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Abstract

Quasi-uniform grids of the sphere have become popular recently since they avoid par-
allel scaling bottlenecks associated with the poles of latitude-longitude grids. However
quasi-uniform grids of the sphere are often non-orthogonal. A version of the C-grid for
arbitrary non-orthogonal grids is presented which gives some of the mimetic properties
of the orthogonal C-grid. Exact energy conservation is sacrificed for improved accuracy
and the resulting scheme numerically conserves energy and potential enstrophy well.
The non-orthogonal nature means that the scheme can be used on a cubed sphere.
The advantage of the cubed sphere is that it does not admit the computational modes
of the hexagonal or triangular C-grids. On various shallow-water test cases the non-
orthogonal scheme on a cubed sphere has accuracy less than or equal to the orthog-
onal scheme on an orthogonal hexagonal icosahedron.

A new diamond grid is presented consisting of quasi-uniform quadrilaterals which is
more orthogonal than the equal-angle cubed sphere but with otherwise similar proper-
ties. It performs better than the cubed sphere in every way and should be used instead
in codes which allow a flexible grid structure.

1 Introduction

Quasi-uniform grids of the sphere have become popular recently since they avoid par-
allel scaling bottlenecks associated with the poles of latitude-longitude grids. The pre-
dominant groups of quasi-uniform grid are hexagonal icosahedral, triangular icosahe-
dral and cubed-sphere (Weller et al., 2009). There is also an octagonal grid (Ranci¢
et al., 2008) that has not been used much but has similar properties to the cubed
sphere and there are reduced or skipped lat-lon grids which are not much used ex-
cept in conjunction with spectral transform models (Hortal and Simmons, 1991; White,
2003). The details of the grid are critically important for low-order finite volume methods
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that rely on super-convergence for accuracy (second order accuracy only for a suffi-
ciently smooth grid).

The C-grid discretisation was extended to hexagons (Thuburn, 2008) and then to
orthogonal polygons (TRiSK, Thuburn et al., 2009; Ringler et al., 2010) to facilitate its
use on quasi-uniform grids of the sphere. TRiSK has mostly been used on Voronoi
tesselations of the sphere (e.g. Ringler et al., 2008) which are orthogonal (the primal
and dual edges cross at right angles) and each shape has more than (or occasionally
equal to) four sides. C-grids based on primal cells with more than four sides in 2-D
will have more than twice as many velocity degrees of freedom (dofs) as mass dofs
and will therefore suffer from spurious computational modes (Staniforth and Thuburn,
2012). The hexagonal C-grid suffers from a branch of spurious Rossby modes Thuburn
(2008) which do not interact correctly with the mass. The triangular C-grid does not
have enough velocity dofs and so suffers from spurious divergent modes (Danilov,
2010; Gassmann, 2011). The spurious modes on triangles can be controlled by strong
diffusion (Gassmann, 2011) or strong hyper-diffusion (Wan et al., 2013). The spurious
modes on hexagons can be controlled using upwinded advection of potential vorticity
(e.g. Weller, 2012) which does not destroy energy. However a more efficient discreti-
sation would have the correct ratio of dofs and would not need to control spurious
behaviour in the excess dofs. The correct ratio of dofs is achieved by using grids
of quadrilaterals, such as the cubed-sphere grid. However grids of the sphere using
quadrilaterals are either non-orthogonal (e.g. the equal-angle cubed sphere, Fournier
et al., 2004), have large variations of cell size (e.g. the conformal cubed sphere, Ranci¢
et al., 1996) or are locally inhomogeneous (such as kite grids, Weller et al., 2012). This
provides motivation for more orthogonal quadrilateral grids of the sphere and a C-grid
discretisation that works on non-orthogonal grids.

Thuburn and Cotter (2012) describe some desirable mimetic properties of atmo-
spheric models (mimicking the properties of the continuous equations). Their mimetic
properties are 1-6. Property 7 is clearly also desirable:
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1. C-grid staggering (assuming a finite difference or finite volume approach) for ac-
curate dispersion of intertio-gravity waves.

Mass conservation.
Curl-free pressure gradient.
Energy conserving pressure terms.

Energy conserving Coriolis term.

o o A 0D

Steady geostrophic modes.
7. Second-order accuracy (or higher).

The TRiSK scheme (Thuburn et al., 2009; Ringler et al., 2010) gives properties (1—
6) on orthogonal polygonal grids but it will be demonstrated that the discretisation
of the perpendicular (perp) operator (for calculating tangential velocities from neigh-
bouring normal velocities at edges) is inconsistent (i.e. zeroth order accurate) even on
the smoothest hexagonal icosahedral grids of the sphere. Extending TRiSK to non-
orthogonal grids may ameliorate the lack of convergence of TRiSK since points other
than the Voronoi generating points can be used as the cell centre in order to optimise
aspects of the grid to improve accuracy of the perp operator.

Thuburn and Cotter (2012) set out the mathematical constraints for mimetic C-grid
discretisations on non-orthogonal grids but did not give an example of such a scheme.
Subsequently, Thuburn et al. (2013) proposed a scheme suitable for grids whose duals
consist of only triangles and quadrilaterals. However the results on cubed-sphere grids
were much less accurate than those using similar resolution hexagonal-icosahedra.
A variety of mixed finite-element schemes for grids of triangles or quadrilaterals have
been proposed which give the above properties and second-order accuracy by con-
structing and inverting global mass matrices at every time-step (Cotter and Shipton,
2012; Cotter and Thuburn, 2013).
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A new diamond grid of quadrilaterals is introduced in Sect. 2 which is more orthog-
onal than the equal-angle cubed sphere and nearly as uniform. The properties of the
diamond grid are compared with those of the cubed sphere and orthogonal and non-
orthogonal versions of the hexagonal icosahedron. In Sect. 3, a more accurate non-
orthogonal version of TRiSK is proposed that forgoes energy conservation for better
accuracy than the scheme of Thuburn et al. (2013). The accuracy of the perp opera-
tor is explored in Sect. 5 and the results of shallow-water test cases are presented in
Sect. 6.

