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Abstract

The method of elevation classes has proven to be a useful way for a low-resolution
general circulation model (GCM) to produce high-resolution downscaled surface mass
balance fields, for use in one-way studies coupling GCMs and ice flow models. Past
uses of elevation classes have been a cause of non-conservation of mass and energy,
caused by inconsistency in regridding schemes chosen to regrid to the atmosphere vs.
downscaling to the ice model. This causes problems for two-way coupling.

A strategy that resolves this conservation issue has been designed and is presented
here. The approach identifies three grids between which data must be regridded, and
five transformations between those grids required by a typical coupled GCM-ice flow
model. This paper shows how each of those transformations may be achieved in a con-
sistent, conservative manner. These transformations are implemented in GLINTZ2, a li-
brary used to couple GCMs with ice models. Source code and documentation are avail-
able for download. Confounding real-world issues are discussed, including the use of
projections for ice modeling, how to handle dynamically changing ice geometry, and
modifications required for finite element ice models.

1 Introduction

Many questions still surround how ice sheets respond to climate forcing and how those
changes will affect sea level, regional and global climate. Recent observations have
shown accelerating mass loss from the Greenland and Antarctic ice sheets, adding
urgency to these questions. In the past, climate models have been able to predict
changes in ice sheet surface mass balance, but could not simulate rapid changes in ice
dynamics and associated changes in mass. The Intergovernmental Panel on Climate
Change Fourth Assessment Report (IPCC AR4; Solomon et al., 2007) updated pre-
dictions of future sea level change, but explicitly stated that these predictions excluded
“future rapid dynamical changes in ice flow.” The IPCC caveats are widely regarded as
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a crippling qualification of the sea level predictions contained in the IPCC AR4 report
and a major and significant uncertainty in future projections.

Recently, a number of climate modeling groups have sought to rectify these defi-
ciencies by adding dynamic ice flow effects to existing climate models (GCMs): GISS
ModelE (Schmidt et al., 2006), CESM (Hurrell et al., 2013), HadGEM2 (Collins et al.,
2011), etc. This is done by coupling the GCM with an existing ice flow model, such
as Glimmer/CISM (Rutt et al., 2009), BISICLES (Cornford et al., 2013), ISSM (Larour
et al., 2012), PISM (Bueler and Brown, 2009), etc. One can distinguish between one-
way and two-way coupling. In one-way coupling, the GCM is used to develop surface
mass balance (SMB) and temperature fields, which are then used to drive the ice flow
model off-line. This process misses effects caused by feedbacks from the ice sheet to
the rest of the earth system: for example, decreased ice sheet albedo (Qu and Hall,
2006) or lowered atmosphere orography (Ridley et al., 2005).

Past studies with one-way coupling have yielded useful insight into the future of
present-day ice sheets, examples include Huybrechts (1994), Greve (2000), Stone
et al. (2010), Bindschadler et al. (2013), Lipscomb et al. (2013), Nowicki et al. (2013a),
Nowicki et al. (2013b) and Goelzer et al. (2013). However, ice sheet feedbacks are
expected to be increasingly important for simulations of the long-term evolution of
ice sheets and the climate associated with them. Many events in the paleo record
(Dansgaard—Oeschger events, Heinrich events, the Younger Dryas) almost certainly
arose from this kind of feedback.

Two-way coupling strategies address these issues by allowing the atmosphere to
see changes in the ice sheet elevation, extent and albedo over time. We distinguish
between loose and tight two-way coupling. Loose two-way coupling involves running
a series of GCM simulations with different ice sheet configurations, each based on the
result of the previous. Each GCM run is a separate simulation, without continuity of
mass or energy between runs.

Studies with loose two-way coupling have yielded insight into future equilibrium
states for ice sheets and climate (Ridley et al., 2005, 2010). However, they are not able
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to track transients in the evolution of ice sheets. Because ice sheets require thousands
of years to reach equilibrium, results relevant to human society require an understand-
ing of the transients.

For successful simulation of transients, we turn to tight two-way coupling. It involves
running the ice flow model, step by step, along with the rest of the GCM — while con-
serving mass and energy along the way. Successful tight two-way coupling requires
attention to conservation issues, since the GCM is simulating a more nearly closed
system that could run for a long time.

When one couples dynamic ice flow models with GCM atmospheres, two models op-
erating on different grids and timescales must communicate: ice flow models operate at
low frequency on a high-resolution grid with local projection, while GCM atmospheres
operate at high frequency on a low-resolution global grids. A number of issues arise
due to this mismatch, including how one creates high-resolution surface mass balance
fields from low-resolution GCM input.

Elevation classes address this issue. They were first introduced for precipitation
downscaling in a GCM by Leung and Ghan (1998) and later applied to one-way cou-
pling from GCM atmosphere to ice flow models by Lipscomb et al. (2013). The key
insight is that surface flux fields vary approximately by elevation within a local region.

When using elevation classes, a third grid is introduced, the elevation grid. This
allows the GCM to compute surface fields at a variety of elevations within each at-
mosphere grid cell, not just the elevation seen by the atmosphere. A high-resolution
surface mass balance (SMB) is produced on the ice grid by first computing SMB on
the elevation grid, and then using a vertical interpolation scheme to produce SMB on
the ice grid. This method of interpolation produces surprisingly good results: although
it cannot capture certain localized effects (e.g., wind direction), it has been shown to
allow GCMs to produce surface mass balance fields approaching the quality of those
produced by regional climate models (e.g., RACMO2, Vizcaino et al., 2013).

Inside the GCM, SMBs computed on the elevation grid must be regridded to the
atmosphere grid as well as the ice grid. In order to maintain conservation in a tight
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two-way coupled system, it is essential that the set of regridding operation chosen is
self-consistent: that is, if a flux field on the elevation grid is regridded simultaneously to
the atmosphere and ice grid, then the total amount of flux represented by the resulting
two fields should be the same. For conservation purposes, the specifics of these two
transformations are not important, as long as they are consistent with each other. Past
efforts at one-way coupling have defined these two transformations in ways that each
make intuitive sense, but are not consistent with each other. This is not a problem for
one-way coupling, but it would cause conservation problems for two-way coupling.

This paper develops the concept of the elevation grid on which the ice surface model
runs, and then derives a set of conservative regridding transformations between the
atmosphere, elevation and ice grids. The coupled processes under consideration along
with the transformations required for tight two way coupling are introduced in Sect. 2.
Section 3 focuses on the elevation grid, while the grid fundamentals necessary for the
two way coupling are presented in Sect. 4. Section 5 deals with the use of projection
and associated issues encountered when bridging between the spherical geometry
of GCMs and Cartesian ice sheet models. We show how to choose and implement
the transformations in Sects. 6 through 9, and work through realistic examples of these
transformations in Sects. 10 through 12. We touch on a number of extra “wrinkles” in the
real world problem: procedures to use when the elevation grid is based on a horizontal
grid other than the atmosphere grid in Sect. 13, and regridding procedures required
when ice elevations, ice extent or elevation grid change in the simulation in Sect. 14.
Finally, we present in Sect. 15 a library, GLINT2, that can be used to tightly couple
GCMs and ice sheet models.

2 Coupled processes

The coupled atmosphere—ice system involves three models interacting with each other:
an atmosphere model, an ice flow model, and an ice surface model situated between
them (Fig. 1). The atmosphere is coupled with the ice surface model, which tracks the
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top few meters of ice. Processes modeled here include a full surface mass/energy bal-
ance computation, snow/firn compaction, albedo effects, meltwater percolation, runoff,
refreezing, etc. The bottom of the ice surface model is coupled to the ice flow model.
Each model runs on its own grid: the atmosphere model runs on the atmosphere grid,
the ice flow model runs on the ice grid, and the ice surface model runs on the elevation
grid.

2.1 Ice surface model

The purpose of the ice surface model in a tightly two-way coupled system is to insulate
the ice flow model from high-frequency changes happening at the surface. This is be-
cause the ice flow model, which uses a long time step, is not prepared to handle the
high-frequency surface mass and energy transfer that occurs daily on an ice sheet: ice
flow models generally require surface temperature and mass flux boundary conditions,
assumed to be constant over the course of the ice coupling time step.

The ice surface model should be thick enough that surface-induced changes do not
propagate to the bottom in any significant manner over the course of an ice coupling
time step. However, there will be a small residual heat flux, no matter how thick the ice
surface model is.

We will capture this physics by calculating a heat flux between the ice surface and ice
flow models over the course of a coupling time step, and then “guessing” the temper-
ature of the boundary condition that produce this flux (Schmidt et al., 2004). Since we
do not expect our guess to be fully correct (due in part to ice movement), there will be
a residual difference between the expected vs. actual heat flux into the ice flow model.
We will ensure conservation by pushing this heat back into the ice surface model after
the coupling time step. This correction, originally calculated on the ice grid, must be
regridded to the elevation grid in order to be applied to the ice surface model.

The use of an ice surface model solves some important problems, but it also intro-
duces non-physical elements into the model. Ice contained in the ice surface model
does not advect along with the ice flow model, nor does it contribute to the stress field
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of the ice below it in the ice flow model. In both cases, we expect the relative error to
be small: the top 15 m of snow/firn contains less than 1 % of the mass of a 1000 m thick
ice sheet. There may be ways to fix these problems — however, there is no need to
make the ice surface model thicker than it needs to be. Numerous studies have shown
that ice sheets below about 15 m are fully insulated from surface weather and seasonal
cycles (Zagorodnov et al., 2006).

Therefore, the ice sheet model is ideally 15m thick. As snow accumulates on top,
it “pushes” excess mass down to the ice flow model. As ice melts on top, it “pulls” ice
back from the ice flow model.

