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Abstract

A new low-order coupled ocean—atmosphere model for mid-latitudes is derived. It is
based on quasi-geostrophic equations for both the ocean and the atmosphere, coupled
through momentum transfer at the interface. The systematic reduction of the number
of modes describing the dynamics leads to an atmospheric low-order component of
20 ordinary differential equations, already discussed in Reinhold and Pierrehumbert
(1982), and an oceanic low-order component of 4 ordinary differential equations, as
proposed by Pierini (2012). The coupling terms for both components are derived and
all the coefficients of the ocean model are provided.

Its dynamics is then briefly explored, through the analysis of its mean field, its
variability and its instability properties. The wind-driven ocean displays a decadal
variability induced by the atmospheric chaotic wind forcing. The chaotic behavior of
the coupled system is highly sensitive to the ocean—atmosphere coupling, for low
values of the thermal forcing affecting the atmosphere (corresponding to a weakly
chaotic coupled system). But it is less sensitive for large values of the thermal forcing
(corresponding to a highly chaotic coupled system). In all the cases explored, the
number of positive exponents is increasing with the coupling. A Fortran code of the
model integration is provided as Supplement.

1 Introduction

Low-order models were originally developed to isolate key aspects of the atmospheric
and climate dynamics (Stommel, 1961; Saltzman, 1962; Lorenz, 1963; Veronis, 1963).
Since these early developments, many low-order models were proposed in various
fields of science (e.g. Sprott, 2010), and in particular in climate science (Charney
and DeVore, 1979; Nicolis and Nicolis, 1979; Vallis, 1988; Yoden, 1997; Imkeller and
Monahan, 2002; Crucifix, 2012). These models allow to clarify important aspects
of the underlying structure of the atmospheric and climate dynamics, such as the
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possibility of multiple stable equilibria (e.g. Simonnet and Dijkstra, 2002; Dijkstra
and Ghil, 2005), the possibility of catastrophic events (e.g. Paillard, 1998), or the
intrinsic property of sensitivity to initial conditions that led to the development of new
approaches for forecasting (Lorenz, 1963; Nicolis, 1992; Palmer, 1993; Trevisan, 1995;
Nicolis and Nicolis, 2012). Such models are also often used to evaluate new tools
developed in the context of weather and climate forecasting problems, such as data
assimilation approaches (Pires et al., 1996; Carrassi and Vannitsem, 2010, 2011),
conceptual analyses of deterministic or stochastic climate forcings (Wittenberg and
Anderson, 1998; Arnold et al., 2003), extreme value analyses (Lucarini et al., 2012) or
post-processing (Vannitsem, 2009; Van Schaeybroeck and Vannitsem, 2011), among
others.

By definition, these low-order models are built in such a way to simplify as far as
possible the system under investigation and keep only the key ingredients of interest, as
for instance the analysis of the impact of an orography on the instability of atmospheric
flows as in Charney and Straus (1980). When dealing with climate the same procedure
can be performed by focusing on one specific aspect, for instance the global energy
balance of the earth assuming that the dynamics at smaller space and time scales
could be modelled based on stochastic processes (Nicolis and Nicolis, 1979). When
one is interested in keeping key ingredients of processes acting at very different scales,
the problem becomes more involved and only a few models were developed. A popular
approach consists in coupling two low-order models and modifying artificially the typical
time scale of one of them (e.g. Goswami et al., 1993; Pena and Kalnay, 2004). This
approach could indeed provide an easy way to build such multi-scale models, but one
loses physical significance. Another interesting model built in this spirit was proposed
by Roebber (1995), in which the low-order Lorenz’ model (1984a) is coupled with an
oceanic 3-box model (with 6 ordinary differential equations for temperature and salinity)
developed by Birchfield (1989), using empirical relations for heat fluxes. This led to
a coupled model of 9 prognostic variables, with two specific time scales, one for the
atmosphere and the other for the ocean.
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The other approach consists in starting from a detailed coupled model and
systematically reducing the number of modes of the different components. A first
attempt made by Lorenz (1984b) led to a coupled ocean—atmosphere low order
model incorporating many processes like condensation, evaporation, radiative transfer.
However, the ocean was only considered as a heat bath. This model was subsequently
modified by Nese and Dutton (1993) in which oceanic transport is incorporated in
a way similar to Veronis (1963). The final version of this model contains 31 prognostic
variables and several diagnostic relations. Another interesting model developed by
Veen (2003) and derived from first principles combines the 3-variable atmospheric
system of Lorenz (1984a) and the 4-variable ocean model of Maas (1994). In this
7-variable model, a clear distinction between three different time scales is made, one
for the atmosphere, one for the deep ocean and one for the ocean surface layer. In this
model version, only single oceanic gyres can develop.