2 Quasi-uniform grids of the sphere

Four types of grid are considered; the Heikes and Randall (1995) optimised version
of the hexagonal-icosahedron, a non-orthogonal version of the same with the dual
vertices moved from the Voronoi generating points to the centroids of the polygons, the
equal angle cubed sphere and a diamondised version of the cubed sphere (Fig. 1). The
diamond grid is constructed by replacing each edge of the cubed sphere with a primal
cell whose vertices consist of the two vertices of the original edge and the cell centres
either side of the edge (bottom right of Fig. 1). This is topologically different from the
cubed sphere and different from the dual of the cubed sphere although it still suffers
from the problem of having 3 squares meet at one vertex at 8 locations in the grid. The
panels of the cubed sphere and diamond grids are shown in Fig. 2.

The skewness and non-orthogonality of coarse versions of these grids are shown in
Fig. 1. The non-orthogonality is the difference between the angle between the primal
and dual edges (in degrees) and 90°. The non-orthogonality is shown from black (or-
thogonal) to blue (non-orthogonal) on the primal grid edges. The skewness of edge e,
Sg, measures the departure from the edge centre of the primal-dual edge cross-over
point:
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dist (x,, 3(x, + X,,))
e —

= (1)
ist(x,,X,)
where x, and x,, are the primal vertices at either end of edge e. The distance between
the edge centre and the edge cross-over point (the numerator of the skewness) is
marked with an s in the top right panel of Fig. 1. The skewness of the primal and
dual meshes is different but the skewness of the primal mesh is shown from red (no
skewness) to yellow on the dual edges. In Fig. 1, the diamond grid is more orthogonal
and less skew than the cubed sphere, a result that holds at all resolutions considered.

The Heikes and Randall (1995) (HR) grid (top left of Fig. 1) is orthogonal and opti-
mised to minimise skewness. This minimises the error of discretising a Laplacian but
the value at the dual vertex is not a second-order approximation of the primal cell av-
erage because the dual vertex is not at the centroid. In moving the dual vertex to the
centroid of the primal cell (top right of Fig. 1), the grid becomes centroidal but non-
orthogonal and also the skewness is increased. An alternative is the centroidal Voronoi
grid (Ringler et al., 2008) which is orthogonal but more skew than the HR grid. Using
non-orthogonal grids opens up many more options for optimising a combination of the
orthogonality, skewness, uniformity and centroidality of both the primal and dual grids.
However this has not been done.

Some of the properties of the grids at different resolutions are shown in Table 1.
The non-centroidality is defined as the distance between the dual vertex and the cell
centroid of a primal cell divided by the square root of the primal call area:

dist(x;,centroid(/
non-centroidality = Istx; ol (/)). 2)

VA;

By making the primal centroidal, the dual may become less centroidal but we have not
considered optimising both. The non-orthogonal HR grid has non-orthogonality of less
than 1° and skewness similar to the orthogonal version.
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The equal-angle cubed-sphere grid has non-orthogonality increasing with resolution
up to 30° for the resolutions considered and maximum skewness of 0.17 at the corners.
The cubed sphere that we have chosen is non-centroidal with a centroidal dual.

The diamondised cubed sphere is more orthogonal than the cubed sphere in the
mean and maximum (less that 10°). The skewness and non-centroidality are similar.
The diamond grid was constructed to have a centroidal primal but a non-centroidal

dual. The diamond grid is slightly less uniform that the cubed sphere ( Xmax < 203 for

the diamond grid whereas );max < 1.8 for the cubed sphere) but otherW|se does not

appear to suffer from any deficiencies relative to the cubed sphere.
The impacts of the different grid structures on the accuracy of the perp operator will
be seen in Sect. 5 and on the solution of the shallow-water equations in Sect. 6.

3 The non-orthogonal C-grid discretisation

We present a discretisation of the rotating, non-linear shallow-water equations in
vector-invariant form in which the continuity and momentum equations are:

op B

57tV (@v)=0 (3)
a—v+§v +V ql>+u =0 (4)
ot

where @ is the geopotential (fluid depth times gravity), v is the horizontal velocity,
v* = k x v where k is the local unit vertical vector, ¢ = f + ¢ is the absolute vorticity,
where f = 2k-Q is the Coriolis parameter associated with rotation Q and ¢ = k-(V x v)
is the relative vorticity.
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3.1 Notation

The notation has some minor differences from Thuburn and Cotter (2012). The primal
(solid) and dual (dashed) grids from Thuburn and Cotter (2012) are shown in Fig. 3 with
the surface normal vectors, lengths and fluxes. Edge e of the primal grid has length
p =|p|, normal vector p and tangential vector p~. Edge e of the dual grid has normal
vector d and tangential vector d*. Here we restrict our attention to a low-order finite
volume discretisation so that the volume (or area) flux across edge e is U, = v,-p and
the circulation along dual edge e is V, = v -d*. Lower case variable names indicate
values sampled at a point whereas upper case names are integrated values. Primal
cells are indexed or denoted by / or j and dual cells are indexed or denoted by v or w.
These definitions and some of the finite volume approximations are given in Table 2.