2.2 Three models, three grids

Each of the three models in the coupled system runs on its own grid. The atmosphere
is run on the atmosphere grid (A) and the ice flow model is run on the ice grid (/). The
ice surface model is run on the elevation grid (£), which is based on the atmosphere
grid (see Sect. 3). All three grids are two dimensional, in the sense that they are used
to construct two-dimensional functions f(x, y) over the domain. Regridding operations
are needed to pass mass and energy fluxes between the models.

It is important to keep in mind the relative size of the three grids. We set up a test
using the GISS 2° x 2%" atmosphere grid (Schmidt et al., 2006), overlapping with the
SeaRISE 5km grid (Bindschadler et al., 2013) and 40 elevation points, spaced every
100 m from O m to 4000 m. In that case, / had 66 906 grid cells, A has 146 and E has
1829. These numbers only account for grid cells involved with the Greenland ice sheet.
In general, the ice grid will be finest, the atmosphere grid coarsest, and the elevation
grid in the middle.

Time frequency mismatches are another issue. The atmosphere runs at high fre-
quency, each time step being typically 1 h. On the other hand, the atmosphere and ice
flow models are coupled at much lower frequency, typically 1 month. We call these two
time steps the atmosphere time step and ice coupling time step.
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2.3 Fully coupled system

Figure 2 shows the data flow of the fully coupled system. Steps of the data flow are
organized based on their frequency: the top circle of steps runs at the same frequency
at the GCM atmosphere, while the bottom circle runs at the ice coupling frequency
— typically one month or more. We describe the steps involved in coupling the GISS
ModelE (Schmidt et al., 2006) with PISM (Bueler and Brown, 2009); however, these
steps are general for any GCM or ice flow model. We now trace through the data flow
on a typical coupled run.

2.4 Atmosphere time step

When the atmosphere runs, it produces a set of fields on the atmosphere grid that affect
the processes in the ice surface model: for example, downwelling longwave radiation,
downwelling shortwave radiation, precipitation, etc. These fields must be regrldded
from A to E. We denote the set of fields to be regridded with a capital letter, R*: the
result of the regridding is RE (see Appendix A for notation conventions).

The ice surface model is run at the same frequency as the atmosphere. Among its
outputs are mass and energy fluxes with the atmosphere: evaporation, sublimation,
upwelling longwave radiation, latent heat release, etc. These are represented by Ft
and are regridded to F” before being passed back to the atmosphere on the next time
step.

The ice surface model also produces fluxes into the ice flow model; these are de-
scribed immediately below.

2.5 Coupling time step

On each atmosphere time step, flux outputs from the ice surface model are accumu-
lated as @F. Every coupllng time step — about once a month — the accumulated df is
regridded to the ice grid (®') and passed to the ice flow model.
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The ice flow model produces changes in ice surface topography and extent, as well
as a small energy flux between the ice flow and ice surface models (A/). These changes
are fed back into the atmosphere and ice surface model — after being appropriately
regridded to Af and A

2.6 Regridding requirements

We see that the fully coupled system requires the use of five regridding operations at
various points in its run (Fig. 2). These regridding operations must be conservative,
in the sense that none of them can change the integral of the field on the domain as
a whole. In fact, we would like to impose a stronger conservation condition, that values
are conserved within each atmosphere grid cell.

We develop these five regridding operations in the sections below. We begin by dis-
cussing the method of elevation classes in a general manner (Sect. 3), and then move
on to developing basics of conservative regridding (Sect. 4). Because conservation is
defined in terms of integration over areas, part of our discussion involves a definition
of how to integrate functions on the elevation grid E. Finally, we show how the required
set of operations can be constructed in a fully self-consistent manner.

Throughout, we assume that the atmosphere grid A has LO parameterization: func-
tions on A are represented by their mean value within each grid cell. This becomes
our basis for conservation: all regridding operations are conservative over every atmo-
sphere grid cell. We do not require any specific parameterization for the ice grid, but
we consider cases for LO (piecewise constant) and L1 (piecewise linear) parameteriza-
tions, the latter which are commonly used in finite element ice models.

3 Elevation points

The method of elevation classes, when applied to the atmosphere—ice coupling prob-
lem, involves running the ice surface model at one or more elevations in each
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atmosphere grid cell (Lipscomb et al., 2013). Temperature, pressure and precipitation
are extrapolated to a set of elevations within the grid cell. They are then used in an ice
surface model to compute a full surface mass and energy balance at each elevation.
The result is a set of “what-if” scenarios, giving an estimate of what the fluxes would
have been, had the ice surface of the grid cell been at the given elevation — rather than
the elevation seen by the atmosphere model.

The practitioner has wide latitude in the choice of elevations to use for each atmo-
sphere grid cell. The simplest approach is to use a fixed set of elevations across all
grid cells — for example, every 100 m from O m to 4000 m.

However elevations are chosen, the result is a new “grid” — the elevation grid — on
which the ice surface model is run and surface fluxes are generated. (See Appendix A
for definition of grid.) The elevation grid is derived from the atmosphere grid, in the
sense that each elevation grid “cell” (or elevation point) is associated with one parent
atmosphere grid cell. If elevation point £; is associated with atmosphere grid cell 4;,
we write £ € A;.

Once the GCM has computed a conserved quantity on the elevation grid, those
values can be used to develop a relation between elevation and SMB within each
atmosphere grid cell. Suppose we have computed a flux field £ - SMB, for example.
For an atmosphere grid cell A;, consider the values ij for all j such that £; € A;. We
can think of these values as samples of a 1-D function relating elevation to flux (SMB),
within the localized region of A;. By interpolating between those points using standard
methods, one can construct a continuous function relating flux to elevation within A;. As
long as enough points are used, and the function being interpolated is smooth enough,
this procedure will yield an arbitrarily accurate representation of the “true” function.

In fact, the functions we typically wish to interpolate — surface mass and energy
balance averaged over about a month — are quite smooth as functions of elevation
(Fig. 3). In the face of spatially invariant precipitation, one would expect SMB to be
constant above the equilibrium line altitude (ELA), and to decrease linearly with eleva-
tion below the ELA. Near the ELA, one would expect a smooth transition because the
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ELA goes up and down over a month of diurnal cycles. This is in agreement with exper-
imental work, which has shown SMB below the ELA to vary linearly with temperature
(Braithwaite, 1981; Box et al., 2013).

How many elevation points are required to properly resolve the elevation—flux rela-
tionship? This depends on the interpolation scheme: higher order schemes will require
fewer points than piecewise linear interpolation. But the general shape of the function
— two straight lines connected by a curve near the ELA — implies that not many points
are needed, except for near the ELA.

If one knows where the ELA is on every atmosphere grid cell, then this is a useful
guide in selecting elevation points. But if one is studying ice sheets in a changing
climate, then the ELA will be expected to move over time. It is possible to adaptively
move elevation points as the ELA moves. But it is simpler just to use many points
everywhere. In our tests, we have used 40 points at 100 m spacing, which is probably
sufficient for coupled ice sheet simulations.

The method of elevation classes — or elevation points — provides a way to construct
an interpolated relation between elevation and surface mass/energy flux within each
atmosphere grid cell. Additional choices need to be made in order to produce fully
downscaled flux fields on the ice grid (Sect. 6). We are now almost ready to define the
transformations posited in Sect. 3. But first, we pause for some groundwork on grid
fundamentals and projection issues.

4 Grid fundamentals

Numerical models represent continuous fields by linear combinations of a finite set
G of basis functions — which we call a parametrization (Appendix A describes our
mathematical notation). For example, suppose that G uses the basis functions g(x,y) =
[g1(x,y¥)...9,(x,y)], where g(x,y) is the vector of all the basis functions. Suppose
we have an n-dimensional vector £ with components f,G. That vector represents the
function:
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fO(x,y) =9 -g(x,y) (1)

Most commonly in climate modeling, f,.G represents the mean value of fG(x,y) within
some well-defined bounded region, which we call a grid cell. From a conservation point
of view, a function fG(x, y) with LO parameterization may be taken to be constant within
each grid cell, with discrete “jumps” from one grid cell to the next. In this case, the basis
function g;(x, y) for grid cell / is equal to one inside the cell and zero outside.

LO parameterizations are widely used in climate and finite difference ice flow models.
Finite element ice flow models might use L1 or even higher-order parameterizations
(Zienkiewicz et al., 2013), and they use the term “mesh” to describe the geometry of
their basis functions. In this paper, we use the term “grid” both to refer to the vector
space in which @ lives, along with its associated parameterization.

4.1 Integration on grids

Because we are working with conserved quantities, it is essential that we can integrate
functions over any well-defined region B. Because a parameterization defines f(x,y)
on every point, this integral is well-defined. Substituting from Eq. (1) and using linearity,
we get:

/ Fx,y)dA = £6. / gix,y)dA @)
B B

If we wish to integrate over B repeatedly, we can pre-compute [;g(x,y)dA, and

then take dot products with % as needed. How one integrates the basis functions
depends on the nature of those basis functions. We give specifics for LO and L1 grids
in Appendices B and C, respectively.
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4.2 Comparison across grids

In regridding applications, we need to compare fields across different grids. They can-
not be tested for simple point-by-point equality, due to differences in grid structure.
Instead, we compare by mtegratlng two fields over the same region or set of regions.

