analysis is as large as the impact of15

the background. In the following, several experiments are discussed.

5.1.1 Assimilation of synthetic measurements

A first test is performed, aiming to exploit the potential of 4D-var to provide balanced
analyses, that is, that no or only marginal disturbances or spin-up effects occur in the
phase space evolution. In terms of dynamic systems theory parlance, this implies ad-20

herence to the slow or central manifold in phase space. In Fig. 1 the assimilation result
for a virtual temperature observation in 172 cm depth at the end of a 12 h assimilation
interval is shown. The analysis produces a good result, as it is justified in the middle
between the observation and the background, without any spin-up effects.

Other experiments are performed with soil temperature and soil moisture measure-25

ments in different environments (not shown). Single parameters, such as the depth of
the measurement, initial soil moisture, length of assimilation interval, and vegetation
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type are changed in different experiments. To sum up, the analysis delivers a reason-
able result whenever the initial values of the active variables have an impact on the
measured value. This is the case for soil temperature and soil moisture measurements
in deep soil layers, and also in upper soil layers in the case of dense vegetation or
shorter assimilation intervals.5

5.1.2 Interaction of soil temperature and soil moisture

This section explains how different active variables in the assimilation system inter-
act with each other. As an example, it is shown that a measurement of elevated soil
temperature does influence soil moisture content. The analysis, with a changed soil
moisture content, is able to better represent the measured temperature.10

In this experiment, virtual measurements of soil temperature down to 50 cm soil
depth are assumed. The measurement, at the end of the assimilation interval (06:00–
18:00 UTC), is set to a temperature that is 3 K above the respective simulated temper-
ature in soil layers 1–7. The relative humidity of the soil is 50 %. The vegetation type
selected is corn.15

Figure 2 shows the time evolution of the soil temperature profile. The left panel dis-
plays the result of the background run and the right panel presents the analysis. To
increase visibility, every soil layer is plotted with the same vertical extent, whereas the
thickness of the levels in the simulation is different (see Table 1).

The upper soil layers show a pronounced diurnal temperature cycle of up to approx-20

imately 10 ◦C in both the background and the analysis run. The separated bars on the
right-hand-side of each panel in Fig. 2 depict the virtual temperature measurement. In
the analysis, there is a stronger warming of the upper soil layers than in the first guess.
Accordingly, the temperatures of the analysis lie in between the measurement and the
background. It is noticeable that the initial values of soil temperature have not changed25

much in the analysis.
Figure 3 shows the corresponding profiles of soil moisture. The left panel displays the

volumetric soil moisture of the background simulation. At the beginning, soil moisture is
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constant in all soil layers. During the day, the upper soil layers become dryer. This pro-
cess starts first in the upper soil layers and is most pronounced there. In the analysis,
shown on the right-hand-side, the initial values are changed compared to the back-
ground run. The upper soil layers are dryer than in the first guess. This causes lower
evaporation rates at the surface. Thus, higher surface soil temperatures are achieved5

in the analysis by changing initial soil moisture values. It should be noted that the as-
similation of initial soil temperature only would not significantly improve the fit to the
measurements, since the surface temperature cycle in this specific case is controlled
by the balance between absorbed solar radiation and latent and sensible heat fluxes.
In this set-up the assimilation algorithm changes this balance by changing the initial10

soil moisture values.

5.2 Assimilation of soil temperature and soil moisture observations

This section presents results obtained from assimilation of real soil temperature and
soil moisture measurements. It is investigated to which extent the assimilation is able
to improve the model result of these variables. The last subsection shows the influence15

of the assimilation on surface heat fluxes.

5.2.1 Setup

The measurements are taken in Merken (Germany, 50◦48′ N, 6◦24′ E) in summer 2009
during the FLUXPAT campaign. Graf et al. (2010) presents the setting of a similar
measurement campaign at the same location. The measurement station is placed on20

a barley field which has been harvested in the middle of June. After this, it is a stubble
field until young plants begin to grow during August.

