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Abstract 1 

Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major 2 

climate forcing mechanism, causing, for example, the contemporary glacial-interglacial 3 

cycles.  There are three Milankovitch orbital parameters: orbital eccentricity, precession and 4 

obliquity.  The interaction of the amplitudes, periods and phases of these parameters controls 5 

the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the 6 

seasons with respect to perihelion.  This complexity makes Earth-Sun geometry and 7 

Milankovitch theory difficult to teach effectively.  Here, we present "Earth Orbit v2.1": an 8 

astronomically precise and accurate model that offers 3D visualizations of Earth’s orbital 9 

geometry, Milankovitch parameters and the ensuing insolation forcing.  The model is 10 

developed in MATLAB® as a user-friendly graphical user interface.  Users are presented 11 

with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for 12 

eccentricity, obliquity and precession. A “demo” mode is also available, which allows the 13 

Milankovitch parameters to be varied independently of each other, so that users can isolate 14 

the effects of each parameter on orbital geometry, the seasons, and insolation.  A 3D orbital 15 

configuration plot, as well as various surface and line plots of insolation and insolation 16 

anomalies on various time and space scales are produced.  Insolation computations use the 17 

model’s own orbital geometry with no additional a-priori input other than the Milankovitch 18 

parameter solutions.  Insolation output and the underlying solar declination computation are 19 

successfully validated against the results of Laskar et al. (2004) and Meeus (1998), 20 

respectively.  The model outputs some ancillary parameters as well, e.g. Earth's radius-vector 21 

length, solar declination and day length for the chosen date and latitude.  Time-series plots of 22 

the Milankovitch parameters and several relevant paleoclimatological data sets can be 23 

produced.  Both research and pedagogical applications are envisioned for the model.  24 

 25 

 26 

 27 

 28 

 29 
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1 Introduction 1 

The astrophysical characteristics of our star, the Sun, determine to first order the continuously 2 

habitable zone around it (Kasting et al., 1993; Kasting, 2010), in which rocky planets are able 3 

to maintain liquid water on their surface and sustain life.  The surface temperature of a planet 4 

depends to first order upon the incoming flux of solar radiation (insolation) to its surface.  5 

Additionally, energy for our metabolism (and most of modern economy) is obtained 6 

exclusively from the Sun via the process of oxygenic photosynthesis performed by green 7 

terrestrial plants and marine phytoplankton.  The high oxygen content of Earth's atmosphere, 8 

necessary for the evolution of placental mammals (Falkowski et al., 2005), is due to billions 9 

of years of photosynthesis and the geological burial of reduced carbon equivalents (Falkowski 10 

et al.,2008a; Falkowski et al., 2008b; Kump et al., 2010).  Thus, the Sun is central to climate 11 

formation and stability and to our evolution and continued existence as a species.   12 

 13 

The temporal and spatial patterns of insolation and their variability on various scales 14 

determine climatic stability over geologic time, as well as climate characteristics such as 15 

diurnal, seasonal and pole to Equator temperature contrasts, all of which influence planetary 16 

habitability.  Insolation can change due to changes in the luminosity of the Sun itself.  This 17 

can happen due to the slow increase of solar luminosity that gives rise to the Faint Young Sun 18 

Paradox (Kasting, 2010; Kump et al., 2010), or it can happen on much shorter time scales 19 

such as the 11-yr sunspot cycle (Fröhlich, 2013; Hansen et al., 2013).  Importantly, insolation 20 

is also affected by the orbital elements of the planet.  According to the astronomical theory of 21 

climate, quasi-periodic variations in Earth's orbital elements cause multi-millennial variability 22 

in the spatio-temporal distributions of insolation, and thus provide an external forcing and 23 

pacing to Earth's climate (Milankovitch, 1941; Berger 1988; Berger and Loutre, 1994; Berger 24 

et al., 2005).  These periodic orbital fluctuations are called Milankovitch cycles, after the 25 

Serbian mathematician Milutin Milanković who was instrumental in developing the theory 26 

(Milankovitch, 1941).  Laskar et al. (2004) provide a brief historical overview of the main 27 

contributions leading to the pioneering work of Milanković.  There are three Milankovitch 28 

orbital parameters: orbital eccentricity (main periodicities of ~100 and 400 kyr (1 kyr = one 29 

thousand years)), precession (quantified as the longitude of perihelion relative to the moving 30 

vernal equinox, main periodicities ~19 and 23 kyr) and obliquity of the ecliptic (main 31 

periodicity 41 kyr) (Berger 1978a).  Obliquity is strictly speaking a rotational, rather than an 32 
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orbital parameter; however, we refer to it here either as an orbital or Milankovitch parameter, 1 

for brevity.   2 

 3 

The pioneering work by Hays et al. (1976) demonstrated a strong correlation between these 4 

cycles and paleoclimatological records.  Since then, multiple analyses of paleoclimate records 5 

have been found to be consistent with Milankovitch forcing (e.g. Imbrie et al., 1992; Rial, 6 

1999; Lisiecki and Raymo, 2005).  Notably, the glacial-interglacial cycles of the Quaternary 7 

have been strongly linked to orbital forcing, particularly summertime insolation at high 8 

Northern latitudes (Milankovitch, 1941; Berger 1988; Berger and Loutre, 1994; Bradley, 2014 9 

and refs. therein). Predicting the Earth system response to orbital forcing (including glacier 10 

growth and melting) is not trivial, and there are challenges in determining which insolation 11 

quantity (i.e. integrated over what time and space scales) is responsible for paleoclimate 12 

change, e.g. peak summer insolation intensity, or overall summertime integrated insolation at 13 

Northern latitudes (Imbrie et al., 1993; Lisiecki et al., 2008; Huybers, 2006; Huybers and 14 

Denton, 2008; Bradley, 2014).  Moreover, some controversies related to the astronomical 15 

theory remain, notably the 100-kyr problem, or the so-called mid-Pleistocene transition.  This 16 

refers the fact that the geological record indicates that the last 1,000 kyr have been dominated 17 

by 100-kyr glacial-interglacial cycles, a gradual switch from the previously dominant 41-kyr 18 

periodicity.  This transition cannot be explained by orbital forcing alone, as there was actually 19 

a decrease in 100-kyr variance in this eccentricity band   (e.g. Imbrie et al., 1993; Loutre et 20 

al., 2004; Berger et al., 2005; Bradley 2014 and refs. therein).  Current consensus focuses on 21 

the explanation that the mid-Pleistocene transition is due to factors within the Earth system 22 

itself, rather than astronomical factors – e.g. internal climate system oscillations, nonlinear 23 

responses due to the continental ice sheet size, or CO2 degassing from the Southern Ocean  24 