Building on the latter stream of ideas, Vannitsem (2013) proposed to couple two
low-order models for the atmosphere and the ocean, derived from quasi-geostrophic
equations. This model is intermediate between the “very low-order” coupled models
proposed by Veen (2003), and the more sophisticated process-oriented low-order
coupled models of Lorenz (1984b) and Nese and Dutton (1993). It is based on the low-
order quasi-geostrophic model of Charney and Straus (1980) and the shallow water
quasi-geostrophic model of Pierini (2012). The latter is able to simulate the dynamics
of single or double oceanic gyres, typical in the Northern Atlantic and Pacific. The
coupling is done through momentum transfer at the interface, only. This model has the
advantage to be derived from first principles as in Veen (2003) and Lorenz (1984b),
but focusing only on the coupled dynamics associated with the momentum forcing
between the two components. It will be referred as OA-QG-WS v1. An extension has
also been proposed in Vannitsem (2013), by adding atmospheric modes as in Reinhold
and Pierrehumbert (1982). This second version of the model, whose dynamics was
only slightly touched upon in Vannitsem (2013), is the central subject of the present
paper, and will be referred to as OA-QG-WS v2.
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The degree of sophistication of this low-order model is such that it is not
straightforward to evaluate all the coupling coefficients (and the coefficients of the
oceanic part), due to the presence of different orthogonal basis functions and norms
for both climate components. These are therefore made available here and some
validation test cases are provided for subsequent use of the model by the atmospheric
and climate communities. The revision of the model also allowed to correct a few
coefficients of the first model version presented in Vannitsem (2013), without qualitative
modifications of the results and conclusions. In addition, a few results concerning the
dynamical instability of the system are provided, and similarities and dissimilarities with
the trends already found in Vannitsem (2013) are discussed.

The original partial differential equations of the model and the choice of the
orthogonal modes are presented in Sect. 2. Section 3 is devoted to some properties of
the model that could serve as a benchmark. The appendix contains all the coefficients
of the model, as described in Sect. 2. In Sect. 4, some conclusions are drawn.

2 The model equations of OA-QG-WS v2.

2.1 The atmospheric model

The atmospheric model, developed by Charney and Straus (1980) and subsequently
extended by Reinhold and Pierrehumbert (1982), is a 2-layer quasi-geostrophic flow
defined on a beta plane. The equations in pressure coordinates are

0 (g2, 1 1 g2,,1 oy’ o213y, 10

5 (VW) W VPN 4 e = TR - )+ e (1)

0 oy® , f
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where yy, Y3, @ are the streamfunction fields at 250 and 750 hPa, and the vertical
velocity (= dp/dt), respectively. f, is the Coriolis parameter at latitude ¢, B = df /dy

at ¢y, 0=-R/p <% - %), the static stability (where T is the temperature, R the

gas constant and c,, the heat capacity at constant pressure), considered as constant.
kg and ké are the coefficients multiplying the surface friction term and the internal

friction between the layers, respectively. (w1 - ws)* is a constant thermal forcing of
the atmosphere (Newtonian heating). An additional term has been introduced in this
system in order to account for the presence of a surface boundary velocity of the
oceanic flow defined by W (see next section). This would correspond to the Ekman
pumping on a moving surface and is the mechanical contribution of the interaction
between the ocean and the atmosphere (e.g. Deremble et al., 2012).