If we have two flelds f and " on two different grids, we say that Cis equivalent to
' on region B, or i fH, if:

fe. / g(x,y)dA=f". / h(x,y)dA (3)
B

Suppose we wish to compare % and " over an entire domain? If we have a set of
regions A = {A4,...,A,} tiling that domain, then we can say the two fields are equivalent
on A if they are equivalent on all of A4, ..., A,. Note that A could be an LO grid, or simply
a set of regions on the domain. If we have a transformatlon F () such that = T(fG),
then we say that 7 () is conservative on A if A i

4.3 Area-weighted remapping

Suppose we have two grids G and H, with H being LO parameterized, and suppose we
have a field ° , which we wish to regrid in a conservative manner to result in the field
. One stralghtforward way to do this is to set:

f,-”-ﬁ s /gxy (4)

By construction, this transformation is conservative on H. Note that ¢ and 7 will
generally not be equivalent over other regions other than grid cells in H — for example,
over grid cells in G (if G happens to be LO parameterized).
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Area-weighted remapping is closely related to our definition of equivalence above. If
we have two fields on two different grids, equivalence on H can be tested by regridding
both fields to H and comparing the resulting vectors. The transformation from G to
H is linear, and thus representable by a matrix. It is variously called area-weighted
remapping or conservative regridding (Ramshaw, 1985). The matrix is computed by
integrating the source basis functions g¢(x,y)...g,(x,y) over every grid cell in the
destination grid.

4.4 Interpolation grid

We are now almost ready to discuss our implementations of the transformations £ — /
and E — A (see Appendix A for mathematical notation). But first, we must introduce
the interpolation grid G, which is used to rigorously define basis functions on E.

In general, G is defined simply as the ice grid /. If / is LO-parameterized, we might
instead choose G to be the exchange grid between A and / (Fig. 4): the LO grid whose
grid cell outlines are formed by the intersection of grid cells in A and / (Balaji et al.,
2006). The exchange grid is a useful choice for G because every exchange grid cell
overlaps at most one atmosphere grid cell. This choice has its pros and cons, which
we explore in Sect. 9. Either way, the interpolation grid is similar to the ice grid, and
can be thought of as an ice grid proxy in most cases.

5 Projection issues

Whether the source grid is LO or L1, area-weighted remapping algorithms need to find
the intersection of grid cell outlines from two grids. Technically, this is only possible if
the two grids exist on the same surface. In our case, atmosphere models exist on the
surface of a sphere, whereas ice flow models work on a Cartesian plane. The exchange
grid between an atmosphere grid and ice grid cannot be directly computed.
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This problem is solved using a map projection (Snyder, 1987). We let A" be the
original atmosphere grid, and then let A in be the projected atmosphere grid — projected
to the Cartesian plane using the chosen projection. Regridding computations described
in this paper are made to/from A, the projected grid.

Another way to solve projection-related issues would be to formulate an ice flow
model in spherical coordinates. This would be convenient for ice sheets the size of
Greenland or Antarctica. But for larger globe-spanning ice sheets, such as those on
a Snowball Earth, it might turn out to be essential.

5.1 Projection error

The area of a grid cell can change when it is projected: for example, the stereographic
projection used in SeaRISE (Bindschadler et al., 2013) can change the size of a grid
cell by up to 10% over Greenland. Even if an area-preserving projection is used, the
area can change due to geometric error or numerical artifacts (Sect. 5.2). Therefore,

data must be rescaled in order to maintain conservation when transforming a field £
to F:

AR (5)

Al
Note that this transformation is diagonal and invertible (Fig. 14). Because this is sim-
ply a rescaling, the regridding schemes presented in this paper are not operationally
affected by projection issues.

The distinction between the original atmosphere grid A" and the projected atmo-
sphere grid A allows us to maintain conservation, but it introduces unphysical artifacts.
The Stereographic projection used in SeaRISE (Bindschadler et al., 2013) can change
the area of grid cells by up to 10 %. If a projected grid cell is 10 % smaller then the
original, then that means that 1 m of accumulation in the GCM will turn into 1.1 m in the
ice flow model. This could cause significant discrepancies in dynamic ice flow.
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One solution to this problem would be to use an equal area projection — the Lambert
Equal Area Projection, for example. However, equal area projections do not preserve
angles, which distorts the ice dynamics at a local scale. We conclude that non-physical
distortions happen whether an area-preserving or angle-preserving projection is used.
It is not yet clear which choice gives better results in the end.

One innovative approach to this problem is to use an angle-preserving projection,
but to allow ice flow model grid cells to vary in size, based on the local distortion of
space introduced by the projection. Parameters dx and dy are kept for each grid cell.
These grid parameters are included in the ice flow model equations, thereby accounting
for shape and area distortion caused by the projection in a physically meaningful way
(Pollard and DeConto, 2012).

5.2 Geometric error

Even if an equal area projection is used, in practice grid cells will change area any-
way. This is because projected grid cells have complex shapes, but the algorithms in
Appendix D are only able to approximate these shapes with polygons (Lauritzen and
Nair, 2008).

Geometric error may be arbitrarily reduced by increasing the number of sides used in
the approximating polygons — the parameter n specifies the number of line segments
used to approximate each side of the original grid cell in its projected state. But this
method has its limit in practical terms.

Consider a typical latitude—longitude grid on the sphere with a Lambert Equal Area
Projection (Fig. 5). In this case, the area of a polygonal approximation will always be
smaller than the area of the actual grid cell: we end up inscribing polygons inside
of circles. The geometric error will depend on the number of sides of the inscribed
polygon, which in this case depends on the number of grid cells in the circle, and on n.

This is the method used by Archimedes to approximate the value of 7 in ~ 250 BCE
(Heath and Archimedes, 1897, p. 91). Unfortunately, it converges only quadratically, as
O(1/n2). Meanwhile, memory use to store all those polygons goes up by O(n). Memory
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and time requirements will be exponential in terms of the number of digits of accuracy
required: each additional digit of accuracy will require an increase in the number of
sides by a factor of v10.

5.3 Geometric error example

We tested this theory in our code. Using the GISS 2° x 2{ grid on a spherical grid and
polar Lambert Equal Area Project, we computed the geometric error caused by the
polygonal approximation, for a variety of n from 1 through 100. Because the projection
is centered on the pole, all grid cells have the same geometric error.

In Fig. 6, we plot the observed error as a function of n. As expected, error decreases
linearly on a log—log plot. However, the decrease becomes sub-linear for n between
10 and 100, with the total error approaching 107°. Convergence in practice is even
worse than in theory, due to limitations in our numerical methods. In practice, we do
not expect to use n > 10, avoiding sub-linear convergence problems for larger n.

6 Interpolation: elevation to ice grid

We can now derive the first of the five transformations posited in Fig. 2. We begin with
the transformation £ — G from the elevation grid to interpolation grid, because this
is the transformation that ice modelers are most concerned with when seeking high-
quality downscaled flux fields. In various contexts, this transformation might be referred
to a an interpolation, downscaling or reL_gridding operation.

In Sect. 3, we showed how values f~ at elevation points may be used to construct
a flux—elevation relationship f;(z) in each atmosphere grid cell A;. These relationships
may then be used to construct f% on the interpolation grid. The resulting transformation
for E — G potentially involves horizontal and vertical interpolation, of which the modeler
has considerable choice.
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We present here three methods of interpolation from £ to G: Z Interpola-
tion (Sect. 6.1), Bilinear Interpolation (Sect. 6.2) and Elevation Class Interpolation
(Sect. 6.3). All three methods assume that G is LO parameterized and can be used
for the basis of a conservative coupling. And since they are all linear, they can all be
represented by a (sparse) matrix, which we will call M. The methods are extended to
the L1 case in Sect. 6.4

6.1 Z Interpolation

Consider an LO-parameterized interpolation grid cell G; with mean elevation z;. Sup-
pose G; is wholly contained in one atmosphere grid cell A;. A; has an interpolated

flux—elevation relationship f;(z), based on f£, and we set f/.G = fi(z)).

Suppose that G; intersects more than one atmosphere grid cell. The same procedure
is used, selecting values of f;(z,) for every A; intersected by G;. These values are then
summed together, weighted by |G; n A)|.

We call this Z Interpolation. As long as standard interpolation methods are used
to construct 7;(z), Z Interpolation defines a linear function from f£ to % and can be
represented by a matrix. An example of the result is shown in Fig. 7. In general, Z
Interpolation produces SMB fields that vary smoothly within each atmosphere grid cell,
but that contain discontinuities between grid cells.

6.2 Bilinear interpolation

There is some concern that discontinuities created by Z Interpolation could cause prob-
lems as an input to an ice flow model. In that case, a bilinear interpolation step may
be used to create a smooth field, as in Lipscomb et al. (2013). This scheme sets the
value of interpolation grid cell G; equal to a linear combination of f;(2), f,(2), f;(z) and
»(2), where atmosphere grid cells A;, A,, A, and A,, are the four grid cells with centers
closest to the center of G; (Fig. 8). Results are shown in Fig. 9.
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Bilinear Interpolation has the advantage over Z Interpolation in that it produces
smooth fields. However, bilinear interpolation has a number of problems:

— The fields it produces will have a significantly different total mass than the fields
produce by Z Interpolation. Our experience with monthly SMB fields over Green-
land indicates that storms tend to dump large amounts of snow in a few localized
areas. Bilinear Interpolation tends to reduce the total amount of snowfall in these
cases, causing potentially significant differences in the GCM model run.

Variations in total mass caused by the choice of interpolation procedure will not
cause conservation problems: we make this clear in Sect. 7. However, an inter-
polation scheme that produces a significantly different mass from the apparent
“intent” of the GCM could cause biases. In particular, a scheme that makes snow-
storms smaller than the GCM *“intended” would produce a negative bias in the
equilibrium extent of the ice sheet.

— It introduces significant numerical diffusion into the system.

