DrJamesAnnan

Editor of GeoscientificModel Development

Brussels, February 24, 2014

Dear Editor

A detailed response to the comments of the referees of our manuscript entitled “A 24-variable low-
order coupled ocean-atmosphere model: OA-QG-WSv2”, is provided below. The content of the
manuscript has considerably benefited from their constructive comments.

Hopingthat this new manuscriptversionis now suitablefor publication in Geoscientific Model
Development,

Yours sincerely

Lesley De Cruz

Stéphane Vannitsem

Royal Meteorological Institute of Belgium
Avenue Circulaire, 3

1180 Brussels

Belgium



Response to the first referee.

Thank you very much foryour constructive comments. Please find below the response to your specific
comments.

1. WS means “Wind Stress”. | have explained thatinthe last paragraph of page 4.

Yes indeed the evolutions of the time averages were computed with differentinitial conditions
in phase space. We agree with you that the convergence is not yet completed and we will
modified the textaccording to your recommendation. See paragraph 2 page 13. It isnow
written as:

“The temporal variations of these mean values areillustrated in Fig. 3, for ®*=0.077 and 0.14
starting from two differentinitial conditions. The convergence is very slow due to the longterm
natural variability of the ocean embedded in this system. The presence of different attractors
cannot be confirmed or excluded at this stage, due to the blurring of the large natural variability
of the system. This analysis would need even longer model integrations, with a higherorder
numerical scheme in orderto better control the numerical erroras suggested by the anonymous
referee.”

At the same time, we have tested anotherscheme and we have obtained a different evolution
of the mean as illustrated in Figure D (embedded 8th order Runge-Kutta Prince-Dormand
method with adaptive step size and 9th order error estimate). But the convergence is not
completedinthis case either. Longerintegrations would also be needed.

3. Oneimportantfeature of the coupled modelistodisplayasetofvery small amplitude Lyapunov
exponents. Asyou mentioneditis hard to distinguish between the different exponents close to
0 in Figure 5a. In fact for small values of the thermal forcing parameter, ®*, the solution are
stationary stable solutions with very small amplitude (negative) Lyapunov exponents. Whenitis
increased, periodicand quasi-periodic (2-Torus) solutions appear up to 0.065. 2-torus solutions
are also appearing between 0.087 and 0.095 for the parameters explored. The small amplitude
exponents are associated with the presence of the ocean whose responsetime scale islong.
Thank you very much for pointing out the theorem of Newhouse, Ruelleand Takens. Indeed
there are only one or two exponentsvery closeto 0inthe periodicand quasi-periodicregimes. |
discussthis pointin more details at paragraph ... : “For values of ®* smallerthan 0.055, stable
steady states are found with a set of 4 negative Lyapunov exponents of very small amplitude
(e.g. for®*=0.02, 5,=-0.00128, 5,=-0.00128, 5;=-0.00133, 5,=-0.00133 day™) and the nextones
with amplitudes 1000 times larger. At ®*=0.055, a periodicsolution emerges with afirst
exponentequalto 5,=-1.110® day™. Forlarger values up to ®*=0.065, quasi-periodicsolutions
(2-Torus) appear, as well as forthe parametervalues explored between 0.087 and 0.095.
Between 0.065 and 0.087, chaotic solutions separated by periodicwindows are prevailing.
Beyond 0.095, the dynamics become chaoticand no periodicsolutionswere found forthe
parameterrange explored.”

4. Thank youvery much for drawing my attention toward these references. Indeed these will
certainly be useful in ourfuture investigations. We add a sentence at the end of the
aforementioned paragraph as “ A detailed analysis of the transitions from quasi-periodic



motions to chaotic behaviors will be investigated in the future asin recent works (Broeretal,
2011; Sterk et al, 2010; amongothers).”

Minor points:

1. We added a table withthe list of parameters.
2. Thank youfor pointing out this confusion. We added asentence atthe end of Section 2.2.

All the othercorrections have been made.
Response to the second Referee, Anna Trevisan.
Dear Dr Trevisan

Thank you very much foryour comments on our manuscript. Please find adetailed responseto your
specificcomments below.

1. You are right. More information should be added concerning the results obtained with previous
low-order coupled ocean models. This further highlights the similarities between the present
work and the previous ones, with amarked difference with the results of Nese and Dutton
(1993) and much more similarities with the work of van Veen (2003). In the former, the
activation of the dynamics within the ocean leads to an increase of predictability. This feature
contrasts with our results but could probably be associated with the way the heatis transported
inthe ocean basin and then transferred toward the atmosphere in their model.