Note also that the heating term has not been modified even if heating is coming
mostly from the ocean. It is assumed that this heating is a fast process as
compared to the dynamics of heat transport in the ocean, thereby transferring almost
instantaneously the energy toward the atmosphere. This is clearly a strong assumption
allowing for an analysis of the impact of wind-driven interactions between the ocean
and the atmosphere. This assumption could be relaxed in a future version of the model
in a similar way as in Veen (2003) or Deremble et al. (2012).

These equations are then adimensionalized by scaling x' = x/L and y' =y /L, t by
fo'1, ® by fyAp and y by L2f0 and the parameters are then also rescaled as (o =
(0Ap%)/(2L*f2), 2k = ky/fo, k' = K, /Ty, h" = h/f,). The fields are expanded in Fourier
series over the domain y’ =[0,7] and x’ =[0,27/n], and only ten modes, F,, are
retained, obeying the boundary conditions 8F, /(6x’) =0 at y' = 0,7. n is the aspect
ratio between the lengths of the domain in y and in x, n=2L, /L, =2uL /(2nL /n).
These modes are

Fy = V2cos(y')
F, = 2cos(nx")sin(y’)
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F3 =2sin(nx")sin(y’)
F,= \/§cos(2y’)

Fs =2cos(nx')sin(2y’)
Fs = 2sin(nx")sin(2y’)
F, =2cos(2nx’)sin(y’)
Fg = 2sin(2nx’)sin(y’)
Fg = 2cos(2nx’)sin(2y’)
Fio = 2sin(2nx’)sin(2y’)

and the fields are then expressed as

10

W=D wiFy
k=1
10

6= 6Fy
k=1
10

@ = z @ka
k=1

10
W' -v¥ =2 6,F
k=1

where 6 = (w1 - u/3)/2 and y = (w1 + 1//3)/2. Using the usual norm,

T 2n/n
n
f,gy=—|[dy’ dx'f
(f.9) 2712! y ! g
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one gets the set of equations reported in the Appendix of the paper of Reinhold
and Pierrehumbert (1982) and in Reinhold and Pierrehumbert (1985), leading to 20
ordinary differential equations for the dependent variables v, and 6,.

The presence of the ocean is felt by the coupling associated with the motion of the
ocean surface, deZ‘If where Y is the streamfunction of the oceanic flow as defined in
the next section. It is also projected on the different atmospheric modes using the inner
product Eq. (4). The coefficients are given in Appendix B.

Note that the thermal forcing term is fixed as in Charney and Straus (1980) and
Reinhold and Pierrehumbert (1982) in which the only non-zero term is 6] that will be
referred to as 6" in the sequel. This corresponds to a thermal forcing only dependent
on the latitude with a larger contribution in the southern part of the domain.

2.2 Ocean model

The ocean model is based on the reduced-gravity quasi-geostrophic shallow water
model (Vallis, 2006). The basic assumptions behind this equation are: (i) the ocean
dynamics can be described by a shallow water fluid layer superimposed over
a quiescent deep fluid layer; (ii) the Rossby number Ro = U/(f,L) is small; (jii) the
space scale of the process under investigation should not be significantly larger than
the deformation radius (typically of a few hundred kilometers for a fluid layer depth of
the order of 100 m). The forcing is provided by the wind generated by the atmospheric
component of the coupled system. The equation reads

0 b4

curl
g (vzw - L—2> r I, v2wy 4 g0 pyry ST (5)
R

ot ox oh

where W is the velocity streamfunction (or pressure), o the density of water, A the depth

of the fluid layer, Ly the reduced Rossby deformation radius, r a friction coefficient

at the bottom of the fluid layer, and curl,7, the vertical component of the curl of the

wind stress. Usually in low order oceanic modelling the latter is provided as an ideal
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profile asymmetric in the meridional direction (e.g. Simonnet and Dijkstra, 2002). In the
present work, this is provided as a “real” wind field generated by the atmospheric low-
order model. Assuming that the wind stress is given by (7,,7,) = C(u - U,v - V) where