— The A — E transformation derived with bilinear interpolation introduces non-
physical artifacts (Sect. 12).

— It is also not always clear how to extend bilinear interpolation to the case of non-
rectangular atmosphere grids. This problem can also affect non-regular points in
mostly regular grids (e.g., at the poles of a latitude/longitude grid).

6.3 Elevation class interpolation

One final choice for regridding is to define elevation classes as they were originally
formulated (Leung and Ghan, 1998). In this approach, each atmosphere grid cell is
grouped into sub-regions based on elevation bands. The grid £ can then be thought of
as an LO grid with irregularly shaped grid cells (Fig. 10). Area-weighted remapping is
used to interpolate from the elevation grid to the atmosphere grid.
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Elevation class interpolation is equivalent to a specialized form of Z Interpolation, in
which the 1-D function f;(z) (for grid cell A;) is interpolated as a discontinuous piecewise
constant function (Fig. 11), rather than a piecewise polynomial (Fig. 3).

Unless one expects significant discontinuities in topography or the elevation—flux
relationship, a zero-order interpolation scheme such as Elevation Class Interpolation
would be expected to give a less accurate version of f9 than a higher order scheme
such as Z Interpolation. Since we expect the elevation—flux relationship to be smooth
with elevation, we do not recommend the use of Elevation Class Interpolation over Z
Interpolation.

6.4 Interpolating to L1 grids

We have outlined recipes for the interpolation £E — G, as long as G uses an LO param-
eterization. The procedures need to be modified for interpolation or ice grids using L1
parameterization.

In a finite element mesh (“grid”), field values are determined at mesh vertices and
linearly interpolated within each triangular element (Zienkiewicz et al., 201 3). Any of the
interpolation methods above may be used to determine the value of I (x,y) at each
vertex. Once vertex values have been interpolated on the vertices of a finite element
mesh, the value of fG(x,y) at all other points is fully determined.

7 Regridding: elevation to atmosphere grid

As shown in Fig. 2, a regrid step from the elevation to the atmosphere grid is required
on every GCM time step. Once the modeler has chosen the transformation £ — G, we
show here how to derive a transformation for £ — A that is consistent with it.

To derive this transformation, consider one GCM time step, during which a flux field
f£ between the atmosphere and ice surface is computed on the elevation grid. That
field will be regridded both to the interpolation and atmosphere grids. Conservation
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requires that the resulting fields are equivalent on A, i.e:
A =AfC (6)

If the transformation £ — G derived in Sect. 6 is represented by the matrix M, then we
can write ¢ = MfE. Substituting into Eq. (6), we get the requirement:

A=A MFE (7)

Equivalence on A can be tested by conservatively remapping both sides to A and then
comparing. Denoting R as the matrix that conservatively regrids from G to A, we have
the requirement:

A = RMfE (8)

If we treat this as a definition for the transformation £E — A, we have derived a trans-
formation for E — A that is consistent with the transformation we already chose for
E —-Q@G.

In other words (Fig. 12): we will regrid from E to A by first regridding from E to
G (represented by the matrix M), and then use area-weighted remapping from G to
A (represented by the matrix R). The GCM, which needs to use the transformation
E — A, does not need to know anything about the ice grid used to derive that trans-
formation. It just needs to know the final matrix RM, which can be pre-computed via
matrix multiplication.

We have derived a transformation for £ — A that by definition is consistent with a pre-
viously chosen transformation for £ — G. Our approach differs from previous efforts,
which would start out with £ — A and try to find a transformation for £ — G that is
consistent with it. We believe our approach makes sense because modelers care more
about the details of £ — G than £ — A.
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7.1 A basis for E

Every vector space has basis functions, including the elevation grid £. Our choice for
the transformation £ — A constrains the basis functions we use on E. To find these
basis functions, we expand on the central idea in the previous section: that we can
determine properties of a field on the elevation grid by regridding to the ice grid. In this
case, we define fE(x,y) to be equal to fG(x,y), where ¢ = Mf£. In other words, we
can evaluate fE(x,y) at a point by interpolating f£ to G and then evaluating fG(x,y).
This definition is consistent with our recipe for  in the previous section.

We now use this principle to obtain a formula for the basis functions of £. Substituting
into Eq. (1), we get:

E(x,y) =O(x,y) = MFF - g(x,y) 9)

Rewriting in indicial notation, using the commutative property of multiplication, and
swapping index letters, we get:

fE(x,y) = fFMg;(x,y) (10)

We can use this, along with Eq. (1), to determine the basis functions for the elevation
grid:

ei(x,y)=M;g;(x,y) (11)
or switching back to vector notation, we have:
e(x,y) =M g(x,y) (12)

Equivalently, the basis function e;(x, y) is the function obtained if we set the f,-E =1 and

all other components of £ = 0, regrid to the interpolation grid, and then examine the
resulting function fG(x,y).
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In general, these basis functions will be not orthogonal. Their exact form depends on
choices made in choosing M: vertical and horizontal interpolation choices, as well as
grid geometry issues. We have plotted some example basis functions in Fig. 13.

Note that if elevation class interpolation is used (Sect. 6.3) and G is the exchange
grid, then our scheme reduces to a traditional elevation class scheme, and basis func-
tions will represent constant-value sub-grid tiles, which are orthogonal.

7.2 Forward transformations: summary

We have now defined three of the five regridding transformations required by Fig. 2:
E —-G,G— Aand E — A. We call these the forward transformations because they
are linear and can be represented by matrices. See Fig. 14 for a diagram of how these
transformations may be used to regrid fields.

We defined these three transformations in a consistent manner. We began by allow-
ing the user choice in constructing the transformation from the elevation to interpola-
tion grids, represented by matrix M: this makes sense because users desire choice for
E — G. We then noted that standard area-weighted remapping, represented by ma-
trix R, may be used to regrid from the interpolation grid to the atmosphere grid. From
these two choices, transitivity requires that the transformation from the elevation to at-
mosphere grid is represented by the matrix RM. Conservation is maintained because
E — G and E — A are consistent with each other, producing f¢ and £ that are equiv-
alent on every grid cell in A.

Our choices for these transformations lead directly to a well-defined set of basis
functions for the grid £, examples of which we plotted. Fields on this grid will be rep-
resented in terms of these basis functions — for example, surface—atmosphere fluxes
and ice surface model state.
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8 Reversing the transformations

We have defined three transformations so far, but Fig. 2 indicates that five are nec-
essary for full functioning of the coupled system. We still need to derive appropriate
procedures for the “reverse transformations” A — E and G — E, indicated in Fig. 14
as dotted lines. Because of the differences in dimensionality between the three grids
(Sect. 2.3), M and RM are not invertible in a simple linear algebraic sense: A — E is
underdetermined, and G — E is overdetermined. We still must find ways to compute
these transformations that retain conservation over atmosphere grid cells.

8.1 Transformation: atmosphere to elevation

Suppose we have a flux field " on the atmosphere grid A. We wish to regrid it to
an “equivalent” flux field f£ on the elevation grid E. In this case, f might represent
precipitation or downwelling radiation from the atmosphere.

The problem is underdetermined. Any solution for which =" £ will be conserva-
tive. This is the same as requiring that:

RMfE = 4 (13)

Because of the many-to-one relationship between elevation and atmosphere grid
cells, our intuition tells us that £ may be constructed simply by repeating values of i
within each atmosphere grid cell. This is physically self-consistent. More precisely, if
E; € A;, then we would like to set ff = f,.A. We define a simple linear transformation A

that does this: £ = Af.

If the matrix RM computes each f,A as a weighted sum only of values ff where
E; € A;, then we say that RM is a local transformation — it uses only data from “within”
an atmosphere grid cell to compute a value on that grid cell. If RM is local, then the
intuitive notion that £ = Af* will be conservative: it is easy to show that RMAF = f*
(see Eq. 13). The weiAghts involved in RM do not matter, as long as they sum to one for
each component of f~.
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Therefore, if RM is local, we can simply use A for our transformation A — E. Even
better, it is easy to show that there will be no numerical dispersion in the round-trip
transformation £ — A — E because ARM is the identity matrix.

8.2 Non-local RM

If RM is not local, then in general A" and £ will not be equivalent on A, or even the
entire ice sheet. We are forced to trade off between the most physically self-consistent
value for £ = Af*, vs. something that conserves. We can use A, along with quadratic
optimization, to guide us to such a compromise.

We seek a vector f£ such that:

RMfE = (14)

We also wish that vector to be as close as possible to our intuition above. That is, we
wish to minimize the quantity:

15 — AFA|P (15)

where our L, norm is weighted by the weight of each basis function. That is, we use
a weight vector w where:

w; = /e,-(x,y)dA (16)

[ee)

This is a sparse quadratic optimization problem with equality constraints. A number
of numerical packages can solve it, we used GALAHAD (Gould et al., 2003). In our
tests, solution typically requires a fraction of a second on a single core. That is so fast
that we have found no need to consider sub-optimal solutions to this problem.

This procedure introduces some numerical dispersion into the fully coupled system
from non-local regridding operations: by numerical dispersion, we mean movement of

6517

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6493/2013/gmdd-6-6493-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6493/2013/gmdd-6-6493-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

mass between adjacent atmosphere grid cells, thereby violating our desired property of
conservation with each atmosphere grid cell. Considering the round-trip transformation
E — A — E, itis clear that this transformation is not local: both because RM is not local,
and because the quadratic program set up for A — E will be non-local.

8.3 Practical issues for non-local RM

GCMs are well equipped to deal with sub-grid tiles, each one occupying a fraction of
the overall grid cell. The GCM will typically implement E — A by computing a weighted
sum over sub-grid tiles in each grid cell, with weights based on each tile’s fractional
area. This capability is used to implement traditional elevation class schemes.