3.2 Discretised momentum and continuity equations

The prognostic variables of the shallow-water equations of a C-grid are usually cell
average geopotential, ¢,, and the normal component of the velocity at the cell edges,
u, =v-p,. However on the non-orthogonal C-grid, the prognostic velocity variable is
V, (Thuburn and Cotter, 2012). We consider split space-time discretisation and so the
discretisation of the temporal derivatives is considered separately. The spatially discre-
tised continuity equation for ¢, and momentum equation for V,, can be written:

i+VH¢V =0 5
ot ’ (ee) (5)
—Ve+—‘I e (DU, *+q¢UL +V4(@+k)=0 6
ot 2(9( ee) (e ee)) d( ) . (6)

The discretisation of each of the terms will now be described, including the H operator
and the graident along a dual edge, V.
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3.2.1 Perp operator, *

The perp operator, *, in Eq. (6) is the discrete operator described in Thuburn et al.
(2009) for mapping from fluxes on the primal grid to fluxes on the dual grid. This op-
erator ensures that the divergence of the mapped fluxes is a convex combination of
the divergence of the fluxes on the primal grid. This is why the discrete perp operator
acts on the flux, U,, (in the p direction) and maps to the d direction, despite p and
d not being at right angles. This operator is inconsistent (zeroth order accurate) even
on an orthogonal grid but does not always prevent convergence with resolution of the
shallow-water equations (see Sects. 5 and 6). The perp operator is defined to be:

U= >

e'eEC(i),EC())

Woe Uy (7)

where primal cells / and j are the cells either side of edge e, EC(/) means the edges
of cell / and Thuburn et al. (2009) derived the weights w,,,:

1 A/v
Wee = £ <§ - Z A_/> (8)

where the vs are the vertices in a walk between edges e and ¢'. If the walk starts in
the p* direction and if n,; = 1 then the sign is positive.

3.2.2 Mapping from primal cell averages to edges

In order to ensure energetic consistency, the mapping of ¢ from cells to edges (¢; —
¢,) must use the same weighting as will be used to calculating the kinetic energy
(Eq. 10):

A

—=¢; )

¢ =E¢.+
e~ A Y174,
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where cells / and j are either side of edge e. This is the reverse of linear interpo-
lation and ensures an exact transfer between kinetic and potential energy. However,
higher-order upwind interpolations can be used instead, foregoing this form of energy
conservation in favour of a smoother geopotential field. Here, we will present results
using CLUST (Weller, 2012) with a blending of 50 % between linear and linear-upwind
differencing which gives smoother advection of geopotential (see Sect. 3.2.4).

3.2.3 PV and curl on dual cells

From Ringler et al. (2010), g, is discretised as:

f, +curl(V,),
o)

where ¢, = >
ieCV(v)

grid and, from Thuburn and Cotter (2012), the curl is discretised as:

q, =

A;,@; is the conservative mapping of ¢ from the primal to the dual

curl(p), = — > neVV
Y ecEC(v

3.2.4 Mapping pv from dual cells to edges

The potential vorticity at the edge, q,, is interpreted as the pv at the primal and dual
edges. It is interpolated from surrounding g, values from an upwind-biased stencil us-
ing CLUST which was developed for mapping pv from vertices to edges of the polyg-
onal C-grid Weller (2012). The CLUST blending coefficient between linear differencing
and linear upwind used is 0.5. It is essential to use CLUST for this work rather than
a conventional high-order upwind or monotonic advection scheme such as quadratic-
upwind, linear-upwind or a TVD scheme such as van Leer. The conventional schemes
have switching between upwind on either side of an edge when the flow is aligned with
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the edge. When used for interpolating pv on the dual of the C-grid, this leads to errors.
The advantage of CLUST is that it blends smoothly with linear when the flow is aligned
with the edge so there is no switching. APVM (Ringler et al., 2010, which is equivalent
to Lax—Wendroff) could also be used as it does not involve switching but CLUST was
found to control the grid-scale pv noise better (Weller, 2012).

3.2.5 Energy conserving coriolis flux averaging

The averaging between g, (¢,U,)" and (q,0.U,)" in Eq. (6) is necessary for the Cori-
olis force to be energetically neutral (Ringler et al., 2010). Without this averaging (if this
term is simply represented as g, (¢,U,)") the pv evolves exactly as if it were advected
by the fluxes Uj by the advection scheme used to map pv from dual cells to edges.
Thus high order, monotonic advection of pv can be obtained. However, numerical tests
by Ringler et al. (2010) and further unpublished work have found the energy conserving
version to generate more accurate solutions without serious oscillations in pv. However
the non-energy conserving version is used by Thuburn et al. (2013).

3.2.6 Gradients along dual edges

The gradient of ¢ along dual edge e, integrated along the edge, between cells 7 and j
is:

(@, - )

Ngj
Vap =d g =ng (¢, - ;).

This gradient is also used for the kinetic energy.
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3.2.7 Kinetic energy

The kinetic energy in primal cell / is defined as:

1 A;

1 dist(x,, x;) ie
k-_ﬁ > — UV, = —eueve (10)

i eVe — o a4
I 6eEC(i) d 2A; ecEC(i)

where dist(x,, x;) is defined in Sect. 3.2.13. Ringler et al. (2010) weighted the edge
contributions by % rather than A;,/A,. Then, in order to achieve energetic consistency,
they use A; =1/4% A, which gives the correct area on Voronoi grids for which the
edges bisect the lines between the Voronoi generating points. Weller et al. (2012) sug-
gest the weighting as in Eq. (10) for non-Voronoi grids. For energetic consistency, the
same weighting must be used for mapping the geopotential from cells to edges (see
Sect. 3.2.2).