u and v are the horizontal components of the lower layer geostrophic wind, —61//3/6y
and 01;/3/6)(, respectively, and U and V, the corresponding quantities in the ocean,
one gets
curl,7 . C
= V(i -V¥ 6

oh " oh (w ) (6)
Here the wind stress is proportional to the relative velocity between the flow in the
ocean layer and the wind. This slight modification as compared with the version model
OA-QG-WS v1 in which the stress was only based on the absolute wind velocity, has
been made in order to avoid spurious forcings when the velocities in the atmosphere
and the ocean are similar. It is however a correction which is quite marginal in view of
the (typically) small amplitudes of the flow field in the ocean.

Using the same domain and the same non-dimensionalization procedure as in the
atmospheric model, one gets
% (v'zw' + yW’) +J(V, VYY) + B

A

Xl
= —(r' + H)V2Y + 6V 2y (7)

where Xl = X/Lv yl = y/L! t, = th’ \IJ, = W/(szO)’ W’ = Ws/(szO)’ ﬁ’ = ﬁL/fO’ y =
—L3/L2, 1 =r/fyand & = C/(phf,).

Let us now define the truncated basis functions to which the solution fields are
reduced. Several truncations were proposed in the literature from 2-mode (Jiang
et al., 1995) up to 4-mode truncations (Simonnet et al., 2005; Pierini, 2012), the latter
approach allowing for chaotic behaviors. In the present work, we use the following set
of modes,

@1 =2e~sin(nx’/2)sin(y’)

— _rIVIZ\lj/ + 6V'2(W, _ \I_;l)
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@, = 2e”sin(nx’/2)sin(2y’)

@3 =2 sin(nx")sin(y’)

@4 = 2~ sin(nx’)sin(2y’) (8)
in order to get the free-slip boundary conditions (and no normal flow to the wall) in the

domain over which the flow is defined at x = 0,27 /n and y = 0, 7. In addition a specific
inner product is adopted for the oceanic model in a similar way as in Pierini (2012),

T 2n/n

(f,g):iz /dy’ / dx’'fge?@x (9)
21 ! !

Introducing the truncated fields, >, A,,®,,, for m =1,4, into Eq. (7) and projecting
on each mode using the inner product Eq. (9), one gets a set of 4 ordinary differential
equations for the variables A,,,

dA, Li14—L314 Li12—La1p L 123 = L3p3 L134—L3zs
=- AjAy - —————A A - ———= - AjA
dt a; + by 174 a; + by 172 a; + by 273 a; + by 37
ey —d, fy — ¢4
As+f(1
511+b11 a; + by a*+7(1)
dA Ly —L Lygz—L Lyyg—L
2 _ _ 21170411 o T2337 0433 0 D213 413/41/43
dt myq + ny my+ny 3 my+n
d1—04 Iy — Py
T rm, 2 n1+m1A4+f(2)

dA;
dt

Liys—L
byt 2% L314) A1Ag + (—b1

L112 _L312
a, + b1 T, LA L312) A1A2

aq + by

L1o3—L3pg L134—L3zs
+ (—b1 Ta,+b, Lszs) AxAz + (—b1 Ta,+b, L334) AzA,
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e, —d, fi — ¢y
+{b +dy—6eg) A+ | by +Co—Ty) Az +1(3)

1a1 + by a; + by
dA4 L211 —L411 2 L233 _L433 2
i e ) L Gl el S L
Loyz—Lyss 41~ 94
+ (—m1 Tmn, L413) AiAz + (m1 ny T m +00— qo) A,
+(my 1~ P +Pg—ro | Ay +1(4) (10)
ny +my

whose coefficients are all provided in Appendix A. The forcing tendencies, f(m),m =
1,4, associated with the wind stress as defined by Eq. (6), are given by

912 B. 4 913 B+ 91,4 B+ 91,7 B+ 918

f(1) =
) a; + by 2 a; + by 3 as + by 4 a; + by ’ a; + by 8
So 1 S5 S26 S2.9 5210
ny +my ny +my ny +mjy ny+mq ~nqy+my