(Bradley 2014, Sect. 6.3.3 and 6.3.4 and refs. therein)  Finally, alternative astronomical 25 

influences  on climate  have also been proposed, such as the influence of the orbital 26 

inclination cycle (Muller and McDonald, 1997). 27 

 28 

The Milankovitch cycles are due to complex gravitational interactions between the bodies of 29 

the solar system.  Astronomical solutions for the values of the Milankovitch orbital 30 

parameters have been derived by Berger (1978a) and Berger (1978b), referred to henceforth 31 

as Be78 (valid for 1,000 kyr before and after present), and Laskar et al. (2004), referred to 32 
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henceforth as La2004 (valid for 101,000 kyr before present to 21,000 kyr after present).  Here 1 

the present is defined as the start of Julian epoch 2000 (J2000), i.e. the Gregorian calendar 2 

date of January 1, 2000 at 12:00 UT (universal time, formerly known as Greenwich Mean 3 

Time)).  There are several other solutions as well, e.g. Berger and Loutre (1992) and Laskar et 4 

al. (2011).  These astronomical solutions are crucial for paleoclimate and climate science, as 5 

they enable the computation of insolation at any latitude and time period in the past or future 6 

within the years spanned by the solutions (Berger and Loutre, 1994, Berger et al. 2010, 7 

Laskar et al., 2004), and subsequently the use of this insolation in climate models as forcing 8 

(e.g. Berger et al., 1998).  Climate models are an important method for testing the response of 9 

the Earth system to Milankovitch forcing.      10 

 11 

While most Earth science students and professionals are well aware of Earth's orbital 12 

configuration and the basics of the Milankovitch cycles, the details of both and the way the 13 

Milankovitch orbital elements influence spatio-temporal patterns of insolation on various time 14 

and space scales remain elusive.  It is difficult to appreciate the pivotal importance of 15 

Kepler’s laws of planetary motion in controlling the effects of Milankovitch cycles on 16 

insolation patterns.   The three-dimensional nature of Earth's orbit, the vast range of space and 17 

time scales involved, and the geometric details are complex, and yet those same factors 18 

present themselves to computer modeling and 3D visualization.  Here, we present "Earth 19 

Orbit v2.1": an astronomically precise and accurate 3-D visualization and analysis model of 20 

Earth's orbit, Milankovitch cycles, and insolation.  The model is envisioned for both research 21 

and pedagogical applications and offers 3D visualizations of Earth’s orbital geometry, 22 

Milankovitch parameters and the ensuing insolation forcing.  It is developed in MATLAB® 23 

and has an intuitive, user-friendly graphical user interface (GUI) (Fig. 1).  Users are presented 24 

with a choice between the Be78 and La2004 astronomical solutions for eccentricity, obliquity 25 

and precession.  A “demo” mode is also available, which allows the three Milankovitch 26 

parameters to be varied independently of each other (and exaggerated over much larger ranges 27 

than the naturally occurring ones), so users can isolate the effects of each parameter on orbital 28 

geometry, the seasons, and insolation.  Users select a calendar date and the Earth is placed in 29 

its orbit using Kepler’s laws; the calendar can be started on either vernal equinox (March 20) 30 

or perihelion (Jan. 3).  A 3D orbital configuration visualization, as well as spatio-temporal 31 

surface and line plots of insolation and insolation anomalies (with respect to J2000) on 32 
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various scales are then produced.  Below, we first describe the model parameters and 1 

implementation.  We then detail the model user interface, provide instructions on its 2 

capabilities and use, and describe the output.  We then present successful model validation 3 

results, which are comparisons to existing independently derived insolation, solar declination 4 

and season length values.  Finally, we conclude with brief analysis of sources of uncertainty.  5 

Throughout, we provide examples of the pedagogical value of the model.   6 

 7 

Various insolation solutions and visualizations exist (Berger, 1978a; Rubincam, 1994 8 

(however, see response of Berger, 1996); Laskar et al., 2004; Archer, 2013; Huybers, 2006).  9 

Notably, the AnalySeries software (Paillard et al., 1996; Paillard, 2014) shares many of the 10 

functionalities presented here and offers many additional ones, such as paleoclimatic time-11 

series analysis and many more choices for insolation computation.  Importantly, the model 12 

presented here was developed independently from AnalySeries (or other similar efforts) and 13 

computes insolation from first principles of orbital mechanics (Kepler’s laws) and irradiance 14 

propagation, using exclusively its own internal geometry.  The only model inputs are the three 15 

Milankovitch orbital parameters, either real astronomical solutions (Be78 or La2004) or user-16 

entered demo values.  No insolation computation code from the above-cited existing solutions 17 

has been used, so comparison with these solutions constitutes independent model verification, 18 

referred to here as validation, because we consider the La2004 and Meeus (1998) solutions 19 

the geophysical truth (Sect. 5).  20 

 21 

The unique contribution of our model consists of the combination of the following features: a) 22 

central to the whole model is a user-controllable, 3D pan-tilt-zoom plot of the actual Earth 23 

orbit, b) an interactive user-friendly GUI that serves as a single-entry control panel for the 24 

entire model and makes it suitable for use by non-programmers and friendly to didactic 25 

applications, c) the Milankovitch cycles are incorporated explicitly and insolation is output 26 

according to real or user-selected demo orbital elements, which d) allows users to enter 27 

exaggerated orbital parameters independently of each other and isolate their effects on 28 

insolation, as well as view the orbit with exaggerated eccentricity e) the source code is 29 

published and advanced users can check its logic, as well as modify it and adapt it, and f) the 30 

software is platform-independent.     31 

 32 
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The issue of climate change has come to the forefront of Earth science and policy and it is 1 

arguably the most important global issue of immediate and long-term consequences (e.g. 2 

IPCC, 2013).  Earth's climate varies naturally over multiple time scales, from decadal to 3 

hundreds of millions of years (e.g. Kump et al., 2010).  It is thus crucial to understand natural 4 

climate forcings, their time scales, and the ensuing response of the Earth system.  In addition, 5 

detailed understanding of the Sun’s daily path in the sky and the patterns of insolation have 6 

become important to increasing numbers of students and professionals because of the rise in 7 

usage of solar power (thermal and photovoltaic).  We submit that the model presented here 8 

can enhance understanding of all of these important subject areas.  9 

 10 

2 Key Definitions, Model Parameters and Implementation 11 

The model input parameters, and their values and units, are summarized in Table 1. The 12 

following definitions, discussion and symbols are consistent with those of Berger et al. 13 

(2010).  The reader is referred to their Figure 1.  According to Kepler’s First Law of Planetary 14 

Motion, Earth’s orbit is an ellipse, and the Sun is in one of its foci (e.g. Meeus, 1998).  Orbital 15 

eccentricity, e (Table 1), is a measure of the deviation of Earth’s orbital ellipse from a circle 16 

and is defined as 22 /1 abe  ,where a is the semi-major axis (Table 1) and b is the semi-17 

minor axis of the orbital ellipse (e.g. Berger and Loutre, 1994).  The semi-major axis is about 18 

equal to 1 AU (Meeus, 1998; Standish et al., 1992) and determines the size of the orbital 19 

ellipse and thus the orbital period of Earth; it is considered a fixed constant in the model, as 20 

its variations are extremely small (Berger et al, 2010; Laskar et al, 2004, their Fig. 11).   21 

