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Abstract

Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scal-
ing bottlenecks associated with the poles of latitude-longitude grids. However quasi-uniform
grids of the sphere are often non-orthogonal. A version of the C-grid for arbitrary non-
orthogonal grids is presented which gives some of the mimetic properties of the orthogonal5

C-grid. Exact energy conservation is sacrificed for improved accuracy and the resulting scheme
numerically conserves energy and potential enstrophy well. The non-orthogonal nature means
that the scheme can be used on a cubed sphere. The advantage of the cubed sphere is that it does
not admit the computational modes of the hexagonal or triangular C-grids. On various shallow-
water test cases, the non-orthogonal scheme on a cubed sphere has accuracy less than or equal10

to the orthogonal scheme on an orthogonal hexagonal icosahedron.
A new diamond grid is presented consisting of quasi-uniform quadrilaterals which is more

nearly orthogonal than the equal-angle cubed sphere but with otherwise similar properties. It
performs better than the cubed sphere in every way and should be used instead in codes which
allow a flexible grid structure.15

1 Introduction

Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scal-
ing bottlenecks associated with the poles of latitude-longitude grids. The predominant groups of
quasi-uniform grid are hexagonal icosahedral, triangular icosahedral and cubed-sphere (Weller
et al., 2009). There is also an octagonal grid (Rančić et al., 2008) that has not been used much20

but has similar properties to the cubed sphere and there are reduced or skipped lat-lon grids
which are not much used except in conjunction with spectral transform models (Hortal and
Simmons, 1991; White, 2003). The details of the grid are critically important for low-order fi-
nite volume methods that rely on super-convergence for accuracy (second order accuracy only
for a sufficiently smooth grid).25
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The hexagonal C-grid has become popular since Thuburn (2008), Thuburn et al. (2009)
and Ringler et al. (2010) worked out how to calculate the Coriolis term so as to get steady
geostrophic modes. This has been named TRiSK. TRiSK has mostly been used on Voronoi
tesselations of the sphere (e.g. Ringler et al., 2008) which are orthogonal (the primal and dual
edges cross at right angles) and each shape has more than (or occasionally equal to) four sides.5

C-grids based on primal cells with more than four sides in 2-D will have more than twice as
many velocity degrees of freedom (dofs) as mass dofs and will therefore suffer from spuri-
ous computational modes (Staniforth and Thuburn, 2012). The hexagonal C-grid suffers from
a branch of spurious Rossby modes (Thuburn, 2008) which do not interact correctly with the
mass. The triangular C-grid does not have enough velocity dofs and so suffers from spurious10

divergent modes (Danilov, 2010; Gassmann, 2011). The spurious modes on triangles can be
controlled by strong diffusion (Gassmann, 2011) or strong hyper-diffusion (Wan et al., 2013).
The spurious modes on hexagons can be controlled using upwinded advection of potential vor-
ticity (e.g. Weller, 2012) which does not destroy energy. However a more efficient discretisation
would have the correct ratio of dofs and would not need to control spurious behaviour in the ex-15

cess dofs. The correct ratio of dofs can be achieved by using grids of quadrilaterals, such as the
cubed-sphere grid. However grids of the sphere using quadrilaterals are either non-orthogonal
(e.g. the equal-angle cubed sphere, Fournier et al., 2004), have large variations of cell size (e.g.
the conformal cubed sphere, Rančić et al., 1996) or are locally inhomogeneous (such as kite
grids, Weller et al., 2012). This provides motivation for more nearly orthogonal quadrilateral20

grids of the sphere and a C-grid discretisation with the required mimetic properties on non-
orthogonal grids.

Thuburn and Cotter (2012) describe some desirable mimetic properties of atmospheric mod-
els (mimicking the properties of the continuous equations). Their mimetic properties are 1–6.
Property 7 is clearly also desirable:25

1. C-grid staggering (assuming a finite difference or finite volume approach) for accurate
dispersion of intertio-gravity waves.

2. Mass conservation.
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3. Curl-free pressure gradients.

4. Energy conserving pressure terms.

5. Energy conserving Coriolis term.

6. Steady geostrophic modes.

7. Second-order accuracy (or higher).5

The TRiSK scheme (Thuburn et al., 2009; Ringler et al., 2010) gives properties (1–6) on or-
thogonal polygonal grids but it will be demonstrated that the discretisation of the perpendicular
(perp) operator (for calculating dual grid fluxes from primal grid fluxes) is inconsistent (i.e. ze-
roth order accurate) even on the smoothest hexagonal icosahedral grids of the sphere. Extending
TRiSK to non-orthogonal grids may ameliorate the lack of convergence of TRiSK since points10

other than the Voronoi generating points can be used as the cell centre in order to optimise
aspects of the grid to improve accuracy of the perp operator.

Thuburn and Cotter (2012) set out the mathematical constraints for mimetic C-grid discreti-
sations on non-orthogonal grids but did not give an example of such a scheme. Subsequently,
Thuburn et al. (2013) proposed a scheme suitable for grids whose duals consist of only trian-15

gles and quadrilaterals and whose duals are centroidal (primal vertices are at the centroids of
the dual cells). However the results on cubed-sphere grids were much less accurate than those
using similar resolution hexagonal-icosahedra. A variety of mixed finite-element schemes for
grids of triangles or quadrilaterals have been proposed which give the above properties and
second-order accuracy by constructing and inverting global mass matrices at every time-step20

(Cotter and Shipton, 2012; Cotter and Thuburn, 2013).
Hollingsworth et al. (1983) described an instability that can grow when solving the primitive

equations in 3D using the vector-invariant form of the momentum equation, conserving energy
and enstrophy but not momentum. Gassmann (2013) found that this mode could grow when
solving the fully compressible Euler equations on a hexagonal-icosahedral grid of the sphere25

using a C-grid discretisation and described how it can be controlled. It is possible that this
mode grows more quickly when it interacts with the computational modes of the hexagonal
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C-grid but this is not proved and has not been demonstrated. If the discretisations described
on various grids of quadrilaterals were extended to 3D, the behaviour of the Hollingsworth
instability could be compared on hexagonal and quadrilateral grids. Gassmann (2013) found
that this mode is triggered at the pentagons of the icosahedral grids. The cube corners of the
cubed sphere grid have larger distortions that the pentagons of the icosahedral grid. Therefore5

it seems likely that this mode would also be triggered on a cubed-sphere grid.
A new diamond grid of quadrilaterals is introduced in Sect. 2 which is more nearly orthogonal

than the equal-angle cubed sphere and nearly as uniform. The properties of the diamond grid
are compared with those of the cubed sphere and orthogonal and non-orthogonal versions of
the hexagonal icosahedron. In Sect. 3, a more accurate non-orthogonal model is proposed that10

forgoes energy conservation for better accuracy than the scheme of Thuburn et al. (2013) and
which can be used on grids with non-centroidal duals. The accuracy of the perp operator and
the non-orthogonal correction is explored in Sect. 5 and the results of shallow-water test cases
are presented in Sect. 6.