3.2.8 Divergence operator

The divergence of a vector v, defined at edges in cell / is given by Gauss’s divergence
theorem:

Z ne,v p_— D iU (11)

eeEC ! ecEC(/)

Thuburn and Cotter (2012) suggest operator H to transform V,, into U, so that:

(V-@)i=7 D 1able=g > naH(@el) (12)

I ecEC(f) eeEC( )

The H operator is described further in Sect. 3.2.9 below.
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3.2.9 H operator

The H operator transforms from the set of IV values to the U values and is therefore
referred to as a non-orthogonal correction.

3.2.10 Symmetric H

Thuburn and Cotter (2012) proved that energetic consistency is achieved if H is sym-
metric and positive definite but they did not suggest the form of H for non-orthogonal
grids. Thuburn et al. (2013) suggest an H operator with the desired properties for grids
whose dual consists of quadrilaterals or triangles:

(Vedg, - ve,dg) -d3

z o 1 1 (13)
#6‘) e |d9xde’

where the stencil of edges e’ consists of the edges of the dual sharing one vertex with
e and f, = 4 when dual edges e and e’ are edges of the same quadrilateral and 7, = 6
when e and e’ are edges of the same triangle. All Voronoi grids and many other grids of
polygons have dual grids consisting of only triangles and the dual of the cubed sphere
grid consists of quadrilaterals and 8 triangles. So this operator should cover most of
the grids anyone would be interested in. It is also first order accurate provided that the
primal grid vertices are located at the barycentres of the surrounding cells. However,
in general, the off-diagonal terms of H do not vanish as the grids tends towards an
orthogonal grid. The accuracy of solutions using this operator will be presented in
Sect. 6.

3.2.11 Asymmetric H

It would seem logical to have an H operator with vanishing off-diagonal terms as the
grid becomes orthogonal. The first/second order operator for reconstructing cell centre
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vectors from normal components at edges in OpenFOAM (2013) is:

v,=T"" > B, (14)
ecEC(/)

where T; = 3 e Pop..T; is a3 x3 tensor so not computationally expensive to invert
and is only dependent on geometry and so can be pre-computed. It can be shown
that this operator will exactly reconstruct a uniform velocity field and for non-uniform
velocities, it is a least-squares fit. Alternatively, to reconstruct dual cell velocity, v, from
V, we can use:

v, =T,;0 S 4,V (15)
eeEC(v)

where T, = ZeeEC(V)a:dg. We can then interpolate the v s from the dual cells to the
dual edges using any centred or upwind-biased interpolation. We will show results in
Sect. 6 using mid-point interpolation. The resulting velocity on edges is referred to as
v, with the prime because this is not the final velocity that will give us U,. We require

U, = p,/d,V, for an orthogonal grid (p = (T) S0 we can correct v, to give exactly V,, in

the direction 3::

Vo ~t , , AL\ Al
Ve=d—de+Ve—<Ve'de>de (16)
e

from which we can write down U, = H (V/,,):
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For nearly orthogonal grids this operator is close to diagonal so the requirement for
positive definiteness should easily be met for most grids. However this operator is not
symmetric. In fact the requirement for symmetry is not consistent with the requirement
that H,,, = 0 for all e # &' if f)e-cAI: = 1, since if we also have p,, cAI: # 1 the we may
have H,, # 0.

The relative merits and accuracy of the symmetric and asymmetric H will be as-
sessed in Sect. 6.

3.2.12 Full velocity field at cell edges

The full velocity field at cell edges is needed in CLUST and for post-processing such
as calculating errors and error metrics. Due to the inconsistency of the perp operator,
Eq. (16) is used to reconstruct the full velocity field.

3.2.13 Spherical areas and distances

All distances (or lengths) are great circle distances so that the distance between points
x, and x, is:

. 1
dist(x,, x,,) = 2a sin™" §|XV -X,| (19)

where a is the magnitude of both x,, and x,,. The areas on the surface of the sphere are
calculated to be consistent with the distances to retain the correct mimetic properties.
Thus the area of a triangle with points x, y and z on a sphere of radius a is:

—_—

a2 /2 dist(y, x)dist(z, x)|(Z - x) x (¥ — X)|- (20)

Areas A;,, A;,, A; and A, are composed of the sums of triangles A, ., as shown in
Fig. 3.
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3.2.14 Semi-implicit solution technique

The momentum and continuity equations are solved semi-implicitly using Crank—
Nicolson for the implicit terms. Two outer iterations are used so that, for the first it-
eration the explicit terms are solved with Euler-explicit and the second iteration uses
50-50 weighting of the old and new values so that the explicit terms are second order,
with the same weighting as the implicit terms. For the simplest possible implementation,
H is split into diagonal and off diagonal elements: H = Hy + H and only the diagonal
terms are included in the implicit part. The off diagonal terms are lagged corrections.
Between times-levels n and n + 1 this gives:

1
M+1V-H(¢”V”)+1V-H (¢€V"+‘)+1V-H (cpfvf):o (21)
At 2 eVe D) d ele ) off eve
u+1 <q (¢nUn)l+ (qn¢nUn)l> +1V (¢n+kn)
At 4 e eYe eVe%e ) d
1 L 1\ 1
+Z<qg (¢gug) +(qg¢gug) )+§vd <¢"+1+k") - 0. (22)

where values at time level € are at time-level n for the first iteration and they are the
most up to date value (but not implicit) for the second iteration. Using just two itera-
tions, the explicit scheme is the Heun scheme which is weakly unstable. However the
instability is not seen in the simulations undertaken. An additional explicit step would
remove the instability if needed. Equations (21) and (22) are solved simultaneously for
@™ by substituting V"*! from Eq. (22) into Eq. (21) (taking the Schur complement)
to form a Helmholtz equation which is solved using a conjugate gradient solver with
incomplete Cholesky pre-conditioning (OpenFOAM, 2013).
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4 Linear stability