Various orbital period definitions are possible; here, the sidereal period is used as a model 22 

constant (Meeus, 1998). Thus, Kepler's Third Law of Planetary Motion is implicit in these 23 

two constant definitions and is not included explicitly elsewhere in model logic.  The 24 

obliquity of Earth, , is the angle between the direction of its axis of rotation and the normal 25 

to the orbital plane, or the ecliptic (Table 1).  Eccentricity and obliquity are two of the three 26 

Milankovitch orbital parameters. 27 

 28 

The third Milankovitch orbital parameter, precession, is the most challenging for instruction 29 

and visualization.  There are two separate kinds of precession that combine to create a 30 

climatic effect – precession of the equinoxes (also termed axial precession), and apsidal 31 
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precession, i.e. precession of the perihelion in the case of Earth’s orbit.  Axial precession 1 

refers to the wobbling of Earth’s axis of rotation that slowly changes its absolute orientation 2 

in space with respect to the distant stars.  The axis or rotation describes a cone (one in each 3 

hemisphere) in space with a periodicity of about 26,000 years (Berger and Loutre, 1994).  4 

This is the reason why the star  UMi (present-day Polaris, or the North Star), has not and 5 

will not always be aligned with the direction of the North Pole.  Also, due to axial precession, 6 

the point of vernal equinox in the sky moves with respect to the distant stars and occurs in 7 

successively earlier zodiacal constellations.  Axial precession is clockwise as viewed from 8 

above the North Pole, hence the North Celestial Pole describes a counter-clockwise motion as 9 

viewed by an observer looking in the direction of the North Ecliptic Pole.  Precession of the 10 

perihelion refers to the gradual rotation of the line joining aphelion and perihelion, with 11 

respect to the distant stars (or the reference equinox of a given epoch) (Berger, 1978a, Berger 12 

and Loutre, 1994). 13 

 14 

Axial precession and precession of the perihelion combine to modulate the relative position of 15 

the equinoxes and solstices (i.e. the seasons) with respect to perihelion, which is what is 16 

relevant for insolation and climate.  This climatically-relevant precession is implemented in 17 

the model and is quantified via the longitude of perihelion,~ , which is the angle between the 18 

directions of the moving fall equinox and perihelion at a given time, measured 19 

counterclockwise in the plane of the ecliptic (Berger et al., 2010).  Because both perihelion 20 

and equinox move, the longitude of perihelion will have a different (shorter) periodicity than 21 

one full cycle of axial wobbling alone (Berger and Loutre, 1994).  The direction of Earth’s 22 

radius-vector when Earth is at fall equinox (~Sept. 22) is referred to as the direction of fall 23 

equinox above.  This is the direction with respect to the distant stars where the Sun would be 24 

found on its annual motion on the ecliptic on March 20th – i.e. at vernal equinox.  In other 25 

words, that is the direction of the vernal point in the sky (Berger et al. 2010, their Fig. 1 & 26 

Appendix B), the origin of the right ascension coordinate.  This distinction between vernal 27 

equinox and the direction of the vernal point can cause confusion, especially since the exact 28 

definition of longitude of perihelion can vary (e.g. c.f. Berger et al., 1978a; Berger et al., 29 

1993; Berger and Loutre 1994; Joussaume and Braconnot, 2007; Berger et al., 2010) and the 30 

longitude of perihelion can also be confused with the longitude of perigee,  = ~  + 180o., 31 

which is the angle between the directions of vernal equinox and perihelion, measured 32 
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counterclockwise as viewed from the North Pole direction, in the plane of the orbit (Berger et 1 

al, 2010).  Here, we use the terminology and definitions of Berger et al. (2010).  2 

 3 

The magnitude of the climatic effect of precession is modulated by eccentricity.  In the 4 

extreme example, if eccentricity were exactly zero, the effects of precession would be null.  5 

Climatic precession, esin, is the parameter that quantifies precession and determines season 6 

lengths, the Earth-Sun distance at summer solstice (Berger and Loutre, 1994) and various 7 

important insolation quantities (Berger et al., 1993, their Table 1).   This interplay between 8 

eccentricity and precession presents an important way to introduce both concepts 9 

pedagogically and to test student comprehension. 10 

 11 

The solar “constant”, So, is defined here as the total solar irradiance (TSI) on a flat surface 12 

perpendicular to the solar rays at a reference distance of exactly 1 AU (Table 1).  As Berger et 13 

al. (2010) note, due to eccentricity changes, the mean distance from the Earth to the Sun over 14 

a year is not constant on geologic time scales.  It also matters how this mean distance is 15 

defined – e.g. over time (mean anomaly) vs. over angle (true anomaly). True and mean 16 

anomaly are defined below in Sect. 2.1 & 2.2, respectively.  If So is defined to be the 17 

irradiance from the Sun at the mean Earth-Sun distance, then it is indeed not a true constant.  18 

As used here, So is a true model constant as long as the luminosity of the Sun itself is assumed 19 

constant.  The default value is chosen to be 1,366 W m-2 (Fröhlich, 2013).  Recent evidence 20 

suggests that the appropriate value may actually be about 1,361 W m-2 (Kopp and Lean, 21 

2011).    Users can change the value of So independently of other model inputs in order to 22 

study the effects of changes in absolute solar luminosity – e.g. in order to simulate the Faint 23 

Young Sun (e.g. Kasting, 2010) or the sunspot cycle (e.g. Hansen, 2013).   24 

 25 

2.1 Model Coordinate System; Sun-Earth Geometry Parameterization; Solar 26 

Declination 27 

According to Kepler’s First Law of Planetary Motion, Earth orbits the Sun in an ellipse, and 28 

the Sun is in one of the ellipse’s foci.  The heliocentric equation of the orbital ellipse in polar 29 

form is given by (Meeus, 1998; his Eq. 30.3):  30 
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In the above, the Sun is at the origin of the coordinate system, a is the semi-major axis of the 2 

orbital ellipse, e is eccentricity,  is true anomaly, and r is Earth's instantaneous radius-vector, 3 

i.e. the vector originating at the Sun and ending at the instantaneous planetary position.  True 4 

anomaly, is the angle between the directions of perihelion and the radius-vector, subtended 5 

at the Sun and measured counter-clockwise in the plane of the orbit (e.g. Meeus (1998), his 6 