2 Quasi-uniform grids of the sphere15

Seven types of grid are considered, some of which are displayed in Fig. 1. The grids are:

1. The Heikes and Randall (1995) optimised version of the orthogonal hexagonal-icosahedron (referred
to as the HR grid). Neither this grid nor its dual are centroidal.

2. A non-orthogonal version of the hexagonal icosahedron with dual vertices moved from the Voronoi
generating points to the centroids of the polygons, making the primal grid centroidal.20

3. The centroidal equal angle cubed sphere (with dual vertices at the primal cell centroids).

4. A diamondised version of the cubed sphere. The diamond grid is constructed by replacing each edge
of the cubed sphere with a primal cell whose vertices consist of the two vertices of the original edge and
the cell centres either side of the edge (bottom right of Fig. 1). The dual vertices are then placed at the
primal cell centres to make the primal grid centroidal.25
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5-7. Versions of 2-4 above but with centroidal dual grids rather than centroidal primal grids. So once the
duals are defined, the primal vertices are moved to be at the centroids of the dual grids. These grids are
used since the non-orthogonal algorithm defined by Thuburn et al. (2013) is only consistent if the dual
grid is centroidal.

The diamond grid is topologically different from the cubed sphere and different from the dual of5

the cubed sphere although it still suffers from the problem of having 3 quadrilaterals meet at one
vertex at 8 locations in the grid. The panels of the cubed sphere and diamond grids are shown
in Fig. 2. The diamond grid for an equal angle cubed sphere grid at a cube corner is also shown
in Fig. 2. This shows that, near the cube corners, the diamond grid cells become rectangles with
aspect ratio

√
3 and, along the edges, the cells are kite shaped. In the limit of high resolution, it10

would be possible to construct the diamond grid to be orthogonal but then both the primal and
dual grids would be highly non-centroidal, leading to large truncation errors. Instead diamond
grids with either centroidal primal or dual grids are used.

The skewness and non-orthogonality of coarse versions of these grids are shown in Fig. 1.
The non-orthogonality is the difference between the angle between the primal and dual edges15

(in degrees) and 90◦. The non-orthogonality is shown from black (orthogonal) to blue (non-
orthogonal) on the primal grid edges. The skewness of edge e, se, measures the departure from
the edge centre of the primal-dual edge cross-over point:

se =
dist
(
xe,

1
2(xv +xw)

)
dist(xv,xw)

(1)

where xv and xw are the primal vertices at either end of edge e. The skewness of the primal and20

dual meshes is different but the skewness of the primal mesh is shown from red (no skewness)
to yellow on the dual edges. In Fig. 1, the diamond grid is more nearly orthogonal and less skew
than the cubed sphere, a result that holds at all resolutions considered.

The Heikes and Randall (1995) (HR) grid (top left of Fig. 1) is orthogonal and optimised
to minimise skewness. This grid has recently been revisited by Heikes et al. (2013). The HR25

optimisation minimises the error of discretising a Laplacian but the value at the dual vertex is
not a second-order approximation of the primal cell average because the dual vertex is not at
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the centroid. In moving the dual vertex to the centroid of the primal cell (top right of Fig. 1), the
grid becomes centroidal but non-orthogonal and also the skewness is increased. An alternative
is the centroidal Voronoi grid (Ringler et al., 2008) which is orthogonal but more skew than the
HR grid. Using non-orthogonal grids opens up many more options for optimising a combination
of the orthogonality, skewness, uniformity and centroidality of both the primal and dual grids.5

However this has not been done.
Some of the properties of the grids at different resolutions are shown in Tables 1 and 2. The

non-centroidality of the primal is defined as the distance between the dual vertex and the cell
centroid of a primal cell divided by the square root of the primal call area:

non-centroidality =
dist(xi,centroid(i))√

Ai
. (2)10

By making the primal centroidal, the dual may become less centroidal. The centroidal hexag-
onal grid (Table 1) has non-orthogonality of less than 1◦ and skewness similar to the orthogo-
nal version whereas the hexagonal grid with a centroidal dual (Table 2) has much larger non-
orthogonality – up to 13◦.

The centroidal cubed-sphere (Table 1) has non-orthogonality increasing with resolution up15

to 30◦ for the resolutions considered and maximum skewness of 0.25 at the corners. The ratio
of maximum to minimum grid spacing reaches 1.78 for the grids presented in Table 1 which is
larger than the asymptotic value of 1.3 given by Staniforth and Thuburn (2012). This is because
we are measuring the cell centre to cell centre distance rather than grid edge length. In moving
the dual vertices to the primal cell centroids, cell centres have become closer together at the20

cube corners. The cubed sphere with a centroidal dual (Table 2) has similar properties but is
slightly less skew at the corners.

Both diamond grids are more orthogonal than the cubed sphere in the mean and maximum
(less that 9◦) and the skewness and non-centroidality are also smaller. The diamond grid is
slightly less uniform that the cubed sphere (∆xmax

∆xmin
< 2.09 for the diamond grid whereas ∆xmax

∆xmin
<25

1.8 for the cubed sphere) but otherwise does not appear to suffer from any deficiencies relative
to the cubed sphere. Again, like the cubed-sphere, the cell centre to cell centre distances vary
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more than the edge lengths. (The maximum to minimum edge length for the diamond grid
should approach

√
3≈ 1.7.)

The impacts of the different grid structures on the accuracy of the perp operator (for estimat-
ing the velocity perpendicular to the normal velocity at each edge) and on the non-orthogonal
correction will be seen in Sect. 5 and on the solution of the shallow-water equations in Sect. 6.5

3 The non-orthogonal C-grid discretisation

We present a discretisation of the rotating, non-linear shallow-water equations in vector-
invariant form in which the continuity and momentum equations are:

∂φ

∂t
+∇ · (φv) = 0 (3)

∂v

∂t
+ ζv⊥+∇

(
φ+
|v|2

2

)
= 0 (4)10

where φ is the geopotential (hg, fluid depth times gravity), v is the horizontal velocity, v⊥ =
k×v where k is the local unit vertical vector, ζ = f+ξ is the absolute vorticity, where f = 2k·Ω
is the Coriolis parameter associated with rotation Ω and ξ = k ·(∇×v) is the relative vorticity.

3.1 Notation15

The notation has some minor differences from Thuburn and Cotter (2012). The primal (solid)
and dual (dashed) grids from Thuburn and Cotter (2012) are shown in Fig. 3 with the surface
normal vectors, lengths and fluxes. Edge e of the primal grid has length p= |p|, normal vector
p and tangential vector p⊥. Edge e of the dual grid has normal vector d and tangential vector
d⊥. Here we restrict our attention to a low-order finite volume discretisation so that the volume20

(or area) flux across edge e is Ue = ve ·p and the circulation along dual edge e is Ve = v ·d⊥.
Lower case variable names indicate values sampled at a point whereas upper case names are
integrated values. Primal cells are indexed or denoted by i or j and dual cells are indexed or
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denoted by v or w. These definitions and some of the finite volume approximations are given in
Table 3.