In the work of van Veen, the ocean plays a “passive” role when the atmosphere isin achaotic
regime, whileit plays more active role in setting up the (coupled) dynamics when close to the
periodicwindows of the atmosphericmodel. Thisaspectisinagreement with our results,
indicatingthatina fully chaoticregime, the presence of the oceanisnotincreasingina
substantial way the amplitude of the Lyapunov exponents, but plays a more importantrole close
to the periodicwindows of the system as illustrated in Figure 6. Figure A shows the temporal
evolution of the solution A, fortwo different values of 6 and fora value of ®*, illustrating the
crucial role played by the coupling close to the onset of chaos.

Both models (Neseand Dutton, and van Veen) are quite differentintheirconceptionanditis
therefore difficult to conclude why theirresults are quite different, and at the same timeit is
difficultto compare with our results which are only based on a mechanical coupling between
the two model components. The introduction of athermodynamicequation would be necessary
to clarify this pointand will be the subject of a future extension. This aspect will be discussed in
more detailsin paragraph 5, section 3.2:

“Theirresults are most probably associated with the way heatis transportedinthe ocean basin
and thentransferred toward the atmosphere intheirmodel, afeature not presentinour
model.”

And at the end of paragraph 4, page 16:



“Interestingly, the results confirm the tendency alreadyreportedinvan Veen (2003), indicating
that the presence of the ocean has a strongerinfluence on the dynamics of the atmosphere
when close to periodicwindows.”

We also add more information on the results of the two previous works (Nese and Dutton, and
van Veen)intheintroduction (3rd paragraph):

“The coupled model developed by Nese and Dutton (1993) was used to evaluate the impact of
the ocean transport on the predictability of the coupled system. They have found that when the
oceandynamicsis activated, anincrease of predictability is realized.”

Andalso:

“In this model, a systematicbifurcation analysis has been undertaken and compared with the
bifurcation structure of the atmosphere only. In particularit was shown that the ocean plays an
importantrole close to the bifurcation points of the model, but muchlessinthe chaoticregime.
In the latter case the ocean integrates the rapid fluctuations of the atmosphere ina quite
passive manner without providing astrong feedback toward the atmosphere”.

Indeed the values of the Lyapunov exponents obtained in the present work are different to the
onesfoundinTrevisan etal (2001). The mainreasonisthe difference of parametersettings
chosen (but which were fixed in the range suggested by previous authors, Charney and Straus,
1980 and Reinhold and Pierrehumbert, 1982), in particularthe aspect ratio of the domain.
Moreoverthereisno orographyinthe presentversion, contrarily tothe previous works of
Reinhold and Pierrehumbert (1982).

To try to understand the properties of the increase of Lyapunov instability as a function of the
coupling parameter, we have computed the mean absolute amplitude of these ve ctors alongthe
different modes of the coupled system. Figure B displays the result for the first (backward)
Lyapunov vector corresponding to the dominant Lyapunov exponent. The ten first points
correspond to the barotropicatmosphericvariables, the ten next onestothe baroclinicvariables
and the last four to the ocean variables. Clearly the projections along the atmosphericvariables
do notchange as a function of the coupling 8, but well the projection along the oceanvariables.
A similar picture is found forthe otherbackward Lyapunov vectors. This suggests that the
increase of Lyapunov instability is mainly associated with anincrease of the projection of the
Lyapunov vectors alongthe ocean variables, and not the baroclinicinstability within the
atmosphere. Thisaspectis worth investigating further in the future by investigating the
properties of the characteristicvectors (also called covariant vectors) of the system which are
(non-orthogonal) intrinsic directions of instability (e.g. Legras and Vautard, 1995). The figure and
the comments on that feature are introduced at the end of section 3.

Concerningthe link between the local Lyapunov exponents and the oceanvariables, thereisno
clearrelationasillustratedin Figure C, in which the local Lyapunov exponents corresponding to
the first Lyapunov vectorare plotted as a function of the second ocean variable (similar pictures
are foundforthe othervariables). Alinkis only visible between these local quantities and the
dominant modes of the atmosphere, \; and ®;. Asin the previous point, abetter
characterization of the instability properties of the flow and their link with the underlying
variables would be worth analyzing based on the characteristicvectors.
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Figure A: Trajectories of P, for two values of the coupling parameter and for ®*=0.10.
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Figure B: Mean absolute amplitude of the first (backward) Lyapunov vector along the variables of the
system.
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Figure C: 2-D representation of the variable A, as a function of the local Lyapunov exponents as
obtained with the parameters of Fig. 1 of the manuscript.
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Figure D: Evolution of the temporal average for A, with two different numerical schemes. The green
one correspondstoan embedded 8th order Runge-Kutta Prince-Dormand method with adaptive step

size and 9th ordererror estimate.