If the RM matrix is local, then by definition the value on each atmosphere grid cell
is a weighted sum of the elevation points in that grid cell. This is compatible with ex-
isting GCM practice that assumes sub-grid tiles. To use the methods in this paper, the
computation of £ — A inside the GCM does not need to be replaced, it need only be
fed a new set of weights. Even though elevation points do not have well-defined areas,
the weight for elevation point j can be thought of as the “fractional area” that an ele-
vation point contributes to its containing atmosphere grid cell. The GCM can be coded
as if traditional elevation classes are being used, even if the user has chosen a more
numerically accurate form of vertical interpolation in the construction of the M matrix.

Things get more complicated for the GCM if the RM matrix is not local. Instead of
using a simple set of weights, the GCM will have multiply by a general sparse matrix
RM when computing £ — A. An MPI gather will be required to compute A — E. Finally,
some GCMs use implicit schemes for ice surface/atmosphere coupling (Best et al.,
2004), requiring a matrix inversion on every time step. If RM is non-local, then a large,
sparse, global matrix inversion will be required, rather than a number of small, local
inversions.

Because of the significant practical complications that arise with the use of a non-
local RM matrix, most users find it simplest to use a local RM matrix if at all possible.
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8.4 When is RM not local?

The use of a non-local RM transformation can add burden to the GCM developer. It is
therefore important to delineate cases in which RM is not local.

For L1 ice grids, as is used with a finite-element ice flow model, RM will be non-local:
ice elements that straddle two atmosphere grid cells will by necessity involve elevation
point values from two atmosphere grid cells. This will make R slightly non-local.

Even for LO grids, M could be non-local, depending on the choice of interpolation
schemes for E — G. Bilinear interpolation is inherently non-local, whereas the other
interpolation strategies mentioned above are local.

For LO ice grids with a local interpolation scheme, RM can be made local, as long
as G was chosen to be the exchange grid (see Sect. 4.4). In this case, M will be local
— because each exchange grid cell attains its value from elevation points in just one
atmosphere grid cell. R will be local as well, for the same reason.

8.5 Transformation: interpolation grid to elevation grid

Suppose we have a flux field % on the interpolation grid G. We wish to regrid it to an
“equivalent” flux field f£ on the elevation grid E. As before, we will set up a quadratic
optimization problem.

It would be nice if we could find f£ such that MfE = £°. This will not usually be
possible, since G has far more degrees of freedom than E. Instead, we will minimize
the quantity:

IMFE - )2 (17)
while we maintain conservation on each atmosphere grid cell:

RMfE = Rf° (18)
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This quadratic optimization problem may be solved with the same methods as in
Sect. 8.2. We weight components of our L, norm by the integral of each basis function
in G.

9 Exchange grid or ice grid?

So far, we have defined our transformations in terms of the interpolation grid G — which
could be either the ice grid or the exchange grid. But real ice flow models operate
on the ice grid, and transformations must ultimately transform to/from that grid. If we
have chosen G as the exchange grid, we need to extend our transformations above to
regrid to/from the ice grid. We do this by using area-weighted remapping as necessary
between G and /.

More formally, we construct transformations for X: G — / and X' : / — G using area-
weighted remapping. We can then represent E — / as the matrix product XM. Similarly,
we can construct / — E by first computing % = X'f" and then using the reverse trans-
formation G — E to obtain £ (see Fig. 14).

Note that the transformation X : G — / is not conservative on A. For this reason, the
transformations £ — / represented by XM is not conservative on A either, although
it is conservative overall: “mass” lost from one atmosphere grid cell will be gained by
neighboring cells. This will cause numerical dispersion when these transformations are
used in the fully coupled system (Fig. 2).

Assuming the ice grid is LO parameterized, we will now address the practical issue
faced by the user, whether to choose the exchange grid or ice grid as G? If one uses
the exchange grid for G in conjunction with a local vertical interpolation scheme, then
the RM matrix will be local. This has a number of advantages. It eases implementation
(Sect. 8.3). There will be no numerical dispersion for the transformation £ — A, used
every atmosphere time step. The reverse transformation A — E, also used every at-
mosphere time step, will be trivial. However, there will be numerical dispersion for the
transformation £ — /, which is used once every ice coupling time step.
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If one directly uses the ice grid for G, then the RM matrix will not be local, producing
numerical dispersion for the transformation £ — A and complicating the reverse trans-
formation A — E. However, there will be no numerical dispersion for the transformation
E—/.

On balance, we recommend keeping the RM matrix local if possible. Not only does
this simplify implementation, it moves unavoidable numerical dispersion away from the
atmosphere time step to the less frequent ice coupling time step.

9.1 Exchange grids for finite elements

The discussion in Sect. 9 assumes an LO ice grid. The results can be extended to L1
or higher-order parameterizations: finite element ice models, for example. In this case,
the concept of exchange grid is not meaningful, since exchange grids are by definition
LO.

Instead of the exchange grid, one can choose G to be just about any LO grid, of
resolution at least as high as the ice mesh, where grid cells do not cross atmosphere
cell boundaries: we will call this a generalized exchange grid. The user would then
need to develop an appropriate conservative transformation for G — /, whereas the
transformation for / — G would remain an area-weighted remapping (see Appendix C).
Details of this scheme for a particular ice mesh parameterization are left to the reader.

As in Sect. 9, the transformation G — / would cause some numerical dispersion, due
to the geometry of the ice mesh. Additional dispersion would be introduced because of
mismatch between the LO grid G and the higher-order mesh / — although this could be
reduced by making G finer. The tradeoffs of choosing G to be a generalized exchange
grid vs. the ice grid are the same as in Sect. 9: numerical dispersion is introduced in
the ice coupling timestep, in exchange for simplifying implementation and eliminating
dispersion in the atmosphere timestep.
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10 Regridding examples: local RM

Having shown how to compute all five required regridding transformations, we now
demonstrate them working within a realistic GCM context. We set up a test using the
GISS 2° x 2%° atmosphere grid (Schmidt et al., 2006), overlapping with the SeaRISE
5km LO grid (Bindschadler et al., 2013) and 40 elevation points, spaced every 100m
from Om to 4000 m. We chose the exchange grid as G (see Appendix A for notation
conventions). We ran GISS ModelE in this configuration, using fixed sea surface tem-
peratures corresponding to the years 1996-2005. The ice surface model was run on
the elevation grid, producing monthly averages of SMB over Greenland, which we label
f£ (Fig. 15).

As expected, the broad pattern shows strong melting in narrow bands at low eleva-
tions, along with weak accumulation at high elevations. Atmosphere grid cell bound-
aries are prominent because precipitation — the primary source of positive SMB — is
not downscaled to sub-grid resolution (Leung and Ghan, 1998). The small oscillations
at high elevation are artifacts introduced by ModelE’s ice surface model.

10.1 Example: E—> A

Figure 16 shows the original field £ computed on the elevation grid and regridded
to the atmosphere grid A, via the transformation " = RMf£ . Note how low-elevation
ablation regions become broader and weaker (compared to Fig. 15), whereas the inte-
rior of the ice sheet remains about the same. This demonstrates the benefits obtained
through the use of elevation points, as compared with running the ice surface model
on the atmosphere grid (van den Broeke et al., 2008).

By definition, the transformation RM is conservative on A: we can evaluate conser-
vation properties of other transformations by comparing to Fig. 16.
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10.2 Example: £ -/

Figure 17 shows the original field i regridded to /, via f' = Xmf~t using Z Interpo-
lation for M. This plot looks like a smoothed version of Fig. 15. Atmosphere grid cell
boundaries are still visible because Z Interpolation is local.

The transformation X : G — / (Fig. 14) introduces a small amount of non-locality. And
although it is conservative over the ice sheet in general, it is not conservative over
A. This can be seen (Fig. 18) by regridding f' to A and comparing with the results
of Fig. 16. This plot quantifies the amount of numerical dispersion the simulation will
encounter every month when preparing SMB input for the ice model. This dispersion is
caused by ice grid cells that overlap more than one atmosphere grid cell.

In most areas, numerical dispersion is low, less than 1%. That is because most
atmosphere grid cells are overlapped by many ice grid cells, with only a few lying on
an atmosphere grid cell boundary. However, numerical dispersion can be significant for
atmosphere grid cells that just nick the edge of the ice sheet, where a high proportion
of their overlapping ice grid cells also overlap with a neighboring atmosphere grid cell.

The numerical dispersion encountered here is inherent in the regridding problem
itself, rather than our approach to that problem. Short of using an ice grid whose grid
cells do not overlap atmosphere grid cells, we see no obvious way to eliminate this
issue. However, we do not believe it to be a serious problem: the total area of ice sheet
affected by it will be small.

It is important to point out that although X' is not (quite) conservative over A, it is
still conservative over the ice sheet in general. We have verified this numerically in our
examples.

10.3 Example: / - E

Since we have not yet developed the surface boundary condition described in Sect. 2.1,
we do not have realistic fields on / to try regridding to £E. We will therefore test / — E
at this point using f' = XMfF as input.
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We test the transformation in two steps. First, we test G — E using % = Mff as input.
Then, we test / — E using f = XMfF as input. This allows us to evaluate the G — E
transformation separately from confounding dispersion factors involved in G — /.