3.2 Discretised momentum and continuity equations

The prognostic variables of the shallow-water equations of a C-grid are usually cell average
geopotential, φi, and the normal component of the velocity at the cell edges, ue = v · p̂e. How-5

ever on the non-orthogonal C-grid, the prognostic velocity variable is Ve (Thuburn and Cotter,
2012). We consider split space-time discretisation and so the discretisation of the temporal
derivatives is considered separately. The spatially discretised continuity equation for φi and
momentum equation for Ve can be written:

∂φi
∂t

+∇ ·H (φeVe) = 0 (5)10

∂Ve
∂t

+
1

2

(
qe (φeUe)

⊥+ (qeφeUe)
⊥
)

+∇d (φ+ k) = 0. (6)

The discretisation of each of the terms will now be described, including the H operator and the
graident along a dual edge,∇d.

3.3 Perp operator, ⊥15

The perp operator, ⊥, in Eq. (6) is the discrete operator described in Thuburn et al. (2009) for
mapping from fluxes on the primal grid to fluxes on the dual grid. This operator ensures that the
divergence of the mapped fluxes is a convex combination of the divergence of the fluxes on the
primal grid. This is why the discrete perp operator acts on the flux, Ue, (in the p direction) and
maps to the d direction, despite p and d not being at right angles. This operator is inconsistent20

(zeroth order accurate) even on an orthogonal grid but does not always prevent convergence with
resolution of the shallow-water equations (see Sects. 5.1 and 6). The perp operator is defined to
be:

U⊥e =
∑

e′∈EC(i),EC(j)

wee′Ue′ (7)

9
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where primal cells i and j are the cells either side of edge ep, EC(i) means the edges of cell i
and Thuburn et al. (2009) derived the weights wee′ :

wee′ =±

(
1

2
−
∑
v

Aiv

Ai

)
(8)

where the vs are the vertices in a walk between edges e and e′. If the walk starts in the p⊥

direction and if nei = 1 then the sign is positive.5

3.4 Mapping from primal cell averages to edges

In order to ensure energetic consistency, the mapping of φ from cells to edges (φi→ φe) must
use the same weighting as will be used for calculating the kinetic energy (Eq. 10):

φe =
Aie

Ae
φi +

Aje

Ae
φj (9)

where cells i and j are either side of edge e. This is the reverse of linear interpolation and ensures10

an exact transfer between kinetic and potential energy. However, higher-order upwind interpo-
lations can be used instead, foregoing this form of energy conservation in favour of a smoother
geopotential field. Here, we will present results using CLUST (Weller, 2012) with a blend-
ing of 50 % between linear and linear-upwind differencing which gives smoother advection of
geopotential (see Sect. 3.6).15

3.5 PV and curl on dual cells

From Ringler et al. (2010), qv is discretised as:

qv =
fv + curl(Ve)v

φv

10
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where φv =
∑

i∈CV(v)

Aivφi is the conservative mapping of φ from the primal to the dual grid and,

from Thuburn and Cotter (2012), the curl is discretised as:

curl(Ve)v =
1

Av

∑
e∈EC(v)

nevVe.

3.6 Mapping pv from dual cells to edges

The potential vorticity at the edge, qe, is interpreted as the pv at the primal and dual edges. It5

is interpolated from surrounding qv values from an upwind-biased stencil using CLUST which
was developed for mapping pv from vertices to edges of the polygonal C-grid Weller (2012).
The CLUST blending coefficient between linear differencing and linear upwind used is 0.5.
It is essential to use CLUST for this work rather than a conventional high-order upwind or
monotonic advection scheme such as quadratic-upwind, linear-upwind or a TVD scheme such10

as van Leer. The conventional schemes have switching between upwind on either side of an
edge when the flow is aligned with the edge. When used for interpolating pv on the dual of
the C-grid, this leads to errors. The advantage of CLUST is that it blends smoothly with linear
when the flow is aligned with the edge so there is no switching. APVM (Ringler et al., 2010,
which is equivalent to Lax–Wendroff) could also be used as it does not involve switching but15

CLUST was found to control the grid-scale pv noise better (Weller, 2012).

3.7 Energy conserving Coriolis flux averaging

The averaging between qe (φeUe)
⊥ and (qeφeUe)

⊥ in Eq. (6) is necessary for the Coriolis force
to be energetically neutral (Ringler et al., 2010). Without this averaging (if this term is simply
represented as qe (φeUe)

⊥) the pv evolves exactly as if it were advected by the fluxes U⊥e by20

the advection scheme used to map pv from dual cells to edges. Thus high order, monotonic
advection of pv can be obtained. However, numerical tests by Ringler et al. (2010) and further
unpublished work have found the energy conserving version to generate more accurate solutions

11
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without serious oscillations in pv. The non-energy conserving version is used by Thuburn et al.
(2013).

3.8 Gradients along dual edges

The gradient of φ along dual edge e, integrated along the edge, between cells i and j is:

∇dφ= d
nei (φj −φi)

d
= nei (φj −φi) .5

This gradient is also used for the kinetic energy.

3.9 Kinetic energy

The kinetic energy in primal cell i is defined as:

ki =
1

2Ai

∑
e∈EC(i)

dist(xe,xi)

d
UeVe =

1

2Ai

∑
e∈EC(i)

Aie

Ae
UeVe (10)

where dist(xe,xi) is defined in Sect. 3.13. Ringler et al. (2010) weighted the edge contri-10

butions by 1
2 rather than Aie/Ae. Then, in order to achieve energetic consistency, they use

Ai = 1/4
∑

eAe which gives the correct area on Voronoi grids for which the edges bisect the
lines between the Voronoi generating points. Weller et al. (2012) suggest the weighting as in
Eq. (10) for non-Voronoi grids. For energetic consistency, the same weighting must be used for
mapping the geopotential from cells to edges (see Sect. 3.4).15

3.10 Divergence operator

The divergence of a vector ve defined at edges in cell i is given by Gauss’s divergence theorem:

(∇ ·v)i =
1

Ai

∑
e∈EC(i)

neive ·p =
1

Ai

∑
e∈EC(i)

neiUe. (11)
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Thuburn and Cotter (2012) suggest operator H to transform Ve into Ue so that:

(∇ · (φv))i =
1

Ai

∑
e∈EC(i)

neiφeUe =
1

Ai

∑
e∈EC(i)

neiH (φeVe) . (12)

The H operator is described further in Sect. 3.11 below.

3.11 H operator

The H operator transforms from the set of V values to the U values and is therefore referred to5

as a non-orthogonal correction.