The normal modes (eigen values) of the model for the linearised shallow water equa-
tions

ou N oh
37 +fu-=-gVh, T +HV-u=0
are found using the method of Weller et al. (2012) using f = 2k -Q, Q = (0,0,7.292 x
107°)s™!, H = 1000 m and g= 9.80616ms 2. The corresponding eigen vectors give us
the amplification factor amplitude and frequencies of the normal modes and are shown
in Fig. 4 for the cubed sphere grid with 6 x 6 cells per panel (648 dofs) using the sym-
metric and asymmetric H operators. Crank—Nicolson time-stepping with a time-step of
1 s is used with the Coriolis term treated explicitly and updated 4 times per time-step
to ensure stability. The symmetric H ensures that the scheme is energy conserving
and so the amplitude (the magnitude of the amplification factor) should be exactly one.
However the above temporal treatment of the Coriolis term is not exactly energy con-
serving and so the amplitudes are slightly less than one. Interestingly, the amplitudes
using the asymmetric H are extremely similar to those using the symmetric H, imply-
ing that the scheme using the asymmetric H should be nearly energy conserving and
stable. The zero frequency modes confirm the existence of steady geostrophic modes.

5 Accuracy of the TRiSK perp operator

The accuracy of the TRiSK perp operator (Eq. 7) is assessed by reconstructing the
solid body rotation velocity field of test case 2 of Williamson et al. (1992) from the
normal components of this velocity field at each edge. The maximum errors in the re-
constructed velocity in comparison to the analytic profile for each grid at each resolution
are shown in Fig. 5. Resolution is measured by the total degrees of freedoms (hnumber
of cells plus number of edges). The errors saturate at quite coarse resolution and are
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highest on the cubed-sphere grid. It is surprising how much more accurate the perp
operator on the non-orthogonal HR grid is in comparison to the orthogonal version.

The perp operation can also be evaluated using a least-squares fit (Eq. 16) which is
also shown in Fig. 5. The least squares fit is much more accurate than the TRiSK perp
and converges with resolution but does not satisfy the important mimetic property that
the divergence on the dual is a convex combination of the divergence of the primal.
Therefore if the shallow-water equations were solved using the least squares operator,
steady geostrophic modes would not be maintained. The consequence of using the
inconsistent, TRiSK perp operator will be seen in Sect. 6.

6 Results of shallow water test cases

The time-steps used for each test case, each grid and each resolution are shown in
Table 3. Time-steps are chosen to give similar advective and gravity wave Courant
numbers for each grid. However the Courant numbers chosen are different for each
test-case, as described in the sub-sections describing the test-case results below.

6.1 Solid body rotation (Williamson et al., 1992, test case 2)

Height and velocity errors after five days for the Williamson et al. (1992) solid body
rotation, test case 2 are shown in Fig. 6 for the asymmetric H and in Fig. 7 for the
symmetric H, both for coarse versions of the grids, each with similar numbers of total
dofs.

For both the versions of the non-orthogonal correction, H, the centroidal, non-
orthogonal version of the HR grid degrades accuracy a little in comparison to the
orthogonal grid. The symmetric H severely degrades the accuracy on all grids in com-
parison to the asymmetric H but in particular, degrades the accuracy of the orthogonal
grid. The symmetric non-orthogonal correction, H, is doing harm on an orthogonal
grid whereas, the asymmetric non-orthogonal correction is zero on an orthogonal grid.
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Using the asymmetric H, the maximum errors on the cubed-sphere and diamond grid
are considerably larger than those on the HR grids due to the large errors at the corners
and along the cube edges where the grid lines change direction abruptly and where
the skewness is maximum. However away from the corners, the diamond grid gives
low errors.

The disadvantage of the asymmetric H is that it spoils the energy conservation prop-
erties of the spatial discretisation. In order to judge the extent of this problem, the
normalised energy change for symmetric and asymmetric H for the simulations shown
in Figs. 6 and 7 are shown in Fig. 8. Positive changes are solid and negative changes
are dashed. The symmetric H does indeed have better energy conservation.

The motivation for the grids of quadrilaterals is to avoid the computational modes
of the hexagonal C-grid. The computational Rossby modes manifest themselves as
grid-scale enstrophy. This is controlled using upwind advection of pv (CLUST is used
here). Hence, the solid-body rotation test on the hexagonal grids loses total enstrophy
(bottom of Fig. 8). Because the cubed-sphere and diamond grids do not have the same
modes, their enstrophy conservation is about an order of magnitude better. However
this advantage of the quad grids is lost after 5 days when using the less accurate,
symmetric H (bottom right of Fig. 8).

Convergence with resolution for the solid-body rotation test on all grids of the &, and
¢, error norms of geopotential and velocity is shown in Fig. 9. Resolution is measured
by the total degrees of freedoms (number of cells plus number of edges). Time steps
are chosen (see Table 3) to maintain an advective Courant number of about 0.14 and
a gravity wave Courant number of about 0.7, apart from at the lowest resolutions which
need a shorter time-step in order to represent the scale independent Coriolis term
accurately. Larger Courant numbers could have been chosen but the largest time-step
cannot go much above 3600 s on the coarsest grid in order to maintain accuracy of the
Coriolis term.