We computed £ =[G — E](f®) where ¢ = MfE. Theoretically, f£ and £ should
be equal. The conservation property imposed by the quadratic program held: we found
that F£ =* £ =* fF to machine precision. However, we found measurable differences
between £ and £ (Fig. 19). Although differences are small in most cases, one area
has a difference of more than 8 out of 37 mmday'1, resulting in no more than one
digit of precision. Differences tend to be greatest in sparsely populated atmosphere
grid cells on the edge of the ice sheet. We conclude that the answer to the quadratic
program posed in Sect. 8.5 is poorly constrained. A different numerical solver than the
one we used might in theory result in a better match between f£ and £,

But this is not a problem in practice: the goal of G — E is to obtain a physically
plausible field on E with the correct conservation properties. The preliminary tests
presented in this section are consistent with that goal.

The transformation / — E is constructed by transforming / — G — E (Sect. 9). We
used this to compute ff= [l — E](f’) where f' = XMf£. The conservation property
imposed by the quadratic program held: we found that £ was equivalent to f on A, to
machine precision.

However, differences between f£ and £ are even greater in this case: compare
Fig. 20 to Fig. 19. This is because the transformation X: G — / is not conservative
on A. The end result of transforming £E - G — / — G — E will produce an £ that is
significantly different from the original f£ . Differences are greatest for elevation points
near an atmosphere grid cell boundary.

11 Regridding examples: almost local RM

In Sects. 8.3 and 9, we discussed the trade-offs between using the ice vs. ex-
change grid for the interpolation grid G. Having shown in Sect. 10 an example of our
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transformations using the exchange grid as G, we now show how things change if the
ice grid is chosen for G by re-running the above examples. In this case, the RM matrix
will be mostly local, except for non-locality caused by ice grid cells that intersect more
than one atmosphere grid cell. We say that RM is almost local.

In general, differences in results here vs. in those Sect. 10 are insignificant. However,
the choice of / as interpolation grid does change the basis functions used for £, yielding
a system in which the transformation £ — / is now conservative over A.

With a change in £ — /, the transformation £ — A is also changed. We calculated
the difference between computed using this method, vs. ' computed in Fig. 16: this
difference is exactly the same as Fig. 18! In practice, this difference does not present
a real problem: it is impossible to say which version of " is more “correct” Both main-
tain conservation over the ice sheet. As predicted in Sect. 9, grid-related dispersion in
| — E is eliminated. Thus, the grid-related “errors” demonstrated in Fig. 20 are elimi-
nated.

Finally, the use of a non-local RM matrix requires use of the algorithm described in
Sect. 8.1 for A — E. Figure 21 shows a July precipitation field pA produced by ModelE,
for the same month as the SMB fields above. ModelE currently does not downscale
precipitation to sub-grid resolution (Leung and Ghan, 1998): it therefore yields a pre-
cipitation field on A.

We then computed pE =[E — A](pA), which could serve as input to the land surface
model. Recall that ApA is the most physically self-consistent value for pE, but that we
choose a different value for pE in order to maintain conservation.

Figure 22 shows the difference between the two, pE - I\pA. Differences are typically
in the range [-0.1,0.1] (about 2%). They tend to be relatively constant within each
atmosphere grid cell, and show no discernible pattern between grid cells. In particular,
differences are not related to elevation. Any errors introduced by this scheme will be
dwarfed by other precipitation errors in the model.

In this example, we used an LO ice grid to generate a prototypical almost-local RM
matrix. We expect similar results when using an L1 ice grid because the non-locality in
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the LO case was caused by a small number of ice grid cells that overlap more than one
atmosphere grid cell. A similar situation exists with any type of higher-order mesh.

We conclude by considering, in the case of an LO ice grid, whether / or G is a better
choice for the interpolation grid. In many cases, the use of a non-local RM matrix
requires significantly more effortin GCM model development. However, our experience
shows fewer “gotchas” in the transformations when using / as the interpolation grid. In
the end, we expect either choice to yield serviceable results that conserve mass and
energy in the regridding.

12 Regridding examples: non-local RM

In the above sections, we considered how the transformations in this paper work when
the RM matrix is local or almost local. Here, we consider the case in which RM is signif-
icantly non-local — for example, if bilinear interpolation were used for the transformation
E — /. We would expect the “corrections” and dispersive properties that appear in the
case of an almost-local RM matrix to be significantly larger.

We encountered numerous problems when we attempted the use of a significantly
non-local RM matrix, constructed using bilinear interpolation for £ — /. Most signifi-
cantly, the A — E transformation produced elevation points of negative precipitation
when regridding a typical precipitation field over Greenland (Fig. 23) — an artifact that
we believe would be unacceptable to the majority of modelers. It might be possible
to find a solution to this problems. In the meantime, it is simpler to avoid non-local
interpolation schemes such as bilinear interpolation.

13 Independent elevation grid

The elevation grid £ is constructed by adding elevation points to each grid cell of an

underlying horizontal grid, which we will denote E°. So far we have assumed that

E° = A, meaning the elevation grid £ is derived from the atmosphere grid A. Some
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GCMs use a horizontal layout for E that is not related to A. In this section, we extend
our methods to address that case.

The first problem is a choice of the interpolation grid G. The idea of locality in RM
no longer makes sense when E° # A. For that reason, G =/ is the right choice, X and
X' will both become identity transformations. The transformation £ — / does not need
to change, nor does / — A: none of these rely on any specific relationship between E°
and A. Similarly, E — A = RM can be computed as before.

The only other thing that must change is the construction of A — E: the intuitive
definition for A (Sect. 8.1) no longer makes sense. Instead, we construct an intuitive

regridding operation @ as follows. Given fA, first regrid to on using area-weighted

remapping. Then convert fE0 to f£ using a “repeat” operator akin to A above. We can
now apply the QP-based regrid operator developed in Sect. 8.2, using ® instead of A
in Eq. (15).

The use of £° # Aintroduces numerical dispersion into the system. This can be seen
by evaluating the locality of the round-trip transformation £ — A — E. This numerical
dispersion is a fundamental consequence of the use of a different underlying grid for
the ice surface and atmosphere models.

14 Regridding in elevation space

We have tacitly assumed so far that there is one single fixed elevation grid £ with
one fixed set of basis functions. This is not the case in a changing climate, since the
basis functions used for £ depend on ice elevation and extent (Sect. 7.1). The user
might wish to explicitly move elevation points as well — for example, to track a mountain
glacier as it moves up or down. When the vector space E changes, the ice surface
model state must be regridded from the old elevation grid to the new elevation grid. We
address that issue in this section.
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Assume two elevation grids, an “old” grid £ and a “new” grid F. We wish to con-
servatively regrid a field f~ to . In this case, f will not be a flux variable, but rather
a conserved state variable of the ice surface model: snow depth, water fraction, etc.

This problem can be approached by examining the system of grids and transfor-
mations available in Fig. 14 when one has multiple elevation Fgrlds see Fig. 24). By
“following the arrows,” the most dlrect way to transform £ to £ is to first regrid to the
mterpolahon grid, computing % = ME f£. Then use the procedure in Sect. 8.5 to com-
pute f~. Because all these transformations are conservative on the atmosphere grid A,
the end result  will be equivalent to f£ on A.

14.1 Conserved model state

In previous sections, f represented fluxes between models, which are conserved. In
this section, f is a model state variable of the ice surface model. In order for this re-
gridding procedure to be physically meaningful, the model state must be expressed in
terms of conserved quantities.

Not all ice surface models are formulated in terms of conserved quantities. In this
case, the regridding procedures may still be used, as long as the ice flow model can
be converted to/from a form that is expressed in conserved quantities. For example,
an ice surface model might track the temperature, mass and water fraction of the top
layer of ice. Temperature is not conserved, so this regridding procedure cannot be used
directly. However, model state can be converted to enthalpy and mass alone (Aschwan-
den et al., 2012). These quantities are conserved, and can be correctly regridded with
conservative transformations. After regridding to the new elevation grid, model state
can then be converted back to the original non-conserved parameterization.

14.2 When to regrid

Regridding in elevation space is not just required if one changes elevation points, but
also any time that the transformation M for £ — / changes. Any time that happens,
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the regridding described in Sect. 14 should be used. Relevant events that change M
include:

1. Changes in ice topography: for example, as an ice sheet inflates or deflates due to
changing climate. When an ice grid cell changes elevation, the weights in M used
to compute it will change. This change will either be continuous (as in Z Interpo-
lation), or will jump at certain thresholds (as in Elevation Class Interpolation).

2. Changes in ice sheet extent, as an ice sheet grows or melts. For example, if an ice
sheet shrinks, then some ice grid cells will no longer participate in the regridding
process, and their associated coefficients in M will turn to zero.

3. Changes in the ice grid. Some ice flow models use adaptive grids, for example, to
track grounding line retreat (Cornford et al., 2013).

4. Changes in the elevation or number of elevation points.

15 GLINT2

Here we describe GLINT2, an open-source implementation of the transformations de-
veloped in this paper. GLINT2 is a GCM-ice flow model coupling library whose core
function is to compute the five transformations required for a coupled GCM-ice flow
model system (Fig. 2). These transformations are computed based on a variety of fac-
tors: atmosphere and ice grid geometry, ice topography and extent, and elevation levels
chosen for the elevation grid (Fig. 25).

GLINT2 does not just compute these transformations and provide them as a library,
it also provides an API for GCMs to use to couple with ice flow models. As a realization
of the mediator design pattern (Gamma et al., 1994), GLINT2 is able to shield the GCM
from a number of details of the coupling. Although it uses a different codebase, GLINT2
follows the intent of GLINT (GLIMMER Interface; Rutt et al., 2009) to build a coupling
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library between GCM and ice model. The GCM programmer who wishes to couple with
an ice model need only do the following:

1.

Implement an elevation points scheme, and move the ice surface model to the
elevation grid.