3.11.1 Symmetric H

Thuburn and Cotter (2012) proved that energetic consistency is achieved if H is symmetric
and positive definite but they did not suggest the form of H for non-orthogonal grids. Thuburn
et al. (2013) suggest an H operator with the desired properties for grids whose dual consists of10

quadrilaterals or triangles and for which the dual grid is centroidal:

Ue =H(Ve) =
∑
e′(6=e)

1

fe′

(
Ved

⊥
e′ −Ve′d⊥e

)
·d⊥e′

|d⊥e ×d⊥e′ |
(13)

where the stencil of edges e′ consists of the edges of the dual sharing one vertex with e and
fe = 4 when dual edges e and e′ are edges of the same quadrilateral and fe = 6 when e and e′

are edges of the same triangle. All Voronoi grids and many other grids of polygons have dual15

grids consisting of only triangles and the dual of the cubed sphere grid consists of quadrilaterals
and 8 triangles. So this operator should cover most of the grids anyone would be interested in as
long as the primal vertices are moved to the dual cell centroids. The centroidal dual constraint
is necessary to ensure first-order accuracy. However, for grids with triangular duals, the off-
diagonal terms of H do not vanish as the grids tends towards an orthogonal grid. The accuracy20

of solutions using this operator will be presented in Sect. 6.
13
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3.11.2 Asymmetric/diagonal H

It would seem logical to have an H operator with vanishing off-diagonal terms as the grid
becomes orthogonal, regardless of the cell shapes. It would also be desirable to use an operator
that is at least first order accurate on any grid. The first/second order operator for reconstructing
cell centre vectors from normal components at edges in OpenFOAM (cited 2013) is:5

vi = T−1
i

∑
e∈EC(i)

p̂eUe (14)

where Ti =
∑

e∈EC(i) p̂epe. Ti is a 3×3 tensor so not computationally expensive to invert and is
only dependent on geometry and so can be pre-computed. It can be shown that this operator will
exactly reconstruct a uniform velocity field and for non-uniform velocities, it is a least-squares
fit. It is similar to Perot’s reconstruction (Perot, 2000) but a comparison of the two methods has10

not been done. Alternatively, to reconstruct dual cell velocity, vv from Ve we can use:

vv = T−1
v

∑
e∈EC(v)

d̂
⊥
e Ve (15)

where Tv =
∑

e∈EC(v) d̂
⊥
e d
⊥
e . We can then interpolate the vvs from the dual cells to the dual

edges using any centred or upwind-biased interpolation. We will show results in Sect. 6 using
mid-point interpolation. The resulting velocity on edges is referred to as v′e, with the prime15

because this is not the final velocity that will give us Ue. We require Ue = pe/deVe for an

orthogonal grid (p̂ = d̂
⊥

) so we can correct v′e to give exactly Ve in the direction d̂
⊥
e :

ve =
Ve
de

d̂
⊥
e +v′e−

(
v′e · d̂

⊥
e

)
d̂
⊥
e (16)

from which we can write down Ue =H (Ve):

Ue = ve ·pe (17)20

=
d̂
⊥
e

de
·peVe +v′e ·

(
pe− d̂

⊥
e

(
d̂
⊥
e ·pe

))
. (18)

14
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For nearly orthogonal grids this operator is close to diagonal so the requirement for positive
definiteness should easily be met for most grids. However this operator is not symmetric (un-
less of course it is diagonal). In fact the requirement for symmetry is not consistent with the

requirement that Hee′ = 0 for all e 6= e′ if p̂e · d̂
⊥
e = 1, since if we also have p̂e′ · d̂

⊥
e′ 6= 1 then

we may have He′e 6= 0.5

The H operator described in this subsection is referred to as the asymmetric/diagonal H
operator (or just the asymmetric operator for short) since it is asymmetric for a non-orthogonal
grid and diagonal for an orthogonal grid. The relative merits and accuracy of the symmetric and
asymmetric/diagonal H will be assessed in Sect. 6.

3.12 Full velocity field at cell edges10

The full velocity field at cell edges is needed in CLUST and for post-processing such as calcu-
lating errors and error metrics. Due to the inconsistency of the perp operator, Eq. (16) is used to
reconstruct the full velocity field.

3.13 Spherical areas and distances

All distances (or lengths) are great circle distances so that the distance between points xv and15

xw is:

dist(xv,xw) = 2a sin−1 1

2
|xv −xw| (19)

where a is the magnitude of both xv and xw. The areas on the surface of the sphere are calcu-
lated to be consistent with the distances to retain the correct mimetic properties. Thus the area
of a triangle with points x, y and z on a sphere of radius a is:20

a2/2 dist(y,x)dist(z,x)| ̂(z−x)× ̂(y−x)|. (20)

Areas Aie, Aiv, Ai and Av are composed of the sums of triangles Aive, as shown in Fig. 3.
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3.14 Semi-implicit solution technique

The momentum and continuity equations are solved semi-implicitly using Crank–Nicolson for
the implicit terms. Two outer iterations are used so that, for the first iteration, the explicit terms
are solved with Euler-explicit and the second iteration uses 50–50 weighting of the old and new
values so that the explicit terms are second order, with the same weighting as the implicit terms.5

For the simplest possible implementation, H is split into diagonal and off diagonal elements:
H =Hd +Hoff and only the diagonal terms are included in the implicit part. The off diagonal
terms are lagged corrections. Between times-levels n and n+ 1 this gives:

φn+1
i −φni

∆t
+

1

2
∇ ·H (φneV

n
e ) +

1

2
∇ ·Hd

(
φ`eV

n+1
e

)
+

1

2
∇ ·Hoff

(
φ`eV

`
e

)
= 0 (21)

V n+1
e −V n

e

∆t
+

1

4

(
qe (φneU

n
e )⊥+ (qne φ

n
eU

n
e )⊥

)
+

1

2
∇d (φn + kn)10

+
1

4

(
q`e

(
φ`eU

`
e

)⊥
+
(
q`eφ

`
eU

`
e

)⊥)
+

1

2
∇d

(
φn+1 + k`

)
= 0. (22)

where values at time level ` are at time-level n for the first iteration and they are the most up
to date value (but not implicit) for the second iteration. Using just two iterations, the explicit
scheme is the Heun scheme which is weakly unstable. However the instability is not seen in15

the simulations undertaken. An additional explicit step would remove the instability if needed.
Equations (21) and (22) are solved simultaneously for φn+1 by substituting V n+1 from Eq. (22)
into Eq. (21) (taking the Schur complement) to form a Helmholtz equation which is solved
using a conjugate gradient solver with incomplete Cholesky pre-conditioning (OpenFOAM,
cited 2013).20
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4 Linear stability

The normal modes (eigen vectors) and corresponding amplification factors (eigen values) of the
model for the linearised shallow-water equations

∂u

∂t
+ fu⊥ =−g∇h, ∂h

∂t
+H∇ ·u = 0 (23)

are found using the method of Weller et al. (2012) which involves multiple model runs with5

different initial conditions in order to evaluate the matrix that represents the model. The model
uses f = 2k ·Ω where Ω = (0,0,0.1)s−1, H = 1 m and g = 1ms−2. The corresponding eigen
values give us the amplification factors of the normal modes and are shown in Fig. 4 for coarse
versions of the cubed sphere and diamond grids. Crank–Nicolson time-stepping with a time-
step of 1 s is used with the Coriolis term treated explicitly and updated 4 times per time-step.10

More explicit updates are not needed because, after 2, the fields do not change for this small
time-step (to within machine precision) so the time-stepping is effectively Crank-Nicolson.