The measuring device for the soil temperature profile is a stick with five PT100 sen-
sors at 2, 5, 10, 25, and 50 cm depth. Soil moisture is measured with two CS616 water
content reflectometers, which measure soil moisture in parallel at 3 cm depth. All ob-25

servations at this station are available every 10 min.
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For this study, the CLM is run in offline mode. The meteorological input data is taken
from high resolution 24 h forecasts of the Weather Research and Forecasting (WRF)
model, version 3.1 (Skamarock, 2008). The model domain consists of 109×119gr
id boxes and covers an area surrounding the measurement station (50◦12–51◦24′ N,
5◦36–7◦12′ E). For both models, WRF and CLM, the same horizontal grid structure5

with a resolution of 0.01◦ in north–south direction and 0.015◦ in west–east direction is
used. This corresponds to a horizontal resolution of about 1km×1km.

The CLM timestep is 30 min. All measurements taken on full hour or on half hour are
included in the assimilation. The assumed errors for measurements and background
information are listed in Table 2.10

The simulation is run from June 2009 to August 2009. The CLM simulates the soil
state in one single column of the model grid, where the measurement site is located.
The assimilation interval comprises 24 h and starts at 00:00 UTC. Parameters for soil
texture were adjusted as described in Sect. 4. For comparison, CLM is first run without
data assimilation over the whole simulation period. This run will be referred to control15

run in the following.

5.2.2 Assimilation based analysis

In August 2009, the barley is already harvested at Merken, but new plants regerminate
from lost grain.

The assimilation results for soil temperature at 5 cm depth are illustrated in Fig. 4.20

Obvious measurement errors at the 2, 7, 12, and 25 August are rejected by a filter
procedure prior to the assimilation. At 5 cm depth, CLM first guess simulates soil tem-
peratures which are too high. In the assimilation, these values can be significantly
improved, particularly the representation of the diurnal cycle. During two days at the
end of the month analysis temperatures are 1–2 K higher than the measurements. At25

the other days, the differences between the analysis and the observations are small in
terms of the assumed observational error of 0.5 K.
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In 50 cm depth, the measurements show lower temperatures than the CLM control
run (see Fig. 5). The difference is approximately 2–3 K. The analysis is more consistent
with the observations. The maximum difference of the analysis and the measurements
is around 0.5 K, in most cases lower. There are discontinuities visible at the beginning
of the assimilation intervals, which suggests that the model is not yet able to prop-5

erly reproduce the real situation, and the assimilation algorithm has to correct these
differences in every assimilation interval, indicating remaining deficiencies of model
parameters.

In Fig. 6 the soil moisture at 3 cm depth is shown. In the control run, the soil moisture
is clearly underestimated by the model. In the background run, based on the analysis10

of the day before, as well as in the analysis, the CLM simulation is in better agreement
with the observations. The difference is in most cases lower than the assumed obser-
vational error of 4 %. In the analysis, there are also discontinuities at the edges of the
assimilation intervals. The specific amount of these discontinuities are highly sensible
of the chosen error estimates of soil temperature and soil moisture. If for example the15

error of soil temperature is considered to be rather small, then the jumps in the analysis
of soil moisture become quite large.

5.2.3 Energy fluxes

There are also measurements of energy fluxes available for the measurement site
Merken. The instruments are an Ultrasonic Anemometer (CSAT3, Campbell Scientific,20

Logan, UT, USA)1 and a H2O/CO2 Gas Analyzer (Li7500, Li-Cor, Lincoln, NE, USA)2.
The measurement method of a similar measurement campaign at the same location is
described in Graf et al. (2010).