Request the RM matrix from GLINT2, and then apply it as needed during normal
model run. This might be more complex than it sounds, depending on the GCM’s
system of domain decomposition. Storage and application of the RM matrix is
simplified if the GCM author knows in advanced that it is local.

Ask GLINT2 to regrid ice surface model inputs from A — E as needed. This step
only required if RM is non-local: otherwise, the transformation A is simple enough
for the GCM to do on its own.

Accumulate ice surface fluxes on the elevation grid, and pass them to GLINT2
every coupling time step.

Apply fields returned from the ice flow model via GLINT2. These fields are re-
turned on the elevation and atmosphere grids as appropriate, eliminating the need
for the GCM to regrid them.

Note that the GCM does not need to know anything about the ice grid or ice flow
model. Interface code is added to GLINT2, not the GCM, for every ice flow model one
wishes to support. Over time, we expect the number of supported GCMs and ice flow
models to increase, according to researcher demand. This structure is useful because
it will give practitioners a way to try different ice models with a GCM fairly easily.

15.1 Adoption issues

We expect that GLINT2 could be useful to anyone with a GCM who wishes to couple
it with an ice flow model. However, many GCMs have centralized regridding strategies
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that GLINT2 does not really fit into. We do not believe this should be a significant barrier
to adoption for two reasons:

— In most cases, the elevation grid will have unusual “customized” basis functions
(Fig. 13). Centralized GCM regridding schemes are not typically equipped to re-
grid to/from the elevation grid. Nor are they equipped with the algorithms required
for the reverse transformations.

— GLINT2 hides all details of the ice grid from the GCM, communicating with the
GCM with fields on the atmosphere and elevation grids. Because all ice grid-
related issues are encapsulated in GLINTZ2, it should not matter to the GCM how
or even whether regridding to/from the ice grid is accomplished. As far as the
GCM is concerned, the ice flow model might as well be running on the elevation
grid!

Another barrier to adoption is the fact that GLINT2 is packaged as a library. Many
GCM projects are reluctant to add additional library dependencies, due to the com-
plications such dependencies introduce in the build process. We do not believe this
should be a serious problem because coupling with an ice model already involves the
use of outside libraries. With or without GLINT2, the GCM still must manage additional
external dependencies.

15.2 Availability

GLINT2 is written C++ and designed to couple with GCMs and ice flow models written
in Fortran 90/2003, C or C++. It also comes with a Python interface, making it easy
to test and plot sample regridding problems before incorporating a coupling strategy
into a GCM. GLINT2 source and documentation are available for download (Fischer,
2013).
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16 Discussion and conclusions

This paper focuses on a system of conservative regridding strategies needed to sup-
port two-way coupling between a GCM and and ice flow model in the context of
elevation-based downscaling in the GCM. Past efforts at one-way coupling have pro-
duced downscaling methods that provide SMB fields that match remarkably well with
observations and with regional models. However, these efforts used an inconsistent
set of transformations, which would result in non-conservation of mass and energy in
a two-way coupled system.

In order to achieve consistency, we began by recognizing the elevation grid as an
integral part of the coupling problem, along with the atmosphere and ice grids that
had previously been considered. We observed that the ice surface model runs on the
elevation grid, and that the downscaling step (from elevation to ice grid) is actually
another form of regridding. We have therefore transformed a coupling problem involving
two models and two grids into one with three models and three grids.

We analyzed the regridding transformations needed in a typical two-way coupling,
and determined that five such transformations are required: three “forward” transfor-
mations and two “reverse” transformations. We then set out to develop a consistent
implementation for these five transformations, starting with the forward transformations.

We observe that conservation of mass and energy requires consistency between
the transformations £ — / and £ — A. We achieve consistency by allowing the user
to choose £ — /, and then constructing a transformation for £ — A that is consistent
with the user’s choice. This is a good approach because it allows the user freedom in
choosing a downscaling transformation for £ — /. Our transformations imply a set of
basis functions for the elevation grid, which we demonstrated in plots.

We then addressed the reverse transformations, using the notions of consistency
developed in the previous sections. Problems of underdeterminism and overdetermin-
ism, caused by mismatches in dimensionality between grids, are addressed by using
quadratic optimization for these transformations.
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The result is a a set of five conservative transformations need to support a two-way
coupling of GCMs and ice models. We defined a property of our E — A transformation
called locality. We showed a number of theoretical and practical benefits if that trans-
formation is local. We implemented all five transformations and demonstrated that they
work in practice on realistic input fields.

Although three of those five transformations are well-known in the literature
(Ramshaw, 1985; Lipscomb et al., 2013), the reverse transformations are new. Most
importantly, we showed how to choose a set of grids, basis functions and regridding
schemes so that all five regridding operations are conservative. Note that the elevation
grid uses a “custom” set of basis functions. This is a significant step beyond past ef-
forts that have focused on conservative regridding to LO pre-chosen grids (Ramshaw,
1985).

Our downscaling transformation from the elevation to ice grids is taken from previous
one-way studies (Lipscomb et al., 2013). Our results “look” almost identical, except for
subtle differences in the other related transformations, needed to ensure conservation.
We therefore provide practitioners a way to bring already-proven downscaling tech-
niques into a conservative two-way coupled setting.

We went on to package these transformations in GLINT2, a coupling library. As
a piece of software, GLINT2 serves as a mediator (Gamma et al., 1994) between the
GCM and ice flow model, insulating each from the specific details of the other. This will
make it easy to couple GCMs with multiple ice models, as needed to support future
research.

Appendix A
Mathematical conventions

We use the following mathematical conventions in this paper:
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. A “grid” or “parameterization” is a set of basis functions that may be linearly com-

bined to produce functions over a 2-D domain. Grids are denoted by non-bold
capital letters: A for the atmosphere grid, / for the ice grid, £ for the elevation grid
and G for an interpolation grid. Basis functions are denoted by non-bold lower
case letters: a;(x,y) is a basis function for A. At times, the set of basis functions
may be represented as a bold-face vector: a(x,y) = [a{(x,¥),...,a,(x,¥)]

. Subscripts are used to indicate elements of a vector. If f is a vector, then f; is the

value of the /th index of f.

. If Ais an LO-parameterized grid and A; one of the grid cells, then |4,| is the area

of that grid cell.

. Vector values are indicated in boldface, scalars in non-bold.

. Vectors are used to construct a 2-D function (“field”) within the context of a par-

ticular grid. For example, suppose that the atmosphere grid A uses the basis
functions a(x,y) =[a (x,y)...a,(x,y)], and we have an n-dimensional vector A
with components f,.A. That vector represents the function:

fAx,y) = F-a(x,y) (A1)

. Since this paper is about regridding, we need to talk about the “same” field in

different grids. Superscripts are used for this: if the vector f' denotes the vector
representing a field on the ice grid, then " denotes a vector representing the
“same” field on the atmosphere grid.

. Similarly, fA(x,y) denotes the function implied by the vector * and the vector of

basis functions a(x, y).

. We use arrows to talk about transformations between grids, which transform fields

on one grid to fields on another. Since fields on a grid are represented by vectors,
6534

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< |
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6493/2013/gmdd-6-6493-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6493/2013/gmdd-6-6493-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

5

10

15

20

the transformations are functions from one vector space to another. For example,
E — A can be read “the transformation from the elevation grid to the atmosphere
grid.” Many of these transformations linear, and can be represented by matrices.

9. If a transformation is non-linear, we use functional notation with square brackets
to denote an application of that transformation: £ = [A— E](fA).

10. We use Einstein summation notation at times.

Appendix B

Integration of LO grid

Suppose we have a region B and an LO-parameterized grid G with grid cells G4 ...G,,.
The basis function g;(x,y) is equal to 1 inside of grid cell G; and zero elsewhere. We
wish to compute:

/ g,(x,y)dA =BG (B1)
B

This is simply equal to the area of intersection of B and G;.

If we wish to regrid to an LO grid A, we must do the above computation multiple times,
setting B to every grid cell A; € A. This creates an overlap matrix L where L, is equal
to the overlap between source grid cell G; and destination grid cell A;.

The overlap matrix is directly related to the exchange grid between G and A: every
non-zero element of L;; is equal to the area of one grid cell in the exchange grid. The
exchange grid may be computed as described in Appendix D. The Surveyor’s Formula
(Braden, 1986), a special case of Green’s Theorem, can then be used to compute the
overlap matrix from the exchange grid.
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Appendix C

Integration of L1 grid

Appendix B shows how to integrate over areas on an LO ice grid. But if an L1 finite
element ice flow model is used, one will need to do this over an L1 ice grid. Here, we
show how to integrate L1 finite element basis functions over an arbitrary area B.

An L1 finite element mesh is made up of triangular elements, where the value of
a function is defined at the vertices of the triangles. Values inside each element are
interpolated based on the values at the vertices.

Each basis function N;(x,y) in a finite element mesh corresponds to a vertex
(Zienkiewicz et al., 2013). This function is non-zero only in the triangular elements
in which the vertex participates. We define a sub-basis function N;;(x, y) to be equal to
N;(x,y) within triangular element j, and zero elsewhere. Thus we define:

N(x.y) = > Nyj(x,y) (C1)
J

Within its element, a sub-basis function takes the shape of a plane, having the func-
tional form:

N;;(x,y)=a+bx+cy (C2)

The coefficients a, b and ¢ are functions of the locations of the vertices, NOT of the
values assigned to those vertices. Using the techniques from Appendix D, one can
compute the polygon 3; as the intersection between element j and region B. Green’s
Theorem may then be used to compute:

/ N;j(x,y)dA (C3)
B;
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We can then apply our definition of sub-basis functions to achieve our goal:

[Meriaa= 3 [ ecraa (c4)
B J B;

This section has provided just an outline of the process. The algebra can become
complex at times, and a symbolic computation system such as Maxima can be use-

ful. But in the end, integration of a vector f' over an area B is computed as a linear
combination of the elements of f, just as with LO grids.