Crank-Nicolson time-stepping is neutrally stable and the symmetric H operator is energy
conserving and therefore the eigen values using the symmetric H have magnitude 1 for both
grids in Fig. 4. Use of the asymmetric H does not formally guarantee energy conservation15

but, on the grids with centroidal duals, the eigen values still have magnitude 1. However using
the centroidal grids, some eigen values have magnitude greater than one, implying instability.
(The symmetric H gives the same eigen value magnitudes on the centroidal grids but this is
not shown because the symmetric H is inconsistent on grids without centroidal duals.) We can
conclude that the asymmetric H should not affect stability but that the use of a non-centroidal20

dual grid may affect stability.
The zero frequency modes confirm the existence of steady geostrophic modes.
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5 Accuracy of individual operators

5.1 Accuracy of the TRiSK perp operator

The accuracy of the TRiSK perp operator (Eq. 7) is assessed by reconstructing the solid body
rotation velocity field of test case 2 of Williamson et al. (1992) from the normal components of
this velocity field at each edge. The maximum errors in the reconstructed velocity in comparison5

to the analytic profile for each grid at each resolution are shown in Fig. 5. Total degrees of
freedom (dofs, number of cells plus number of edges) is used as a proxy for both resolution
and computational cost although it is not directly proportional to either. It can be argued that
models with a non-ideal ratio of dofs will have lower effective resolution since some dofs must
be slaved to others in order to avoid computational modes. However, for consistency with other10

studies (e.g. Weller et al., 2012; Thuburn et al., 2013), we will stick with using total dofs as a
measure of resolution.

The errors of the TRiSK perp operator on the centroidal grids in Fig. 5 saturate at quite
low dof count and are highest on the cubed-sphere. It is surprising how much more accurate
the perp operator on the centroidal hexagonal grid is in comparison to the orthogonal version.15

On the grids with centroidal duals, there is no convergence with resolution of the TRiSK perp
operator.

The perp operation can also be evaluated using a least-squares fit (Eq. 16) which is also shown
in Fig. 5. The least squares fit is much more accurate than the TRiSK perp and converges with
resolution but does not satisfy the important mimetic property that the divergence on the dual is20

a convex combination of the divergence of the primal. Therefore if the shallow-water equations
are solved using the least squares operator, steady geostrophic modes would not be maintained
which leads to considerably less accurate solutions (not shown).

5.2 Accuracy of the H operator

The accuracy of the symmetric and asymmetric H operators (Sect. 3.11) are assessed by re-25

constructing the velocities normal to each edge from the velocity component in the cell centre
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to cell centre direction for the solid body rotation velocity field of test case 2 of Williamson
et al. (1992). The maximum errors for each of the non-orthogonal grids at each resolution are
shown in Fig. 6. The centroidal primal grid is particularly beneficial for the hexagonal grid,
presumably because this grid is so close to orthogonal. The diamond grid with a centroidal dual
has insufficient convergence with resolution using bothH operators but it is particularly bad for5

the symmetric H . This is contrary to the analysis of Thuburn et al. (2013) that the symmetric
H is first-order accurate on centroidal grids. But it should be noted that the grid is changing as
resolution increases. In particular, the centroidal dual diamond grid is getting less orthogonal.

On the centroidal dual grids, the asymmetric H is more accurate than the symmetric H .

6 Results of shallow-water test cases10

The time-steps used for each test case, each grid and each resolution are shown in Table 4.
Time-steps are chosen to give similar advective and gravity wave Courant numbers for each
grid. However the Courant numbers chosen are different for each test-case, as described in the
sub-sections describing the test-case results below.

6.1 Solid body rotation (Williamson et al., 1992, test case 2)15

Height errors and height contours after five days for the Williamson et al. (1992) solid body
rotation, test case 2 are shown in Fig. 7 for coarse versions of the grids, each with similar
numbers of total dofs.

The height errors on the orthogonal, hexagonal HR grid are the lowest but the errors on the
centroidal hexagonal and centroidal diamond grids are also low. These are the grids that are the20

most orthogonal but they do not necessarily have the lowest H errors (Fig. 6) or the lowest perp
errors (Fig. 5). All of the cubed sphere grids and the diamond grids with centroidal duals have
much higher errors, regardless of the H operator used. The centroidal dual hexagonal grid has
high errors along the lines of non-centroidal primal cells. The version of H used for this makes
little difference.25
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The disadvantage of the asymmetric H is that it spoils the energy conservation properties
of the spatial discretisation. In order to judge the extent of this problem, the normalised en-
ergy change for symmetric and asymmetric/diagonal H for the simulations shown in Figs. 7
are shown in Fig. 8. (The kinetic energy is defined as in Eq. (10) and the energy change is
normalised as described by Williamson et al. (1992) by dividing by the initial total energy.)5

Positive changes are solid and negative changes are dashed. The symmetricH does indeed have
marginally better energy conservation. The centroidal hexagonal and centroidal diamond grid
have energy conservation very similar to the orthogonal hexagonal grid which formally con-
serves energy. The good energy conservation of the simulations using the asymmetric H are
consistent with the results of the linear stability analysis in Sect. 4. However the energy con-10

servation of the centroidal cubed sphere is less good, consistent with the high truncation errors
seen if Fig. 7.

The motivation for the grids of quadrilaterals is to avoid the computational modes of the
hexagonal C-grid. The computational Rossby modes manifest themselves as grid-scale enstro-
phy. This is controlled using upwind advection of pv (CLUST is used here on all grids and for15

both model versions). The solid-body rotation test on the orthogonal and centroidal hexagonal
grids loses total enstrophy (bottom left of Fig. 8), related to the existence of (controlled) com-
putational modes. The cubed-sphere and diamond grids do not have these computational modes
and their enstrophy conservation is about an order of magnitude better. Enstrophy conservation
on the grids with centroidal duals is better but there are more instances of increasing enstrophy20

(solid lines) rather than decreasing enstrophy (dashed lines) which is consistent with growing
grid-scale noise.

Convergence with degrees of freedom for the solid-body rotation test on all grids of the `2
and `∞ error norms of geopotential and velocity is shown in Fig. 9. Degrees of freedom (dofs,
number of cells plus number of edges) is used as an approximate measure of resolution. Time25

steps are chosen (see Table 4) to maintain an advective Courant number of about 0.14 and
a gravity wave Courant number of about 0.7, apart from at the lowest resolutions which need
a shorter time-step in order to represent the scale independent Coriolis term accurately. Larger
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Courant numbers could have been chosen but the largest time-step cannot go much above 3600 s
on the coarsest grid in order to maintain accuracy of the Coriolis term.

Convergence with resolution of all error metrics of this shallow-water test case is much better
than the convergence with resolution of the perp operator alone. It seems that having the right
divergence on the dual is more important for accuracy than convergence of the perp operator. In5

Fig. 5, the non-orthogonal HR grid has the lowest errors of the perp operator whereas solving
the shallow-water equations with the same initial wind field, the orthogonal HR grid has the
lowest errors, implying that other aspects of the discretisation are controlling the errors of the
shallow-water model for this test case, not the perp operator.