Ch. 30; Berger et al. (2010) their Fig. 1).  The true longitude of the Sun (or simply true 7 

longitude) is equal to Earth's true anomaly plus the longitude of perigee (Berger et al., 2010, 8 

their Eq. 6).  True longitude is the angle Earth has swept from its orbit, subtended at the Sun, 9 

since it was last at vernal equinox, and it is equivalent to the angle the Sun has travelled along 10 

the ecliptic in the same time.  Mean longitude is the longitude of the mean Sun, in an 11 

imaginary perfectly circular orbit of the same period, i.e. mean longitude is proportional to the 12 

passage of time, much like mean anomaly (See Sect. 2.2 below). 13 

 14 

In the Earth Orbit v2.1 model, given a user-selected calendar date, true anomaly, , is 15 

determined by solving the inverse Kepler equation (see Section 2.2 below).  The Earth’s 16 

radius vector is then solved for using Eq. 1 above.  Because the main model coordinate 17 

system is heliocentric Cartesian, the (r,) pair of polar coordinates is then transformed to 18 

Cartesian (x,y) for plotting.  The Earth is initially parameterized as a sphere  in its own 19 

geocentric Cartesian coordinate system in terms of its radius and geographic latitude and 20 

longitude (corresponding to the two angles of a spherical coordinate system).  The Earth’s 21 

coordinate system’s x and y axes are in the plane of the Equator (shown as a black dotted line, 22 

Fig. 2), and its z-axis is pointing towards the true North Pole and is coinciding with Earth’s 23 

axis of rotation; these axes are also plotted in black dotted lines, the z-axis is lengthened 24 

toward North so that it pierces Earth’s surface and is labeled, since this is critical in the 25 

definition and understanding of the seasons.  Earth is plotted as a transparent mesh so that 26 

important orbital elements can be seen through it at various zoom levels (Fig. 2).  The color 27 

scale of Earth’s mesh is just a function of latitude and no day and night sides are explicitly 28 

shown.  Earth’s radius is not to scale with the orbit itself or with the Sun’s radius.  Thus, the 29 

center of Earth has its true geometric orbital position (and is the tip of its instantaneous 30 

radius-vector); however the surface of the sphere in the model is arbitrary and must not be 31 
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interpreted as the true surface onto which insolation is computed, for example.  The insolation 1 

computations (Sect. 2.3) are geocentric.  The Sun is also plotted (not to scale) as a sphere 2 

centered at the origin of the main model coordinate system.  3 

 4 

The Earth is oriented properly in 3D with respect to the orbital ellipse by using a rotation 5 

matrix to rotate its coordinate system.  The 3D rotation matrix is computed using Rodrigues’ 6 

formula (Belongie, 2013) for 3D rotation about a given direction by a given angle.  The 7 

direction about which Earth is rotated is determined by a vector which is always in the orbital 8 

plane (k-component is zero), and the i and j components are determined by the longitude of 9 

perihelion.  The angle by which Earth is rotated is determined by obliquity.  Thus, the rotation 10 

matrix is a function of two of the three Milankovitch parameters and is a valuable and useful 11 

instructional tool/concept for lessons in geometry, mathematics, astronomy, physical 12 

geography, and climatology.  At this point the Earth is correctly oriented in 3D space with 13 

respect to its orbit and the distant stars.  Earth is then translated to its proper instantaneous 14 

position on its orbit by addition of its radius-vector to all relevant Earth-bound model 15 

elements (which are then plotted in the main heliocentric coordinate system).  16 

 17 

Declination is one of the two spherical coordinates of the equatorial astronomical coordinate 18 

system.  It is measured along a celestial meridian (hour circle) and is defined as the angle 19 

between the celestial Equator and the direction toward the celestial object (Meeus, 1998).  20 

Solar declination varies with the seasons, due to obliquity.  It is zero at the equinoxes, reaches 21 

a maximum of + at summer solstice and a minimum of – at winter solstice.  Solar 22 

declination determines the length of day and the daily path of the Sun in the sky at a given 23 

latitude, i.e. its altitude and azimuth above the horizon as a function of time.  Thus, solar 24 

declination determines instantaneous and time-integrated insolation.  In turn, solar declination 25 

and its evolution over the course of a year are a function of the orbital elements; thus it 26 

provides the mathematical and conceptual link between the Milankovitch orbital elements and 27 

insolation and climate.  Here, we compute instantaneous solar declination using the angle 28 

between the direction of the North Pole and Earth’s radius-vector, calculated using their dot 29 

product.  Thus, we explicitly compute solar declination from the geometry of the model and it 30 

is a model emergent property rather than prescribed a-priori; therefore, this also applies to 31 

insolation computations (Section 2.3 and Sect. 5). 32 
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 1 

2.2 Implementation of Kepler’s Second Law of Planetary Motion 2 

The heliocentric position of a planet in an elliptical orbit at a given instant of time is given in 3 

terms of its true anomaly,  – see Eq. 1 and Section 2.1 above. True anomaly can also be 4 

thought of as the angle (subtended at the Sun) which the planet has “swept” from its orbit 5 

since last perihelion passage.   Kepler’s Second Law of planetary motion states that the planet 6 

will “sweep” equal areas of its orbit in equal intervals of time and governs the value of true 7 

anomaly as a function of time (e.g. Meeus, 1998; Joussaume and Braconnot, 1997).  At non-8 

zero eccentricity,  is not simply proportional to time since last perihelion passage (time of 9 

flight) expressed as a fraction of the orbital period in angular units.  The latter quantity is 10 

called mean anomaly, M.  Kepler’s Second Law is used to relate M and , using an auxiliary 11 

quantity called eccentric anomaly, E. E and M are related by Kepler’s Equation (Meeus, 12 

1998):  13 

,sin EeME            (2) 14 

where e is orbital eccentricity.   When E is known,  can be solved for using (Meeus, 1998):    15 

2
tan

1

1

2
tan

E

e

e







          (3) 16 

The forward Kepler problem consists of solving for time of flight, M, given the planetary 17 

position, .  This is straightforward by first solving for E in Eq. 3 and using it to solve for M 18 

in Eq. 2.     19 

 20 

However, in the most intuitive case, which is implemented here, the user enters a desired date, 21 

and the position of the planet has to be determined from the date, i.e. time of flight/mean 22 

anomaly M is given, and true anomaly has to be determined.  This is referred to as the inverse 23 

Kepler problem and amounts to solving for E in Eq. 2 and then for  in Eq. 3.  Solving for E 24 

is not straightforward, as no analytical solution exists.  Numerous numerical methods exist for 25 

the solution of the inverse Kepler problem.  Here, the binary search algorithm of Sinnott et al. 26 

(1985) is used, as given in Meeus (1998).  It has the advantage of being computationally 27 

efficient, which becomes important when time series of insolation is the desired model output.  28 



 13

It also has the distinct advantages of being valid for any value of eccentricity and converging 1 

to the exact solution to within the user machine’s precision.   2 

 3 

2.3 Implementation of Insolation Computation 4 

Instantaneous insolation at the top of the atmosphere (TOA) can be computed as:  5 