6K b 6K b 6K b
f(3)=< 32 1g1'2)32+( 38 191,3)33+( 34 191,4)8
uy as + by Uy a; + by Uy a; + by
6Ks7  b1917 6Ks3g b1g1g
+ + B, + + Bg
Uy as + by Uy a; + by

mySy1 0Ky 4 mySy,5 6Ky myS,  6Kyp

f(4)=< + )B1+( + >B5+< + )86
ny + my us ny + my Us ny +my U
miSp,9  O0Kyg mySs10 6Ky 10
+ + Bg + + Bio
ny + my U, ny + my us,

(11)

whose coefficients are provided in Appendix B, where B; = t//,.?‘ =y; -0,
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2.3 Estimation of the main parameters

The estimation of the main physical parameters is made as follows. For the
atmosphere, the parameter k is related to the surface drag felt by the lower layer of
the 2-layer QG model. This is estimated based on the Ekman layer theory (p. 115,
Vallis, 2006) as,

d

k=—
2D

(12)
after dividing by 7,, and where D and d are the thickness of the lower atmospheric
layer and the thickness of the Ekman surface layer, respectively. Typically D is of the
order of 5000 m and d of the order of 100—1000 m. This implies that k falls in a range
of [0.01,0.1]. Here the value is fixed to kK = 0.02 (and the other dissipation parameters
are fixed to h"" = k' = 2k). For parameter &, one can use the estimate done by Nese
and Dutton (1993). The dimensional forcing coefficient is given by

— |V|pa CD

k
o poh

(13)
where p, and p, are the densities of the air and of the sea water, respectively. h is the
thickness of the ocean layer and Cp the surface friction coefficient. With Cp ~ 0.001,
h ~20-500m, |V|~5-10ms™', p, ~ Tkgm™ and p, ~ 1000kgm™>, one gets values
(once normalized by f;) in the range [0.0001,0.01]. Note that C in Eq. (6) is equivalent
to C = |V|po, Cp.

For the thermal forcing, the same approach as in Charney and Straus (1980) and
in Reinhold and Pierrehumbert (1982) is adopted, through the use of the thermal wind
relation. 8" is therefore allowed to vary from [0,0.2].
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3 Results of the integration of OA-QG-WS v2

In this section, some statistical and dynamical properties of the model are reported
as a benchmark. The numerical scheme used is a second order temporal scheme
known as the Heun scheme (see Kalnay, 2003) with a time step of 0.01 time unit. The
parameter values used are 2k = k' = i = 0.04, r' = 0.000096899, @ = 1, n = 1.5, and
L = 5000 km, while the behavior of the system is explored by varying § and 6". The
dimensional time unit is equal to 0.1117 days.

3.1 Model trajectories and mean fields

Figure 1 displays the temporal evolution of the variables A; of the ocean component
for about 10yr, starting after 200000 days of integration. Interestingly a long range
variability emerges as in Vannitsem (2013).

As already alluded in Vannitsem (2013), this new version of the model allows for
the development of double gyres. Figure 2 displays the mean streamfunction fields
for different values of the key parameters 8" = 0.077, 8" = 0.10, and 6" = 0.14, after
a long integration of about 3.5 x 108 days. Two different initial states in phase space are
used for 8" = 0.077 in panels (a) and (b). Depending on parameter (and maybe initial
state in phase space) choice, different mean configurations and sizes of gyres could
develop in the basin. But as reflected in Fig. 1, a large variability on a wide range of
time scales is also present around these mean fields leading to a variable transport in
the ocean basin. The convergence toward these mean values are illustrated in Fig. 3,
for 8" = 0.077 and 8" = 0.14. The convergence is very slow due to the natural long term
variability of the ocean embedded in this system. Interestingly, different attractors seem
to emerge for 8” = 0.077 as reflected by the convergence of mode A, toward different
means (panel a). Note that the presence of these different attractors would have not
appeared without the analysis of these very long term averages, due to the blurring
of the large natural variability of the system, but the confirmation of the presence of
these different attractors needs further model integrations. The Fortran code used to
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integrate the model and compute these averaged quantities is provided as Supplement
and can be used freely provided proper reference to the source is made.