The orthogonal HR grid has the best convergence with resolution. On the centroidal cube and10

diamond grids, the errors are low but the convergence of even the `2(φ) error norm slows to
less than first order at high resolution. This is solved on the centroidal dual grids with both H
operators. Of the grids with centroidal duals only the hexagonal grid has at least first order con-
vergence of `∞(φ). For all cubed-sphere and diamond grids, the `∞(φ) errors stop converging
with resolution after about 10,000 dofs.15

A least squares fit is used to calculate the velocity for the error norms and so the inconsistent
perp errors do not appear directly in the error norms. As a consequence, the `2(u) error norms
all converge with second order and the `∞(u) between first and second.

From this sub-section, we have learnt the following:

– The centroidal grids give lower errors but the centroidal dual grids give better convergence20

with resolution.

– The asymmetric H on the centroidal dual grids gives similar accuracy to the symmetric
H and does not degrade accuracy on an orthogonal grid.

– Making the hexagonal grid centroidal increases the error a little in comparison to the
orthogonal HR grid.25

– The cubed-sphere grids have higher errors at all resolutions considered and lower order of
accuracy in comparison to the hexagonal grids.
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– The centroidal diamond grid has better convergence with resolution and lower errors in
comparison to the centroidal cubed-sphere grid.

– The accuracy of the solution of the shallow-water equations for this test case is not directly
related to the accuracy of the perp operator.

6.2 Mid-latitude mountain (Williamson et al., 1992, test case 5)5

The Williamson et al. (1992) flow over a mountain (test case 5) does not have an analytic
solution and so numerical solutions are compared with results of a version of the NCAR spectral
transform shallow-water model (STSWM Hack and Jakob, 1992) revised by Pilar Rı́podas from
Deutscher Wetterdienst (Rı́podas et al., 2009) and run at T426 resolution and using a time-step
of 90 s and a hyper-diffusion coefficient of 4.96× 1011 m4 s−1. The spectral model results are10

interpolated from the native spectral model grid (640× 1280) onto the computational points of
the C-grids using the bicubic interpolation code available also from Deutscher Wetterdienst. As
resolution increases, the errors for this test case become very sensitive to time-stepping errors
(J. Thuburn, personal communication, 2012) due to the shock of the initialisation. Therefore
small gravity wave Courant numbers are used for all grids, as shown in Table 4.15

The height contours and errors in comparison to the reference solution for some mid-
resolution results are shown in Fig. 10. For this test case, the differences between using the
centroidal and centroidal dual grids and between the symmetric and asymmetric H are tiny.
Additionally, considering the different resolutions used for each grid type, the errors using each
grid are very similar and the errors do not impact significantly on the total height pattern. The20

errors are plotted piecewise constant on every cell and so it is clear that there is no obvious
grid imprinting or grid-scale noise apart from on the cubed-sphere using the asymmetric H , for
which the cube edges are visible in the error fields.

The convergence with resolution for all grids of the `2 and `∞ errors of geopotential are
shown in Fig. 11. The symmetric and asymmetric H results give nearly identical results and all25

grids show remarkably similar errors with convergence between first and second for `2(φ) and
first order for `∞(φ). Due to the more undulating nature of the flow, the mountain test case does
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not suffer due to lack of grid alignment with the flow and so the problems, particularly with the
cubed-sphere grid, do not show up.

6.3 Galewsky et al. (2004) unstable jet

The Galewsky et al. (2004) barotropically unstable jet is challenging because the instability can
be released prematurely by truncation errors related to lack of grid alignment (Marras et al.,5

2014), grid inhomogeneity, or asymmetries in the discretisation. The test case is used with an
initial perturbation and without viscosity. There is no analytic solution and so the results are
compared with the STSWM reference model run at T426 using a time-step of 30 s and a hyper-
diffusion coefficient of 4.97× 1011 m4 s−1. The relative vorticity after 6 days for the reference
solution and for high resolution versions of the orthogonal HR grid and the centroidal grids are10

shown in Fig. 12. The results of the spectral model are interpolated onto HR grid 8 and the
vorticity is plotted piecewise constant in exactly the same way as for the C-grid results. All
of the C-grids use the asymmetric/diagonal H and the results using the symmetric H and/or
centroidal duals are visually identical. All of the C-grid model runs in Fig. 12 use a time-step of
240s but this results in different ratios of initial advective to gravity wave Courant number for15

each grid (Table 4) since the initial jet is to the north of the smallest cells of the cubed sphere
and diamond grids and the advective Courant number is based on the normal velocities and the
initial, zonal velocities are not normal to any of the edges of the diamond grid. However the
results are not very sensitive to the time-step.

The unstable jet using both version of the hexagonal grid is very similar to the reference20

solution except that the hexagonal grid results have spurious vorticity stripes upstream of steep
gradients caused by phase errors of the vorticity when using the energy conserving version
of TRiSK. In contrast, the results using the cubed-sphere or the diamond grid contain dramatic
wave number 4 patterns which are not showing any signs of lessening with increasing resolution.
This is in contrast to the results of Thuburn et al. (2013) for this test case, who use a higher-order25

advection scheme for pv and do not use an energy conserving Coriolis operator. If this test case
is indicative of models that do not work well in 3-D as weather or climate forecasting models,

23



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

then the cubed-sphere or diamond grids should not be used with this low-order differencing
scheme.

7 Conclusions

A new C-grid discretisation of the shallow-water equations suitable for non-orthogonal grids has
been proposed. Unlike the scheme of Thuburn et al. (2013), the new scheme does not rely on5

the dual grid being centroidal. This has advantages since centroidal grids, rather than grids with
centroidal duals, often lead to lower errors. The new scheme formally loses energy conservation
of the spatial discretisation but in tests, the energy conservation is very similar to the scheme of
Thuburn et al. (2013). The new scheme will extend to three dimensions and so can be used for
non-orthogonal grids over orography.10

It has been demonstrated that the TRiSK perp operator is inconsistent (zeroth order accurate)
but that this does not prevent convergence with resolution of shallow-water test cases. The perp
operator leads to fluxes on the dual grid which have divergence which is a convex combination
of the divergence on the primal and so an aspect of the perpendicular velocity is exactly correct.
This helps the accuracy of the shallow-water test cases.15

A new diamond grid of the sphere has been proposed which consists of quadrilaterals, is more
nearly orthogonal and nearly as uniform as the equal angle cubed sphere. It mostly out-performs
the cubed sphere in the tests undertaken.

The grids of quadrilaterals do not admit the computational modes of the hexagonal C-grid and
hence enstrophy is better conserved. (Growth of the computational mode can lead to enstrophy20

increase whereas control of the computational mode can lead to enstrophy decrease.) However
they do not outperform the hexagonal C-grid in any way and the hexagonal-icosahedral grid
gives more accurate results in most test cases. However the lack of computational modes could
be more beneficial in 3-D where the computational modes of the hexagonal C-grid could interact
with, for example, the Hollingsworth instability.25
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Supplementary material related to this article is available online at:
http://\@journalurl/\@pvol/\@fpage/\@pyear/\@journalnameshortlower-\@pvol-\
@fpage-\@pyear-supplement.zip.
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Table 1. Properties of the orthogonal hexagonal HR grid and the centroidal grids.

number of ∆x ∆xmax
∆xmin

non- skewness non-
mean orthogonal (◦) centroidality

cells dofs (km) mean max mean max mean max

Orthogonal HR grid (Centroidality of the primal given. Dual is less centroidal.)