,sin),(

2

hShS o
o 












r

r
r         (4) 6 

Where r is the length of the radius-vector of Earth expressed in AU, and h is the altitude of 7 

the Sun above the horizon (e.g. Berger et al., 2010).  Eq. 4 is an expression of the inverse 8 

square law and Lambert cosine law of irradiance.  The radius-vector length is computed in the 9 

model for the chosen date (and not for every instant) using Eq. 1.  So is the TSI at or  = 1 AU 10 

by definition (Sect. 2).  In this equation insolation, S, is defined as the total (spectrally 11 

integrated) solar radiant energy impinging at the TOA on a unit surface area parallel to the 12 

mathematical horizon at a given latitude at a given instant.  S carries the units of So, here W 13 

m-2.  S needs to be integrated over time and/or space in order to compute insolation quantities 14 

of interest.  Here, the main discrete time step over which S is computed and output is one 24-15 

hour period, i.e. daily insolation.   16 

 17 

Daily insolation is a function of latitude, date, and So.  The date is associated with a given true 18 

anomaly for a given calendar start date and orbital configuration (Joussaume and Braconnot, 19 

1997; Sect. 2.3.1).  This determines the current solar declination and the length of the radius-20 

vector of Earth, i.e. the Sun-Earth distance.  The user inputs the desired latitude, date and TSI, 21 

and the rest of the quantities are computed from the model geometry.  Solar declination and 22 

the latitude determine the daily evolution of solar altitude, h, as a function of time, as follows 23 

(e.g. Meeus 1998):     24 

th coscoscossinsinsin           (5) 25 

In the above equation  is solar declination,  is geographic latitude on Earth, and t is the hour 26 

angle of the Sun.   is assumed constant for the day of interest, and t is a measure of the 27 
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progress of time. Half the day length, ts, (i.e. the time between local solar noon and sunset), is 1 

determined by setting h = 0o in Eq. 5: 2 

)tantanacos( st                     (6) 3 

Eq. 5 is integrated over time from solar noon to sunset in order to compute the time-average 4 

of the sine of the solar altitude for the given date and latitude:    5 

dtt
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1

_                   (7) 6 

Eq. 7 is integrated numerically with a very small time step of about 10 s. Because the altitude 7 

of the Sun is symmetric about solar noon, it is sufficient to integrate only from solar noon to 8 

sunset time.  Daily insolation is then computed by using the time-averaged sinh_ave quantity 9 

in Eq. 4.  The results are scaled by multiplying by the actual day length and dividing by 24 10 

hours.  The resulting quantity represents the mean daily insolation over a full day, which is 11 

the standard value used in astronomical, climate and paleoclimate science (e.g. Laskar 2014).  12 

If this daily insolation is multiplied by 24 h (in seconds), total energy receipt for that day (in J 13 

m-2) can be calculated.  14 

 15 

At high latitudes, there are periods of the year with no sunset or no sunrise.  These cases 16 

depend on the relationship of latitude and solar declination (e.g. Berger et al., 2010). They are 17 

handled separately by either integrating Eq. 7 over 24 hrs, or, in the case of no sunrise (polar 18 

night), assigning a value of exactly 0 W m-2 to daily insolation. 19 

 20 

2.3.1 Integrating Insolation over Longer Time Periods - Caveats 21 

Because of the varying eccentricity and longitude of perihelion, there is no fixed 22 

correspondence between true anomaly and any one single calendar date, even if one were to 23 

define a fixed calendar start date.  True anomaly and longitude are the astronomically rigorous 24 

ways to define a certain moment in Earth's year and seasons (e.g. Berger et al., 2010).  If one 25 

wishes to make insolation comparisons between different orbital configurations, one must 26 

define strictly a calendar start date, and even then insolation will be in phase for different 27 

geological periods only for that date (Joussaume and Braconnot, 1997).  Thus, the question 28 

"What is insolation on June 20?" is ill posed, unless one defines strictly what is meant by the 29 
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date of June 20.  The problem persists if one wishes to compare insolation integrated over 1 

periods of time longer than a day, because over geologic time scales, absolute values and the 2 

interval of time true anomalies "swept" between two classical calendar dates are not constant.  3 

Thus, there are two ways to define a calendar – the classical or fixed-day calendar, in which 4 

month lengths follow the present-day configuration and the date of vernal equinox is fixed, or 5 

a fixed-angular calendar, which defines months beginning at certain true longitudes (function 6 

of true anomaly and the precession phase, see also Sect 4.2. below) and they can therefore 7 

have different number of days depending on the orbital configuration (Joussaume and 8 

Braconnot, 1997; Chen et al. 2010).  The time intervals between solstices and equinoxes also 9 

varies, because of varying eccentricity and because these intervals happen in different places 10 

in the orbit with respect to perihelion. Thus season lengths vary over geologic time.  Earth 11 

orbit v2.1 outputs season length in the main GUI to emphasize this important fact.  Earth 12 

Orbit v2.1 uses the classical calendar dates (24 hr periods) as the user time input, rather than 13 

true anomaly or true longitude.  This choice is much more intuitive to non-experts, and serves 14 

the educational purposes of the model best.  The user has as a choice of calendar start date 15 

(Sect. 3) and true solar longitude is output (Sect. 4.2) to remind users of the above 16 

considerations.  The effect of calendar choice on insolation phases and comparisons and on 17 

climate models is discussed at length by Joussaume and Braconnot (1997), Timm et al. (2008) 18 

and Chen et al. (2010).  19 

 20 

The time step of integration can also influence the results of insolation computations, e.g. if 21 

annual insolation is averaged with a 5-day step, results are substantially different from the 22 

case when a 1-day step is used (not shown).  For this reason, the model computes annually 23 

averaged insolation at a given latitude by using 1-day steps of integration.  Finally, we note 24 

that the daily insolation computations of the model are robust and validated (Sect. 5.1); 25 

however, the model currently has limited functionality for making comparisons of insolation 26 

integrated over longer time periods over different geologic scales.  In order to make such 27 

comparisons, the use of the elliptical integrals method of Berger et al. (2010) is 28 

recommended, as well as the Laskar et al. (2004) methods, both of which come with 29 

accompanying software (Laskar(2014) and Berger (2014), respectively).  In addition, users 30 

are referred to the latest version of the AnalySeries software package (Paillard et al., 1996; 31 
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Paillard, 2014) for additional insolation and time series options. All of the above can also be 1 

used for verification of the output of the model presented here.   2 

 3 

3 Model User Interface 4 

The Earth orbit model is provided as supplementary material (Appendix A).  The model is 5 

developed and runs in MATLAB®.  All model control is realized via a single, user-friendly 6 