Convergence with resolution of all error metrics of this shallow-water test case is
much better than the convergence with resolution of the perp operator alone. It seems
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that having the right divergence on the dual is more important for accuracy than con-
vergence of the perp operator. In Fig. 5, the non-orthogonal HR grid has the lowest
errors of the perp operator whereas solving the shallow-water equations with the same
initial wind field, the orthogonal HR grid has the lowest errors, implying that other as-

s pects of the discretisation are controlling the errors of the shallow water model for this
test case, not the perp operator.

The convergence of the €,(¢) error norms using the asymmetric H are close to
second-order on all the grids. Using the symmetric H, the diamond and cubed-sphere
convergence is similar to using the asymmetric H but the convergence of the HR grids

10 drops to first order using the symmetric H. Convergence of the _,(¢) norms stalls for
all grids and all Hs apart from when using the orthogonal HR grid with the asymmetric
H (ie diagonal H) which gives first order convergence of _,(¢®). The &,(u) error metrics
are second-order for all configurations and the €., (u) error metrics are between first
and second order, beginning to stall at the highest resolution.

5 From this sub-section, we have learnt the following:

-

— The asymmetric H mostly gives much better accuracy than the symmetric H and
does not degrade accuracy on an orthogonal grid.

— Treating the HR grid as non-orthogonal increases error a little.

— The cubed-sphere grid has higher errors at all resolutions considered and lower
20 order of accuracy in comparison to the HR grids.

— The diamond grid has better convergence with resolution and lower errors in com-
parison to the cubed-sphere grid when using the asymmetric H.

— The accuracy of the solution of the shallow-water equations for this test case is
not directly related to the accuracy of the perp operator.
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6.2 Mid-latitude mountain (Williamson et al., 1992, test case 5)

The Williamson et al. (1992) flow over a mountain (test case 5) does not have an ana-
lytic solution and so numerical solutions are compared with results of a version of the
NCAR spectral transform shallow water model (STSWM Hack and Jakob, 1992) re-
vised by Pilar Ripodas from Deutscher Wetterdienst (personal communication, 2009)
and run at T426 resolution and using a time-step of 90s and a hyper-diffusion coeffi-
cient of 4.96 x 10" m*s™'. The spectral model results are interpolated from the native
spectral model grid (640 x 1280) onto the computational points of the C-grids using
the bicubic interpolation code available also from Deutscher Wetterdienst. As reso-
lution increases, the errors for this test case become very sensitive to time-stepping
errors (J. Thuburn, personal communication, 2012) due to the shock of the initialisa-
tion. Therefore small gravity wave Courant numbers are used for all grids, as shown in
Table 3.

The height contours and errors in comparison to the reference solution for some
mid-resolution results are shown in Fig. 10. For this test case the differences between
using the symmetric and asymmetric H are tiny. Additionally, considering the different
resolutions used for each grid type, the errors using each grid are very similar and
the errors do not impact significantly on the total height pattern. The errors are plotted
piecewise constant on every cell and so it is clear that there is no obvious grid imprinting
or grid-scale noise apart from on the cubed-sphere using the asymmetric H, for which
the cube edges are visible in the error fields.

The convergence with resolution for all grids of the &, and ¢, errors of geopotential
are shown in Fig. 11. The symmetric and asymmetric H results give nearly identical
results and all grids show remarkably similar errors with convergence between first
and second for &,(¢) and first order for £_,(¢). Due to the more undulating nature of
the flow, the mountain test case does not suffer due to lack of grid alignment with the
flow and so the problems, particularly with the cubed-sphere grid, do not show up.
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6.3 Galewsky et al. (2004) unstable jet

The Galewsky et al. (2004) barotropically unstable jet is challenging because the insta-
bility can be released prematurely by truncation errors related to lack of grid alignment,
grid inhomogeneity, or asymmetries in the discretisation. The test case is used with an
initial perturbation and without viscosity. There is no analytic solution and so the results
are compared with the STSWM reference model run at T426 using a time-step of 30 s
and a hyper-diffusion coefficient of 4.97 x 10" m*s™". The relative vorticity after 6 days
for the reference solution and all of the C-grids is shown in Fig. 12. The results of the
spectral model are interpolated onto HR grid 8 and the vorticity is plotted piecewise
constant in exactly the same was as for the C-grid results. All of the C-grids use the
asymmetric H and the results using the symmetric H are visually identical.

The unstable jet using both version of the HR grid is very similar to the reference so-
lution except that the HR grid results have spurious vorticity stripes upstream of steep
gradients caused by phase errors of the vorticity when using the energy conserving
version of TRiSK. In contrast, the results using the cubed-sphere or the diamond grid
contain dramatic wave number 4 patterns which are not showing any signs of lessening
with increasing resolution. If this test case is indicative of models that do not work well
in 3-D as weather or climate forecasting models, then the cubed-sphere or diamond
grids should not be used with this low-order differencing scheme.

7 Conclusions

A new C-grid discretisation of the shallow-water equations suitable for non-orthogonal
grids has been proposed which does not degrade the accuracy of TRiSK on orthogonal
grids and is more accurate than the scheme of Thuburn et al. (2013) for one test case
on grids with orthogonality less than about 28°. The new scheme formally loses energy
conservation of the spatial discretisation but in tests, the energy conservation is very
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similar to the scheme of Thuburn et al. (2013). The new scheme will extend to three
dimensions and so can be used for non-orthogonal grids over orography.

It has been demonstrated that the TRiSK perp operator is inconsistent (zeroth order
accurate) but that this does not prevent convergence with resolution of shallow-water
test cases. The perp operator leads to fluxes on the dual grid which have divergence
which is a convex combination of the divergence on the primal and so an aspect of the
perpendicular velocity is exactly correct. This helps the accuracy of the shallow-water
test cases.