3 162 642 1906 1.23 0 0 0.035 0.059 0.0096 0.020
4 642 2562 956 1.26 0 0 0.020 0.031 0.0063 0.019
5 2562 10 242 479 1.27 0 0 0.010 0.016 0.0033 0.017
6 10 242 40 962 239 1.27 0 0 0.0052 0.0087 0.0018 0.017
7 40 962 163 842 120 1.27 0 0 0.0026 0.0053 0.0010 0.017
8 163 842 655 362 60 1.28 0 0 0.0013 0.0045 0.0007 0.017

Centroidal hexagonal grid (Centroidality of the dual given.)

3 162 642 1905 1.18 0.29 0.88 0.035 0.094 0.067 0.13
4 642 2562 956 1.23 0.15 0.82 0.020 0.069 0.068 0.14
5 2562 10 242 479 1.25 0.099 0.79 0.011 0.047 0.067 0.13
6 10 242 40 962 239 1.26 0.063 0.86 0.0056 0.038 0.066 0.13
7 40 962 163 842 120 1.27 0.039 0.86 0.0029 0.036 0.066 0.13
8 163 842 655 362 60 1.28 0.029 0.89 0.0015 0.035 0.066 0.13

Centroidal equal-angle cubed sphere (Centroidality of the dual given.)

6× 6 216 648 1557 1.41 3.73 16.30 0.021 0.21 0.045 0.13
12× 12 864 2592 782 1.60 4.60 23.48 0.010 0.23 0.032 0.19
17× 17 1734 5202 553 1.66 4.86 25.50 0.007 0.24 0.025 0.22
24× 24 3456 10 368 392 1.70 5.03 26.87 0.005 0.24 0.018 0.23
32× 32 6144 18 432 294 1.73 5.14 27.68 0.004 0.24 0.014 0.24
48× 48 13 824 41 472 196 1.75 5.24 28.47 0.003 0.25 0.010 0.25
72× 72 31 104 93 312 131 1.77 5.31 28.99 0.002 0.25 0.006 0.26
144× 144 124 416 373 248 65 1.78 5.38 29.50 0.0008 0.25 0.003 0.26
191× 191 218 886 656 658 49 1.78 5.39 29.62 0.0006 0.25 0.003 0.26
288× 288 497 664 1 492 992 33 1.78 5.41 29.75 0.0004 0.25 0.002 0.26

Centroidal diamond grid (Centroidality of the dual given.)

6× 6 432 1296 1102 1.48 2.03 5.18 0.015 0.12 0.024 0.11
12× 12 1728 5184 552 1.69 2.16 5.73 0.0068 0.10 0.018 0.15
17× 17 3468 10 404 390 1.78 2.19 6.42 0.0047 0.10 0.014 0.17
24× 24 6912 20 736 277 1.87 2.20 6.99 0.0033 0.09 0.010 0.18
32× 32 12 288 36 864 208 1.93 2.21 7.32 0.0024 0.09 0.008 0.19
48× 48 27 648 82 944 138 1.99 2.22 7.64 0.0016 0.09 0.006 0.20
72× 72 62 208 186 624 92 2.03 2.22 7.86 0.0011 0.09 0.004 0.20
144× 144 248 832 746 496 46 2.08 2.22 8.08 0.0005 0.08 0.002 0.21
191× 191 437 772 1 313 316 35 2.09 2.22 8.14 0.0004 0.08 0.001 0.21
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Table 2. Properties of the grids with centroidal duals.

number of ∆x ∆xmax
∆xmin

non- skewness non-
mean orthogonal (◦) centroidality

cells dofs (km) mean max mean max mean max

Hexagonal grid with centroidal dual (Centroidality of the primal given.)

3 162 642 1921 1.23 3.46 8.56 0.02 0.026 0.025 0.056
4 642 2562 963 1.26 4.58 10.9 0.01 0.015 0.015 0.069
5 2562 10 242 482 1.27 4.98 11.7 0.005 0.009 0.0096 0.071
6 10 242 40 962 241 1.27 5.16 12.3 0.003 0.006 0.0053 0.072
7 40 962 163 842 120 1.27 5.25 12.9 0.001 0.005 0.0030 0.074
8 163 842 655 362 60 1.28 5.30 13.1 0.0007 0.004 0.0019 0.074

Equal-angle cubed sphere with centroidal dual (Centroidality of the primal given.)

6× 6 216 648 1571 1.70 2.56 8.53 0.027 0.19 0.039 0.064
12× 12 864 2592 784 1.74 3.91 19.16 0.013 0.18 0.027 0.08
17× 17 1734 5202 553 1.75 4.35 22.49 0.009 0.18 0.022 0.09
24× 24 3456 10 368 392 1.77 4.66 24.77 0.007 0.17 0.017 0.10
32× 32 6144 18 432 294 1.77 4.86 26.12 0.005 0.17 0.013 0.11
48× 48 13 824 41 472 196 1.78 5.06 27.45 0.003 0.17 0.009 0.12
72× 72 31 104 93 312 131 1.78 5.18 28.31 0.002 0.17 0.006 0.12
144× 144 124 416 373 248 65 1.79 5.31 29.16 0.001 0.17 0.003 0.13
191× 191 218 886 656 658 49 1.79 5.35 29.37 0.0008 0.17 0.002 0.13
288× 288 497 664 1 492 992 33 1.79 5.38 29.58 0.0006 0.17 0.002 0.13

Diamond grid with centroidal dual (Centroidality of the primal given.)

6× 6 432 1296 1104 1.58 0.53 1.31 0.015 0.15 0.010 0.016
12× 12 1728 5184 552 1.70 1.70 4.60 0.0092 0.14 0.012 0.036
17× 17 3468 10 404 390 1.76 2.01 6.27 0.0071 0.14 0.011 0.045
24× 24 6912 20 736 276 1.82 2.16 7.21 0.0054 0.14 0.009 0.052
32× 32 12 288 36 864 207 1.86 2.22 7.67 0.0043 0.13 0.007 0.058
48× 48 27 648 82 944 138 1.90 2.25 8.03 0.0030 0.13 0.005 0.063
72× 72 62 208 186 624 92 1.95 2.26 8.21 0.0021 0.13 0.004 0.067
144× 144 248 832 746 496 46 2.03 2.24 8.40 0.0011 0.13 0.002 0.071
191× 191 437 772 1 313 316 35 2.06 2.24 8.44 0.0009 0.13 0.001 0.072
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Table 3. Variables used in the discretisation and some of their finite-volume representations. Extensive
quantities are upper case.