GUI panel (Fig. 1).  Users are presented with a choice between the Be78 and the La2004 7 

astronomical solutions for eccentricity, obliquity and precession. A “demo” mode is also 8 

available.  If a real astronomical solution is chosen, users are asked to input a year before or 9 

after present (defined as J2000, i.e. January 1, 2000 at 12 noon UT, see Introduction) for 10 

which they wish to run the model.  The GUI only allows users to choose years within the 11 

respective solution’s validity: the Be78 solution is available for 1,000 kyr before and after 12 

present (J2000), whereas the La2004 solution is available for 101,000 kyr in the past and 13 

21,000 kyr in the future.  The La2004 solutions are provided by Laskar (2014) (specifically at 14 

http://www.imcce.fr/Equipes/ASD/insola/earth/La2004/index.html) in tabulated form in 1 kyr 15 

intervals.  The Be78 solutions are obtained by transcribing code from NASA GISS (see 16 

Acknowledgements).  The model looks up the values of eccentricity, obliquity and precession 17 

for the chosen year and solution (using linear interpolation between tabulated years if 18 

necessary), and these values are used in subsequent visualizations and analyses.  If the user 19 

chooses the “demo” mode, they select, independently of each other, the values of the 20 

Milankovitch parameters, which can be greatly exaggerated. In this way users can isolate the 21 

effects of each parameter on orbital geometry, the seasons, and insolation.  The “demo” mode 22 

is central to the pedagogical value and applications of the model because it allows users to 23 

build and visualize an imaginary orbit of, for example, very high eccentricity while keeping 24 

obliquity fixed.  Moreover, it will output all subsequent parameters, such as solar declination, 25 

day length, radius-vector length, based on this exaggerated imaginary orbit.   26 

 27 

Users input the desired calendar date, geographic latitude on Earth (positive degrees in the 28 

Northern Hemisphere and negative degrees in the Southern Hemisphere), and desired value of 29 

TSI.  The calendar date defaults to the current date, latitude defaults to 43o N, and TSI 30 

defaults to 1,366 W m-2 (Sect. 2).  Two choices of calendar start date are available: either fix 31 

vernal equinox to be at the beginning of March 20th (default), or fix perihelion to be at the 32 
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beginning of Jan. 3rd.  The availability of this choice complicates interpretation of model 1 

output; however it has high instructional value.  It illustrates that the choice of calendar start 2 

date and a calendar system is a human construct, accepted by convention; it is based on the 3 

actual year and day length but is relative.  This can also help test knowledge of the concepts 4 

explained in Sect. 2.3.1.  The effect of the different choice of calendar start date is most 5 

apparent at exaggerated eccentricities and/or at longitudes of perihelion that are very different 6 

from the contemporary value.  Insolation time series output (Sect. 4) is only computed for the 7 

calendar being fixed to vernal equinox on March 20th.   8 

 9 

4 Model Output 10 

4.1 Graphical Output  11 

The main output of the model is a 3D plot of Earth's orbital configuration.  Fig. 2A illustrates 12 

the orbital configuration using the contemporary values of the Milankovitch parameters (the 13 

La2004 solution for J2000 is shown), for September 16.  The current phase of the precession 14 

cycle is such that Northern Hemisphere winter solstice occurs shortly before perihelion 15 

(longitude of perihelion is ~102.9o).  This results in Northern hemisphere spring and summer 16 

being longer than the respective fall and winter (as shown in the GUI, Fig. 1).  Fig 2B 17 

illustrates the orbital configuration also on Sept. 16 and using the La2004 solution, but for 10 18 

kyr in the future.  Since this represents about a half of a precession cycle, the timing of the 19 

seasons is approximately 180o out of phase with respect to the contemporary configuration 20 

(the longitude of perihelion is ~279.2o, and Northern hemisphere summer occurs near 21 

perihelion and is the shortest season).  Because we chose to fix the calendar start date such 22 

that vernal equinox is always on March 20, and the eccentricity is fairly low, the date Sept. 16 23 

still occurs near the fall equinox, like in the contemporary example.  However, because the 24 

length of time passing between vernal equinox and fall equinox is now shorter, Sept 16 almost 25 

coincides with fall equinox, unlike the contemporary case.  Of course obliquity and 26 

eccentricity have also changed 10 kyr in the future, but unlike the longitude of perihelion, 27 

their changes are small in absolute terms, and thus this cannot be readily visualized by 28 

comparing Figs. 2A and 2B.  This is one reason why it is very useful to have the ability to 29 

choose arbitrary independent value of the Milankovitch parameters in the demo mode, 30 

constructing an imaginary orbit. Fig. 2C illustrates one example of such an imaginary orbit 31 
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with greatly exaggerated eccentricity (0.6) and obliquity (45o) and longitude of perihelion of 1 

225o, i.e. very different from the J2000 values.  This imaginary orbit illustrates that the date 2 

July 1 can occur in the Fall, due to the large eccentricity and the specific phase of precession 3 

chosen.  Spring lasts only ~20 days in this configuration because it occurs during perihelion 4 

passage, where the planet is much faster according to Kepler’s Second Law, as compared to 5 

aphelion passage (Fall lasts ~229 days in this configuration). Summer lasts about 58 days.  6 

Thus, July 1 occurs during the Fall season, counterintuitively.  Importantly, such an 7 

exaggerated eccentricity means that the planet is very close to the Sun during perihelion, and 8 

some really high insolation values can occur even at modest solar declinations (e.g. for March 9 

29, at 43oN, solar declination is ~27o, daylength is ~16 hours,  and daily insolation is 3,307 W 10 

m-2, far exceeding any contemporary value anywhere on Earth). The reason is that the Sun-11 

Earth distance then is only 0.4 AU, and the distance factor becomes a first-order effect on 12 

insolation, whereas it is a second-order factor in the real Earth orbit configuration (angle 13 

being the first-order factor, see Eq. 4).  14 

 15 

The plots of Fig. 2 have pan-tilt-zoom capability, so users can view the orbital configuration 16 

from many perspectives; this is at the core of the pedagogical value of the model.  The plot is 17 

updated with the current parameter selections by pressing the "Plot/Update Orbit" button.  18 

Finally, note that the orbits of Fig. 2 can be viewed from any angle and the apparent 19 

eccentricity of the orbits also changes with the view angle and the projection onto a 2D 20 

screen.  This should not be confused with the intrinsic orbital eccentricity, which can be also 21 

judged by the relative distance of the orbital foci (marked with an 'x') from the ellipse's center 22 

(the intersection of the semi-major and semi-minor axes, red lines in Fig. 2) 23 

 24 

Users are presented with several options of plotting insolation as function of time and latitude.  25 

First, insolation can be plotted for a single year (using the currently selected Milankovitch 26 

parameters) as a function of day of year and latitude (Fig. 3A, upper panel).  Insolation 27 

anomalies with respect to the J2000 La2004 orbital configuration are also plotted, using So = 28 