A new, diamond grid of the sphere has been proposed which consists of quadrilat-
erals, is more orthogonal and nearly as uniform as the equal angle cubed sphere. It
mostly out-performs the cubed sphere in the tests undertaken.

The grids of quadrilaterals do not admit the computational modes of the hexagonal
C-grid and hence enstrophy is better conserved. However they do not outperform the
hexagonal C-grid in any way and the hexagonal-icosahedral grid gives more accurate
results in most test cases. However the lack of computational modes could be more
beneficial in 3-D where the computational modes of the hexagonal C-grid could interact
with, for example, the Hollingsworth instability. The grids of quadrilaterals can also
be used within directly addressed codes already written to handle structured grids of
quadrilaterals.

Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/6/6035/2013/
gmdd-6-6035-2013-supplement.zip.
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Table 1. Properties of the different grids.

number of AX  Axpa non- skewness non-
mean A% orthogonal (°) centroidality

cells dofs  (km) mean  max mean max mean  max
Orthogonal HR grid (Centroidality of the primal given. Dual is less centroidal.)
3 162 642 1906 1.23 0 0 0.035 0.059 0.0096 0.020
4 642 2562 956 1.26 0 0 0.020  0.031 0.0063 0.019
5 2562 10242 479 1.27 0 0 0.010 0.016 0.0033 0.017
6 10242 40962 239 1.27 0 0 0.0052 0.0087 0.0018 0.017
7 40962 163842 120 1.27 0 0 0.0026 0.0053 0.0010 0.017
8 163842 655362 60 1.28 0 0 0.0013 0.0045 0.0007 0.017
Non-orthogonal HR grid (Primal is centroidal. Centroidality of the dual given.)
3 162 642 1905 1.18 0.29 0.88 0.035  0.094 0.067 0.13
4 642 2562 956 1.23 0.15 0.82 0.020 0.069 0.068 0.14
5 2562 10242 479 125 0.099 0.79 0.011 0.047 0.067 0.13
6 10242 40962 239 1.26 0.063 0.86 0.0056  0.038 0.066 0.13
7 40962 163842 120 1.27 0.039 0.86 0.0029  0.036 0.066 0.13
8 163842 655362 60 1.28 0.029 0.89 0.0015  0.035 0.066 0.13
Equal-angle cubed sphere (Centroidality of the primal given. Dual is centroidal.)
6x6 216 648 1554 157 281 8.83 0.025 0.19 0.037 0.061
12x12 864 2592 783 1.68 3.97 19.1 0.013 0.18 0.027 0.081
17 x 17 1734 5202 553 1.72 438 225 0.009 0.18 0.022 0.094
24 x 24 3456 10368 392 1.74 468 24.8 0.017 0.10 0.017 0.10
32x32 6144 18432 294 175 487 2641 0.013 0.17 0.013 0.1
48 x 48 13824 41472 196 177 5.06 274 0.0034 0.17 0.009 0.12
72x72 31104 93312 131 178 519 283 0.0023 0.17 0.0063 0.12
144 x 144 124416 373248 65 179 531 292 0.0011 0.17 0.003 0.13
288 x 288 497664 1492992 33 179 539 296 0.0006 0.17 0.002 0.13
Diamond grid (Primal is centroidal. Centroidality of the dual given.)
6x6 432 1296 1102 155 1.03 293 0.011 0.16 0.01  0.03
12x 12 1728 5184 552 1.69 1.89 5.67 0.0064 0.15 0.013 0.055
17 x 17 3468 10404 390 1.76 211 7.07 0.0046 0.15 0.011  0.067
24 x 24 6912 20736 276  1.81 221 787 0.0032 0.15 0.009 0.077
32x32 12288 36864 207 1.85 225 8.29 0.0024 0.15 0.007 0.084
48 x 48 27648 82944 138 1.89 226 8.64 0.0016 0.15 0.005 0.091
72x72 62208 186 624 922 195 226 8.86 0.0011 0.14 0.004 0.095
144 x 144 248832 746 496 461 2.03 224 9.07 0.0005 0.14 0.002 0.10
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Table 2. Variables used in the discretisation and some of their finite-volume representations.
Extensive quantities are upper case.

Variable Definition Description

Indexing

ij Indexing for primal cells (dual vertices)
ee Indexing for (primal and dual) edges
v,w Indexing for primal vertices (dual cells)
Geometry

X, X, Location of dual/primal vertex /, v

X, Primal/dual edge e cross-over point
Po PePe Surface normal vector to primal edge e
s kxp, Perpendicular with same magnitude
d, d.d, Surface normal vector to dual edge e
d; kxd, Perpendicular with same magnitude
AL A, Area of cell /, v

Ay Overlap area between primal cell / and dual cell v
A, Area associated with edge e

Ao Fraction of A, in cell /

Aive Fraction of A,, in dual cell v

Ngj sign(p, - (X, — x;))  Edge orientation indicator

Ney Sign (de'(xe _Xv))

Intensive quantities

?; Geopotential at x;

b, Geopotential at x,

q, ”Tg Potential vorticity at x,,

ge Potential vorticity at x,,

k; o D eeEC() ’:ﬁUeVe Kinetic energy at x;

Extensive quantities

U, Ve -Po=HV Flux through primal face e

V, Ve-dj Circulation along dual edge e
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Table 3. Grid resolutions and time steps used for all test cases and resulting advective Courant
numbers (C,) and gravity-wave Courant numbers (C,).