Variable Definition Description

Indexing

i, j Indexing for primal cells (dual vertices)
e,e′ Indexing for (primal and dual) edges
v,w Indexing for primal vertices (dual cells)

Geometry

xi, xv Location of dual/primal vertex i, v
xe Primal/dual edge e cross-over point
pe pep̂e Surface normal vector to primal edge e
p⊥e k×pe Perpendicular with same magnitude
de ded̂e Surface normal vector to dual edge e
d⊥e k×de Perpendicular with same magnitude
Ai, Av Area of cell i, v
Aiv Overlap area between primal cell i and dual cell v
Ae Area associated with edge e
Aie Fraction of Ae in cell i
Aive Fraction of Aie in dual cell v
nei sign(pe · (xe−xi)) Edge orientation indicator
nev sign(de · (xe−xv))

Intensive quantities

φi Geopotential at xi
φe Geopotential at xe
qv

f+ξ
h Potential vorticity at xv

qe Potential vorticity at xe
ki

1
2Ai

∑
e∈EC(i)

Aie

Ae
UeVe Kinetic energy at xi

Extensive quantities

Ue ve ·pe =HV Flux through primal face e
Ve ve ·d⊥e Circulation along dual edge e
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Table 4. Grid resolutions and time steps used for all test cases and resulting advective Courant numbers
(Ca) and gravity-wave Courant numbers (Cg).

Test 2 Test 5 Jet

dofs ∆t (s) Ca Cg ∆t (s) Ca Cg ∆t (s) Ca Cg

Hexagonal grid

3 642 3600 0.07 0.36
4 2562 3600 0.14 0.72 1800 0.04 0.5
5 10 242 1800 0.14 0.72 900 0.04 0.5
6 40 962 900 0.14 0.72 450 0.04 0.5
7 163 842 450 0.14 0.72 225 0.04 0.5
8 655 362 225 0.14 0.72 240 0.3 1.4

Cubed-sphere

6× 6 648 3600 0.10 0.46
12× 12 2592 3600 0.21 1.0 1200 0.04 0.5
17× 17 5202 2400 0.20 0.97 900 0.04 0.6
24× 24 10 368 1800 0.22 1.0 600 0.04 0.5
32× 32 18 432 1200 0.20 0.94
48× 48 41 472 900 0.22 1.1 300 0.04 0.6
72× 72 93 312 600 0.22 1.1 225 0.04 0.6
144× 144 373 248 300 0.23 1.1 100 0.04 0.6
191× 191 656 658 225 0.22 1.1 240 0.45 2.4
288× 288 1 492 992 150 0.23 1.1

Diamond grid

6× 6 1296 3600 0.12 0.7
12× 12 5184 2400 0.18 1.0 900 0.04 0.6
17× 17 10 404 1800 0.21 1.2 600 0.04 0.6
24× 24 20 736 1200 0.20 1.1 450 0.04 0.6
32× 32 36 864 900 0.21 1.2
48× 48 82 944 600 0.22 1.2 225 0.04 0.7
72× 72 186 624 450 0.25 1.4 150 0.04 0.7
144× 144 746 496 225 0.25 1.4 240 0.4 3.1
191× 191 1 313 316 150 0.22 1.2
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Fig. 1. Orthogonality and skewness of some grids. Non-orthogonality (from black, orthogonal, to blue)
is shown on the primal edges whereas skewness of the primal grid (from red, no skewness, to yellow) is
shown on the dual edges.
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cubed sphere panels

diamond panels

b

a
c

equal angle cubed sphere grid boxes

diamond
grid boxes

Fig. 2. The panels of the cubed sphere primal grid (dashed) and the diamond primal grid (grey) and the
grid boxes for an equal angle cubed sphere grid. In the plane limit for the diamond grid, b= asin30 and
c= acos30 implying c/b=

√
3.
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Fig. 3. Primal grid (solid) and dual grid (dashed) with surface normal vectors, p and d, perpendicular
vectors p⊥ and d⊥, lengths p= |p|= |p⊥| and d= |d|= |d⊥|, flux Ue = v ·p and circulation Ve =
v ·d⊥, for edge e of the primal or dual.
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Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H

Cubed sphere. 6×6×6 = 216 cells, 648 dofs
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Diamond grid. 3×3×6×2 = 108 cells, 324 dofs
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Fig. 4. Real and imaginary parts of the eigenvalues of the linearised shallow-water equations discretised
on both the centroidal and centroidal dual versions of the cubed sphere and diamond grids using the
symmetric and asymmetric versions of the non-orthogonal correction, H . The solid line is the unit circle
and each cross represents an eigen value.
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Fig. 5. Maximum errors in the velocity normal to the dual edges reconstructed from components nor-
mal to the primal edges of the solid body rotation velocity field from test case 2 of Williamson et al.
(1992). Errors are normalised by the maximum velocity of 38 ms−1. Least squares perp calculated using
equation 16.
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Centroidal primal, Centroidal dual, Centroidal dual,
asymmetric H asymmetric H symmetric H
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Fig. 6. Maximum errors in the velocity component normal to each edge reconstructed from the velocity
in the cell centre to cell centre direction from the velocity field from test case 2 of Williamson et al.
(1992). Errors are normalised by the maximum velocity of 38 ms−1.
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Orthogonal
Hexagonal HR grid→
2,562 cells, 10,242 dofs

↓ Other hexagonal grids

Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H

↓ Cubed sphere. 24×24×6=3,456 cells, 10,368 dofs

↓ Diamond grid. 17×17×6×2≈3,468 cells, 10,404 dofs

m

Fig. 7. Height errors (coloured) and total height (contours every 50 m) for Williamson et al. (1992) test
case 2 after 5 days. Time-step of 1800 s.
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Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H
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Fig. 8. Time series of normalised energy and enstrophy change for Williamson et al. (1992) test case 2.
Same simulations as Fig. 7. Dashed lines show negative normalised energy and enstrophy change.
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Fig. 9. Convergence of error metrics with resolution for Williamson et al. (1992) test case 2 after 5 days.
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Orthogonal
Hexagonal HR grid →
2,562 cells, 10,242 dofs
7, 40,962 cells, 163,842 dofs,
∆t = 255s

m

Centroidal primal, Centroidal dual,
asymmetric H symmetric H

Hexagonal grids 7, 40,962 cells, 163,842 dofs, ∆t = 255s

Cubed sphere, 31,104 cells, 93,312 dofs, ∆t = 225s

Diamond grid, 27,648 cells, 82,944 dofs, ∆t = 225s

Fig. 10. Height errors (coloured) and total height (contours every 50 m) for Williamson et al. (1992) test
case 5 after 15 days.
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Centroidal primal, Centroidal dual,
asymmetric H symmetric H
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Fig. 11. Convergence of error metrics with resolution for Williamson et al. (1992) test case 5 after 15
days.
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STSWM reference at T426, ∆t = 30s, K = 4.97×1011m4s−1

Orthogonal HR grid, 655,362 dofs, ∆t = 240s

Non-orthogonal HR grid, 655,362 dofs, ∆t = 240s

Cubed sphere, 656,658 dofs, ∆t = 240s

Diamonds, 746,496 dofs, ∆t = 240s

Fig. 12. Vorticity after 6 days for the Galewsky et al. (2004) unstable jet. Asymmetric/diagonal H ,
centroidal primal grids.
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