Appendix D

Computing the exchange grid

Appendices B and C can be applied repeatedly to compute conservative regridding
matrices from an LO or L1 grid to an LO destination grid. Both procedures assume
a way to compute polygonal intersections between two sets of polygons — also known
as an exchange grid (Balaji et al., 2006).

This task is simple in principle, using modern computational geometry packages
such as CGAL (2013). If A and G are two sets of polygons, we explicitly construct each
polygon in A and G, and then compute pairwise intersections between the two sets
(Chin and Wang, 1983). This algorithm provides not just integration formulas, but also
the actual polygonal outlines of the exchange grid.

If an appropriately robust polygon intersection algorithm is used, our procedure can
deal with non-convex polygons and other possible irregularities. This is not just a the-
oretical issue: latitude/longitude grid cells commonly used in GCMs are not convex in
spherical or planar geometry. In other cases, practitioners might wish to use grid cells
consisting of multiple disjoint polygons.

With issues of polygonal intersection taken care of by pre-packaged algorithms, the
main challenge here is to find those intersections in a scalable manner. The naive
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algorithm is to write a nested loop, requiring |A| x |G| iterations. This algorithm, with
O(n2) complexity, takes too long even on grids commonly used by GCMs and ice flow
models today. Most of the “intersections” of A; and G; will result in nothing, because A;
and G; are far from each other and obviously do not intersect.

This problem is solved by using an R-tree (Guttman, 1984) to avoid having to con-
sider intersections of grid cells that are far away from each other. The procedure works
as follows: first load all the grid cell outlines of A into the R-tree, indexed by their bound-
ing rectangles. Then loop through each grid cell in G, checking the R-tree for any grid
cells in A that it might intersect. The polygon intersection algorithm is run on each of
those grid cells pairs to determine the exact outlines of the exchange grid cells. Run-
ning time is cut down to a more reasonable O(nlogn).

Past algorithms exist to compute regridding matrices by integrating functions around
each cell in an exchange grid (Ramshaw, 1985; Dukowicz and Kodis, 1987; Jones,
1999). These algorithms were originally presented in terms of quadrilateral meshes, but
they can also be applied to arbitrary meshes. However, they never explicitly compute
the exchange grid polygonal outlines. By explicitly computing and exchange grid and
then using that to produce the regridding matrix, we have presented here a procedure
that is conceptually simpler, possibly more flexible, but almost certainly not faster to
run.
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Fig. 1. Configuration of the three models, and the separate spatial domains they occupy. The
atmosphere model (A) is coupled to the ice surface model (E), which tracks the top few meters
of ice. The ice surface model (E) is then coupled to the dynamic ice flow model (I). The dynamic
ice flow model, operating at long time steps, is insulated from high-frequency surface processes
in the ice/atmosphere interaction.
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Fig. 2. Data flow for the coupling between atmosphere, ice surface and dynamic ice flow mod-
els. Outputs from one model are fed as inputs into another. Since the three models run on
different grids, regridding is required at each step.
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Fig. 3. Interpolated surface bass balance (SMB) function within one atmosphere grid cell.
These values come from one month (July) of a run of GISS ModelE with elevation points. The
vertical dashed line indicates the mean elevation of the grid cell, “seen” by the atmosphere.
Dots and squares represent the results of extrapolated SMB computations at other elevations:
dots represent elevations found within the grid cell, whereas squares represent elevations out-
side the cell’s range. SMB values at intermediate elevations are interpolated.
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Fig. 4. An exchange grid, obtained by overlapping a sample atmosphere grid and ice grid (not
to scale). Each resulting grid cell, irregularly shaped, overlaps with exactly one atmosphere grid

cell, and exactly one ice grid cell.
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Fig. 5. An example of geometric error, in which grid cells change size due to polygonal approx-
imation. This Lambert Equal Area Projection shows a set of latitude/longitude grid cells, a kind
commonly used in atmosphere models. Solid blue lines show polygonal approximations, while
dotted red shows the actual grid cells on the sphere. Note that all grid cells (in this local map)
shrink when approximated.
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Fig. 6. Geometric error in atmosphere grid cells, as a function of the number of line segments

Relative Geometric Error

line segments per side

used for each side of the grid cell (n). Experimental result.
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Fig. 7. Results of Z Interpolation, to develop a downscaled field on the ice grid from an elevation
point field. Note the visible discontinuities at atmosphere grid cell boundaries. This figure is for
demonstration purposes only. See Sects. 10 and 11 for thorough regridding examples.
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Fig. 8. Setup for bilinear interpolation. The value in an ice grid cell (square) will be a sum of the
values at the four nearest atmosphere grid cell centers, weighted by A-longitude and A-latitude

along the axes.
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Fig. 9. Results of Bilinear Interpolation, to develop a downscaled field on the ice grid from an
elevation point field (Lipscomb et al., 2013). Compare to Fig. 7. The use of horizontal and well
as vertical interpolation eliminates discontinuities as compared to Z Interpolation. However,
total SMB is changed, particularly for localized events such as snowstorms.
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Fig. 10. Visualization of grid used in elevation class schemes. Atmosphere grid cells are “carved
up” according to topography of the ice sheet. Grid cells are shown with checkerboard coloring

for visibility.
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Fig. 11. Interpolated SMB function within one atmosphere grid cell, when using elevation

classes. Compare to Fig. 3.
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Fig. 12. The transformation from elevation grid to atmosphere grid is derived by first interpo-
lating to the ice grid (represented by matrix M), and then using a conservative area-weighted
remapping step to the atmosphere grid (matrix R). The two steps may be combined by comput-
ing that matrix product RM. This construction ensures that a quantity computed on the elevation
grid will have the same total mass when regridded to the ice grid or atmosphere grid. The two
transformations from the elevation grid to the ice and atmosphere grids are said to be consis-
tent.
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Elevation Basis Functions

4ad

950m 1150m 1350m

Fig. 13. Basis functions for the elevation grid £, constructed using 20 elevation points and Z In-
terpolation. The exchange grid was used for the interpolation grid. Basis functions for elevation
point within one atmosphere grid cell at 950 m, 1150 m and 1350 m are shown. Contour lines
show elevation point levels. Note that basis functions overlap and are not orthogonal. Because
of the Z Interpolation, each basis function has maximum value at its corresponding elevation,
but it has a non-zero support up to one elevation point away.
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Elevation
Grid
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A Atm Grid

Atmosphere
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Fig. 14. The five grids used in the coupling problem, and transformations between them. The
(linear) interpolation step M, from E to G, is chosen by the user. The (linear) transformation R,
from G to A, is an area-weighted remapping step. These two fully constrain the transformation
from E to A as RM. If / is LO-parameterized, then G is the exchange grid between A and /,
and X and X' are area-weighted remapping transformations. If / is L1-parameterized, then G
is equivalent to /, making X and X' the identity. P is a diagonal rescaling operation between A’
and A. Reverse transformations required by the coupled system are shown as dotted lines.
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Fig. 15. July SMB computed by ModelE on the elevation grid E. For plotting purposes, each
elevation point is assigned to a nearby region of similar elevation; the value of the elevation
point is then plotted in its corresponding region. Bold numbers on the color scale indicate the
extreme values of the plot. Elevation contours are plotted.
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Fig. 16. July SMB computed by ModelE on the elevation grid £, then regridded to the atmo-
sphere grid A via the exchange grid. The same color scale is used as in Fig. 15
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Fig. 17. July SMB computed by ModelE on the elevation grid £, then regridded to the ice grid

/ using Z Interpolation.
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Fig. 18. Difference plot. July SMB on elevation grid £ was regridded to the atmosphere grid A
via the ice grid /. Plot shows the difference between this result and Fig. 16, which regridded via
the exchange grid. Differences are due to ice grid cells that overlap more than one atmosphere
grid cell.
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Fig. 19. July SMB on elevation grid £ was regridded to the exchange grid. The reverse trans-
formation was then used to recover the original SMB on E. Plot shows the difference between
the result and the original. In theory, the two should be exactly the same: differences are due

to specifics of the numerical methods used.
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Fig. 20. July SMB on elevation grid E was regridded to the ice grid. The reverse transformation
was then used to recover the original SMB on E. Plot shows the difference between the result
and the original. Differences are due mainly to ice grid cells that overlap more than one atmo-
sphere grid cell, making it impossible to recover the exact original SMB. The same color scale
is used as in Fig. 19.
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Fig. 21. July Precipitation field compute by ModelE. Precipitation is computed on the atmo-
sphere grid, without any additional downscaling algorithms to achieve sub-grid resolution.
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Fig. 22. July precipitation (Fig. 21) was regridded to the elevation grid £ using the A — E
reverse transformation where the matrix for E — A is almost local. The minor non-locality of
E — A causes the result on E to be somewhat different from what one would get if values on A
were simply “repeated” for every elevation point in each atmosphere grid cell. Those differences
on E are plotted here.
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Fig. 23. July precipitation (Fig. 21), regridded to the elevation grid £ using the A — E reverse
transformation, where the matrix for E — A is constructed using (non-local) bilinear interpola-
tion. Note the unphysical artifacts (negative precipitation) for some elevation points! Compare

to Figs. 21 and 22.
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Fig. 24. Grid System used to regrid ice surface model state when the elevation grid changes:

E is the old elevation grid, and F is the new one.
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