Figure 4 displays the power spectra of modes y; and A4, as obtained using a time
series of 73215 days for 8" = 0.14 (sampled every 0.55859 days, one point every 500
adimensionalized time steps). The atmospheric field displays a flat spectrum for small
frequencies and decays at the large ones. The typical time scale of transition between
these two regimes is of the order of 30 days for this large scale atmospheric mode.
For the oceanic mode, the power spectrum is continuously decaying closely following
a power law, indicating long range time dependences (in agreement with the visual
inspection of Fig. 1). A change of slope is also visible in this log—log plot, around a time
scale of 30 days, reflecting the change of statistical properties in the atmosphere. For
low frequencies (between @ = 0.0001 and @ = 0.2, the slope of the decay is close
to -2, suggesting a dynamics close to a red noise. For large frequencies, the slope
is much sharper with a value close to —4. At low frequencies the ocean acts as an
integrator of the “white” noise produced by the atmosphere, by analogy with a Brownian
motion or an Ornstein—Uhlenbeck process.

3.2 Chaotic dynamics

Sensitivity to initial conditions is one of the main properties of the atmosphere.
In dynamical systems theory, this property is usually quantified by evaluating the
Lyapunov exponents. These quantities also allow for distinguishing between the typical
solutions generated by the system of ordinary differential equations for some specific
parameters. For a detailed discussion of these typical solutions and the numerical
algorithms used for their evaluation, see Parker (1989). In short, these quantities
characterize the amplification of small amplitude initial condition errors in time and are
evaluated in the so-called tangent space of the model trajectory (Legras and Vautard,
1996), formally characterized by the Jacobian matrix of the flow. In this tangent space,
it can be shown that there exist a set of (characteristic) vectors, u;(t),i =1,...,n,
and a corresponding set of (characteristic) numbers, o;, quantifying the degree of
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amplification of small perturbations, 6x;(¢), along these vectors. These characteristic
numbers are known as the Lyapunov exponents and are given by

o; = lim Tin (léx"(t)l) (14)
t—oo |6x;(0)]

If one of these exponents is positive, then the system is sensitive to initial conditions
and the solution is chaotic. If the largest one is 0 and the others negative, then the
solution is periodic. If the K largest exponents are 0 and the others negative, the
solution lives on a K -torus. Practically it is not necessary to know these specific vectors,
u;(t),i =1,...,n, to get the Lyapunov exponents and any basis of independent vectors
can be used, because the amplification of any L-dimensional volume in phase space
will amplify on average with a rate equal to the sum of the L first Lyapunov exponents
(e.g. Legras and Vautard, 1996). Numerically one uses a basis which is regularly
orthonormalized in order to avoid the collapse of all the vectors along the dominant
instability direction (e.g. Parker, 1989).

One of the main properties of this new version of the model is the possibility of
having a “large” number of positive Lyapunov exponents, and hence a “large” attractor
dimension. Figure 5a displays the variations of the first, second and third Lyapunov
exponents as a function of 8* for § = 0.001938. Two different main regimes emerge,
with periodic or stationary regimes and chaotic regimes, before and after 8” = 0.065,
respectively. For large values of 8" the dynamics becomes wilder with a dominant
exponent close to o, = 0.50 day_1 for 8" = 0.16, a value larger than the ones one can
expect for synoptic scale dynamics (Vannitsem and Nicolis, 1997; Snyder and Hamill,
2003). Figure 5b displays the Kolmogorov-Sinai entropy (sum of the positive Lyapunov
exponents) and the number of positive exponents as a function of 8*. The entropy
is increasing steadily in the chaotic regime after 8" = 0.1 and the number of positive
exponents increases. This contrasts with the model version OA-QG-WS v1 for which
only one positive exponent was found for small values of the coupling parameter &.
This second version of the model has therefore more flexibility since one can easily
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get different configurations in terms of dynamical instability, by changing the main
parameter §".