1,366 W m-2 (Fig. 3A, lower panel).  Anomalies are especially useful when analyzing the 29 

effect of changes in insolation on the glacial-interglacial cycles.  For example, the anomalies 30 

at 65oN during summer months 115 kyr before present (Fig. 3A, lower panel) suggest the 31 

inception of glaciation (e.g. Joussaume and Braconnot, 1997), as these areas were receiving 32 
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about 35-40 W m-2 less insolation than they are receiving now.  The data in these plots is 1 

computed with a step of 5 days and 5 degrees of latitude.  Multi-millennial insolation time 2 

series can also be plotted in a 3D surface plot as a function of year since J2000 and day of 3 

year, at the selected latitude.  Users select the start and end years for the time series. The data 4 

for these plots are computed for steps of 1 kyr and one day (for day of year).  An example of 5 

the output is provided in Fig. 3B. 6 

 7 

Several time series line plots are also produced.  Insolation time series are plotted for the 8 

currently selected latitude; both the currently selected date and the annual average are shown 9 

(Fig. 4A).  A multi-panel plot (Fig. 4B) allows the comparison of the three Milankovitch 10 

parameters.  Precession is visualized as the longitude of perihelion, as well as the climatic 11 

precession parameter, esin (Berger and Loutre, 1994).  A separate GUI button allows users 12 

to optionally produce time series plots of several paleoclimatic data sets (Fig. 4C).  The top 13 

panel shows the EPICA CO2 (Lüthi et al., 2008a; Lüthi et al, 2008b) and deuterium 14 

temperature (Jouzel et al., 2007a; Jouzel et al., 2007b) time series which go back to ~800 kyr 15 

before present.  The bottom panel of Fig. 4C shows two benthic oxygen isotope (18O) data 16 

set compilations – the Lisiecki and Raymo (2005) benthic stack (Lisiecki, 2014) and the 17 

Zachos et al. (2001) data (Zachos et al., 2008).  These data sets go back to 5,320 kyr and 18 

67,000 kyr before present, respectively.  To first order, higher 18O values are associated with 19 

higher continental ice sheet volumes and lower benthic ocean water temperatures (Zachos et 20 

al., 2001).  For this reason, the y-axis of the lower panel of Fig. 4C is inverted, so that higher 21 

values of EPICA CO2 and temperature (generally warmer climates) from the upper panel of 22 

Fig. 4C can be easily associated with lower 18O values (also generally warmer climates).  23 

These paleoclimatic data are included for convenience of the user and no further interpretation 24 

or analyses are provided.  Users are cautioned that the interpretation of these paleoclimatic 25 

signals and their uncertainties, time-resolution and chronology (age models) is fairly complex 26 

(e.g. Bradley, 2014 and data source references) and beyond the scope of this work.  They are 27 

provided here for illustrative purposes only, e.g. it enables users to easily visualize the last 28 

few glacial-interglacial cycles (and the mid-Pleistocene transition to 100-kyr cyclicity, see 29 

Introduction), or to visually correlate these paleoclimatic time series with the corresponding 30 

Milankovitch parameter and insolation curves.  31 
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4.2 Numerical/Ancillary Output 1 

Ancillary data (and their units) are output in the main GUI window (Fig. 1) and are updated 2 

every time the Earth orbit plot (Figs. 2) is re-drawn (Sect. 4.1), i.e. every time the 3 

"Plot/Update Orbit" button is pressed.  Variables that are output in the main GUI are as 4 

follows: solar declination, insolation at the TOA for the chosen date and latitude, day length, 5 

Sun-Earth distance, length of the seasons (as defined in the North hemisphere (NH)), the 6 

longitude of perigee, and true and mean longitude of the Sun. As a reminder, the longitude of 7 

perigee is the angle between the directions of vernal equinox and perihelion and true 8 

longitude is the angle Earth has swept from its orbit, subtended at the Sun, since it was last at 9 

vernal equinox; mean longitude is proportional to time instead (for detailed definitions, see 10 

Sect 2 and 2,1 above).  Users also are given the option of saving the data used to make the 11 

insolation plots in Fig. 3 in ASCII format.  The first row and column of these files list the 12 

abscissa and ordinate values of the data, respectively. 13 

 14 

5 Model Validation 15 

5.1 Insolation Validation 16 

Daily insolation is the most important model output from climate science perspective and is 17 

the fundamental discrete time unit at which the model calculates energy receipt at the TOA.  18 

Daily insolation was validated against the results of Laskar et al. (2004), as provided in 19 

Laskar (2014) (specifically, the pre-compiled Windows package at 20 

http://www.imcce.fr/Equipes/ASD/insola/earth/binaries/index.html).  In both the Earth Orbit 21 

model and the Laskar software, the La2004 solution for the orbital parameters was used, and 22 

the default model solar constant (Table 1) was used.  Laskar (2014) defines March 21 as 23 

vernal equinox, whereas Earth Orbit v2.1 fixes vernal equinox on March 20 for insolation 24 

time series. This was taken into account in this validation.  Two dates were tested – March 21 25 

and  June 20 (according to the Earth Orbit v2.1 calendar; this corresponds to 1o and 90o mean 26 

longitude for the Laskar (2014) software), at three latitudes – 20 S, 45 N and 65 N.  The entire 27 

time series from 200 kyr in the past to 200 kyr in the future (present = J2000) were tested with 28 

a time step of 1 kyr.  Validation is excellent; virtually all test cases result in differences in 29 

insolation of less than 1 W m-2 for March 21 and less than 2 W m-2 for June 20, respectively 30 

(Fig. 5A and 5B, solid lines with dots), which corresponds to less than 0.5% of the absolute 31 
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values (Fig. 5C and 5D, solid lines with dots).  Importantly, these differences are generally 1 

much smaller or of the same order of magnitude as the corresponding differences between the 2 

Be78 and La2004 astronomical solutions as computed by Earth Orbit v2.1 (Fig. 5, dashed 3 

lines).  Furthermore, these differences are generally smaller than the uncertainty resulting 4 

from varying estimates of the TSI (e.g. Fröhlich 2013 vs. Kopp and Lean, 2011, see Sect. 2); 5 

also, these differences are smaller than the total contemporary anthropogenic radiative forcing 6 

on climate due to fossil fuel emissions (IPCC, 2013; their Fig. SPM. 5).  7 

 8 

The Earth Orbit v2.1 model uses its own internally constructed orbital geometry and first 9 

principles equations to compute insolation.  There is no additional a-priori prescribed 10 

constraint to the model other than the orbital elements astronomical solution and the semi-11 

major axis and orbital period (Sects. 2, 2.3; Table 1).  Therefore the validation presented here 12 

is an independent verification of the model’s geometry and computations, taking the Laskar 13 