Figure 7 shows the measured and modelled sensible heat flux at the station Merken.
Flux measurements were not included in the assimilation algorithm, that means that25

1http://www.campbellsci.com/csat3
2http://www.licor.com/env/products/gas_analysis/LI-7500A/lit.html
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the differences of background and analysis are only due to the assimilation of soil
temperature and soil moisture measurements. In Fig. 7 it is shown that in the reference
run sensible heat flux is overestimated, as visible for example on 4 and 24 August. The
comparison between analysis and observations shows that the overall sensible heat
flux is closer to the observations than the background, so that the assimilation could5

improve the simulation results.
The results for the latent heat flux are shown in Fig. 8. There is a strong variation

present in the quality of the forecast. At some days the background, as well as the
analysis fit very well with the measurements, e.g. at the 2, 8, and 13 August. In other
cases, an improvement is visible in the analysis, as for example at the 27 and 2810

August. In case of direct solar insolation on nearly bare soil the latent heat flux analysis
can however degrade, due to loss of hydraulic contact of the soil skin with the lower soil
layers. When the soil skin is heated and soil humidity is fully evaporated the upper soil
layers should intercept the latent heat flux, which is not well represented in the model.
Therefore erroneously high latent heat flux values occur on 4–7 and 15–19 August,15

which are not seen in the observations.

6 Conclusions

To sum up, the results of the assimilation show that the developed assimilation system
for the CLM is able to produce reasonable results, under the condition that the param-
eters of the model are chosen correctly. Our results show a clear improvement in the20

simulation of soil temperature and soil moisture. In our case study, the comparison to
measurements of sensible and latent heat fluxes, which were not part of the assimila-
tion, show improvements in simulating the sensible heat flux. The quality of the analysis
of the latent heat flux depends on the weather situation.

This study shows that the quality of the simulation result depends strongly on pa-25

rameters of soil properties and vegetation, which are insufficiently known, and which
are highly variable in space. The atmospheric impact is also an important factor, and
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a fully coupled SVAT-atmospheric 4D-var assimilation scheme including plant parame-
ter optimisation is a target set-up. To obtain a good analysis, these parameters have to
be optimized systematically. This is also possible in a data assimilation algorithm, and
is scheduled for a later development phase.

7 Code availability5

For obtaining the code, please contact C. Hoppe.
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Table 1. Soil layers in the CLM.

Number of layer Depth in cm Thickness in cm

1 0.7 1.8
2 2.8 2.8
3 6.2 4.5
4 12 7.7
5 21 12
6 37 20
7 62 34
8 104 55
9 172 91
10 286 113
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Table 2. Error estimates in the assimilation run for measurement site Merken.

Soil moisture Soil temperature

Background 8 vol.% 2 K
Observations 4 vol.% 0.5 K
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Fig. 1. Assimilation of a virtual soil temperature observation in soil level 9 (172 cm depth) at the
end of an assimilation interval of 12 h. The black curve shows the background result and the
blue dashed line shows the analysis. The observation is displayed in red.
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Fig. 2. Time development of soil temperature profile: CLM forecast without assimilation: back-
ground run (left panel) and analysis (right panel). In each panel, the separated columns next to
the 18:00 temperature profile depict the virtual measurements in soil layers 1–7.
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Fig. 3. Time development of soil moisture profile: CLM forecast without assimilation: back-
ground run (left panel) and analysis (right panel).
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Fig. 4. Soil temperature in Merken in August 2009 at 5 cm depth. The black-dashed curve
shows the control run, the black solid curve shows the CLM forecast based on the analysis of
the previous day, while the blue curve depicts the analysis. Measurement values are shown as
red line.
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Fig. 5. Soil temperature in Merken in August 2009 at 50 cm depth. Colors as in Fig. 4.
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Fig. 6. Soil moisture in Merken in August 2009 at 3 cm depth. The red dotted line displays
values of a further instrument (see text). Otherwise, colors as in Fig. 4.
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Fig. 7. Surface sensible heat flux in August 2009 at 3 cm depth. The black-dotted curve shows
the CLM forecast without assimilation (conrol run), and the blue curve shows the analysis.
Measurements are plotted in red.
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Fig. 8. Surface latent heat flux in Merken in August 2009 at 3 cm depth. Colors as in Fig. 7.
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