Figure 6 displays the dependence of the amplitudes of the Lyapunov exponents and
the number of positive exponents as a function of the coupling parameter &, for three
different values of 8*. As in Vannitsem (2013), the trends of the Lyapunov properties as
a function of 6 can be very different for different values of 8*. The values of the expo-
nents for 8" = 0.0825 are very sensitive to §, with sharp transition from (quasi-)periodic
solutions to chaotic behaviors around 6 = 0.009. This interesting feature suggests that
6 plays a crucial role in setting up the transition from non-chaotic to chaotic regimes in
the coupled system. A full understanding of this transition should be obtained through
a systematic analysis of the bifurcation diagram of this system (and it will be the subject
of a future investigation). For 8" = 0.10 and 8" = 0.14 an increase is found for the two
first exponents (but very weak for 8" = 0.14), while a third positive one emerges when
6 is increased.

The sensitivity to 6 is also illustrated in Fig. 6d in which the Kolmogorov-Sinai
entropy is shown, displaying a systematic increase for the three values explored. These
trends are opposite tp these discovered in Nese and Dutton (1993). This could be due
to the presence of physical processes incorporated in the model of Nese and Dutton
(1993), that are not present here. This is worth investigating further in the future by
adding thermal exchanges between the atmosphere and the ocean.

For all the cases explored, the number of positive Lyapunov exponents also has
a tendency to increase with the amplitude of the coupling §. This feature is similar to
what was found in OA-QG-WS v1, reflecting further the importance of the coupling
between the ocean and the atmosphere.

4 Conclusions

In this paper, a new version (OA-QG-WS v2) of a low-order coupled ocean—atmosphere
model is presented, containing 24 ordinary differential equations. This model describes
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the dynamics of the large scale flows at mid-latitudes of a baroclinic atmosphere
interacting with an ocean layer under wind forcings (or momentum exchanges). This
coupled model displays features with strong resemblance with the dynamics found at
mid-latitudes, with a chaotic dynamics of the atmosphere at short time scales of the
order of a day and a decadal variability of the ocean layer. In contrast with the model
version OA-QG-WS v1 (Vannitsem, 2013), higher dimensional attractors (associated
with a larger number of positive Lyapunov exponents) can be found, and double gyres
can develop in the ocean basin in the presence of a chaotic atmosphere.

The Lyapunov instability properties of the flow have also been explored. Interestingly,
for the set of parameters chosen, a transition from periodic to chaotic regimes occurs
at a value of the bifurcation parameter close to 8" = 0.065. Close to this value, the
dynamics is also highly sensitive to the values of the coupling parameter &, with a
possibility of a sharp transition from periodic to chaotic regimes. For large values of °,
the dominant exponent is less sensitive to §, in contrast to the lowest amplitude positive
exponent. In addition, the number of positive Lyapunov exponents has a tendency to
increase with & whatever is 8", suggesting an increase of the dimension of its attractor
in phase space. The latter characteristic was also found in the first version (OA-QG-WS
v1) of the model.

As suggested by the analyses reported above, this new model version is an
interesting candidate for subsequent analyses of the dynamical properties of coupled
systems. In addition, it can be used for testing tools developed for coupled
ocean—atmosphere systems in the context of data assimilation, post-processing,
and ensemble forecasting, among others. All the coefficients of the (ocean) model
and of the coupling terms are also provided, allowing for an easy implementation.
A Fortran code combining the atmospheric and oceanic components is also provided
as Supplement.
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Appendix A

Coefficients of the ocean component of the model
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Appendix B

Coefficients of the coupling between the ocean and the atmosphere
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and where the B; = wf’ = ; — 0, are the atmospheric streamfunction variables (mode

amplitudes) in the lower layer.

The coupling term appearing in the lower layer of the atmospheric model equations,
kdvz‘lf, is expressed in the /-th atmospheric ordinary differential equation as > iDijA;
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