Jaded uoissnosiq

Test 2 Test 5 Jet
dofs At(s) C, C, At(s) C, G, At(s) C, C Diamond C-grid

HR grid - H. Weller
3 642 3600 0.07 0.36 o
4 2562 3600 0.14 0.72 1800 0.04 0.5 o
5 10242 1800 0.14 0.72 900 0.04 05 2
6 40962 900 0.14 0.72 450 0.04 05 7 _
7 163842 450 0.14 0.72 225 0.04 05 600 0.4 1.8 S R
8 655362 225 0.14 0.72 300 04 1.8 i -
Equal-angle cubed-sph §
qual-angle cubed-sphere S
12x 12 2592 3600 0.22 1.0 1200 0.04 0.5 —
17 x 17 5202 2400 0.21 1.0 900 0.04 0.6 ! !
24 x 24 10368 1800 0.23 1.1 600 0.04 05 g
32 x 32 18432 1200 020 1.0 8 - -
48 x 48 41472 900 022 1.1 300 0.04 06 @
72x72 93312 600 023 1.1 225 0.04 06 400 03 1.5 = i
144x144 373248 300 023 1.1 100 0.04 0.6 200 03 1.5 % -
288x288 1492992 150 0.23 1.1 100 0.3 1.5

2 [Bs ] [[Gse |
Diamond grid @
axb 1296 9800 044 07 . FulSoreen/Ese
12x 12 5184 2400 0.20 1.0 900 0.04 0.6
17 x 17 10404 1800 0.23 1.1 600 0.04 0.6 o _
24 x 24 20736 1200 022 1.1 450 0.04 0.6 @
32x 32 36864 900 0.22 1.1 = ﬁ
48 x 48 82944 600 023 1.1 225 0.04 0.7 7}
72 x 72 186624 450 026 1.3 150 0.04 0.7 240 02 14 o
144x 144 746496 225 026 1.4 120 02 1.5 T ) ®

_c BY
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Fig. 1. Orthogonality and skewness of grid types. Non-orthogonality (from black, orthogonal, & ﬁ
to blue) is shown on the primal edges whereas skewness or the primal grid (from red, no =
skewness, to yellow) is shown on the dual edges. The “s” in the non-orthogonal HR grid shows % @ @
the skewness (the normlised difference between the primal edge mid-point and the edge cross- 9 o
over point). @
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Fig. 2. The panels of the cubed sphere primal grid (dashed) and the diamond primal grid (grey).
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Fig. 3. Primal grid (solid) and dual grid (dashed) with surface normal vectors, p and d, perpen-
dicular vectors p* and d*, lengths p = |p| = |p*| and d = |d| = |d*|, flux U, = v-p and circulation

V,=v .d*, for edge e of the primal or dual.
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Fig. 4. Amplitudes and frequencies of the normal modes of the linearised shallow water equa-
tions discretised on a cubed sphere grid of 648 dofs using the non-orthogonal schemes with
both the symmetric and asymmetric versions of the non-orthogonal correction, H.
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Fig. 5. Maximum errors in the velocity tangential to each edge reconstructed from the normal
components of the solid body rotation velocity field from test case 2 of Williamson et al. (1992).
These errors can be compared with the maximum velocity of 38 ms™".
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Fig. 7. Height and velocity errors for Williamson et al. (1992) test case 2 after 5 days. Symmetric
H. Time-step of 1800 s.
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Fig. 8. Time series of normalised energy and enstrophy change for Williamson et al. (1992) test
case 2. Same simulations as Figs. 6 and 7. Dashed lines show negative normalised energy and

enstrophy change.
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Fig. 10. Height errors (coloured) and total height (contours every 50 m) for Williamson et al.
(1992) test case 5 after 15 days.
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Fig. 11. Convergence of error metrics with resolution for Williamson et al. (1992) test case 5
after 15 days.

(8
S

Jaded uoissnosiq

6073 o


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6035/2013/gmdd-6-6035-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6035/2013/gmdd-6-6035-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD

STSWM reference at T426, At = 30s, K = 4.97 x 10''m*s™!

SN i = —0.0001106 _mix = 0.0001706

Jaded uoissnosiq

0-00014 6, 6035-6074, 2013
0.00012
0.0001 Diamond C-grid
Orthogonal HR grid, 655 362 dofs, At = 3005 —
80N T = 00001003 max = 00001299 | 8e-05 H. Weller
)
4s'N ﬂ 6e-05 Z
L TR
. 4e-05 @,
10°N —+ T T T T g
) 90°E 180°E 270°E 0
Non-orthogonal HR grid, 655,362 dofs, At = 300s 2e-05 § ﬁ ﬁ
80N I = 0000128 max = 00001487 : - ' S
: 2 [Gonchsions]| [Referenoos|
45°N
Q. e e
10°N —+ T T T T O
; r : - : Y
Cubed sphere, 1,492,992 dofs, At = 100s ~te03 g N
80N = 0.000T64T ﬁmm ] ' eoos é
' AN = ! I .
h m m 805 %
=7 =
= [
o 90‘E ISO'E 270'E 0 =0.0001 =
Diamonds, 746,496 dofs, At = 120s _
80N I = 00001536 max = 00001533 ~0.00012 o
45°N Wﬁ’ -0.00014 (@D) _
Z ;| InemotveDisusson
(2}
ION T ‘£
IBOE 170'15 g
. - _ i T (cc) W)
Fig. 12. Vorticity after 6 days for the Galewsky et al. (2004) unstable jet. Asymmetric H. = e
o)

6074


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6035/2013/gmdd-6-6035-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6035/2013/gmdd-6-6035-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