(2014) values as truth.  Sect. 6 discusses sources of model uncertainty which can explain 14 

some of the small differences observed.   15 

5.2 Solar Declination Validation and Season Length Validation 16 

Solar declination was validated against the algorithms of Meeus (1998).  The model year is 17 

neither leap, nor common (Table 1) and is thus not equivalent to any single Gregorian 18 

calendar year. In order to validate declination at all dates, the Meeus (1998) algorithm was 19 

used to compute solar declinations for 12 UT on each date of four years (2009-2012, 2012 20 

being leap) and average the declinations for each date (not day of year, Fig. 6).  These 21 

averages were then compared to the solar declination output by the model for that date.  22 

Results indicate differences are always less than ~0.2o (Fig. 6, black line).  By construction, 23 

model solar declination on March 20th will always be exactly zero degrees.  In reality, the 24 

exact instance of vernal equinox varies year to year, so these validation differences are 25 

expected.  Importantly, the differences between the model and the 4-yr averaged Meeus 26 

(1998) declinations are consistently smaller than the daily rate of change of declination (Fig. 27 

6, green curve), as computed from the Meeus (1998) data.  Additionally, these differences are 28 

of a similar magnitude to the standard deviation of declination between these four years for 29 

each date (Fig. 6, red curve).  Thus the solar declination validation is excellent and model 30 

configuration for each date is representative of a typical generic Gregorian calendar date.  The 31 
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discontinuities in the Meeus (1998)–derived curves in Fig 6 (red and green) are due to 1 

omitting Feb 29, 2012 when averaging declination values for each date.  The discontinuities 2 

in the Earth Orbit v2.1 to Meeus (1998) comparison curve (Fig. 6, black curve) are due to the 3 

above, plus the fact that the length of the model year is equal to the sidereal orbital period and 4 

thus March 19 is a longer "day" in the model year, since calendar start is fixed as vernal 5 

equinox on March 20 (also see Sect. 6 below). Finally, season lengths are an excellent method 6 

to validate the geometry of the model, because they test that the model is correctly computing 7 

a given time of flight on the orbit for a section of the orbit that corresponds to a given season, 8 

and generally not coinciding with special points such as perihelion.  Season lengths agree to 9 

within 0.01 days with the tabulated values of Meeus (1998) (his Table 27F).   10 

 11 

6 Sources of Uncertainties 12 

Assumptions and approximations in the model and the underlying astronomical solutions 13 

propagate to uncertainties in the model outputs, such as declination and insolation.  Some of 14 

these assumptions were already discussed, such as calculating insolation for a given calendar 15 

date vs. true anomaly interval (fixed-date vs fixed-angle calendars), and choosing integration 16 

steps for insolation time series (Sect. 2.3.1).  The calendar bias discussed in detail in Sect. 17 

2.3.1 means that if one compares insolation over geologic time on a given classical calendar 18 

date, e.g. Sept. 16, which occurs a given number of 24-h periods after the fixed vernal 19 

equinox, one is not necessarily comparing insolation at the same true longitude.  The same 20 

argument is valid for an arbitrary interval of time longer than a day and shorter than a full 21 

orbital cycle.  This calendar bias creates the artificial North-South tilt observed in insolation 22 

anomalies (Chen et al., 2010), which is also exhibited by the Earth Orbit v2.1 model output 23 

(Fig. 3A, second panel).  This is expected because Earth Orbit v2.1 uses the classical calendar 24 

dates, which are more user-friendly.   25 

 26 

Next, we draw the users' attention to a few additional sources of uncertainty.  Determination 27 

of some of these uncertainties is outside the scope of this work; however, users can run 28 

sensitivity analyses using the model in order to quantify them.  Importantly, uncertainties in 29 

the astronomical solutions that are used as input to the model will propagate to insolation 30 

computations.  There are differences between the different astronomical solutions (e.g. Fig. 31 

5). Accuracy is highest near the present time and degrades further into the past or future 32 
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(Laskar, 1999; Laskar et al, 2004).  Chaotic components of planetary orbital motions 1 

introduce an uncertainty that increases by an order of magnitude every ten million years, 2 

making it impossible to obtain astronomical solutions for the Milankovitch parameters over 3 

period longer than a few tens of millions of years (Laskar et al., 2004).  As a reminder, the 4 

Be78 solution is valid for one million years in the past or future, whereas the La2004 solution 5 

is valid from 101 million years before present to 21 million years in the future; however, 6 

solutions for times further back in time than 50 million years before present should be treated 7 

with caution (Laskar et al., 2004).. 8 

 9 

Due to the gravitational interaction of Earth and other solar system bodies, in particular 10 

Jupiter, Venus and the Moon, high frequency variability (time scales of years to centuries) of 11 

the Milankovitch parameters is superimposed on the long-term low-frequency Milankovitch 12 

cycles. An example of such variability is the nutation in obliquity with a period of ~18 yr.   13 

These high frequency fluctuations also lead to insolation changes.  Bertrand et al. (2002) used 14 

results from the VSOP82 planetary position solution (Bretagnon, 1982) and a simple climate 15 

model to demonstrate that the amplitudes of these high-frequency variations and the effect on 16 

insolation and surface temperature is negligible (equivalent to model noise) as compared to 17 

the 11-yr Sun cycle or the low-frequency trends.  18 

 19 

The model is prescribed the sidereal year as the orbital period (Table 1), which is slightly 20 

longer than the tropical year (Meeus, 1998). The difference is of the order of 0.01 days.  The 21 

use of these two different period definitions leads to negligible differences in solar declination 22 

on a given date (not shown), much smaller than the validation differences of Fig. 6.  We 23 

conclude that the choice of orbital period does not influence the insolation computations 24 

significantly. 25 

 26 

A single value for solar declination and the radius-vector length is used in the computation of 27 

daily insolation (Sect. 2.3).  In reality, these quantities change continuously, instead of having 28 

discrete values.  This is likely to introduce small errors in insolation that will be smaller in 29 

magnitude than the difference in daily insolation between successive days.  Sunrise and sunset 30 

times used in the insolation computation are referred to the center of the disk of the Sun and 31 
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the mathematical horizon at the given latitude at the surface of Earth.  Note also that 1 

irradiance is given at the top of the atmosphere (TOA), but all computations are geocentric, 2 

rather than topocentric, which should lead to negligible insolation differences.  3 

 4 

Since the model year is not an integral number of days, if total annual insolation is computed 5 

by summing daily insolation values, the March 19 insolation needs to be scaled by 1.256363 6 

to reflect the fact that this day is 24 x 1.256363 hrs long in the model (Berger et al. 2010).  7 

Here, we average daily insolation to output average annual insolation, so this correction is not 8 

applied.     9 

 10 

7 Concluding Remarks 11 

We presented Earth Orbit v2.1, an interactive 3D analysis and visualization model of the 12 

Earth orbit, Milankovitch cycles, and insolation.  The model is written and runs in 13 

MATLAB® and is controlled from a single integrated user-friendly GUI.  Users choose a real 14 

astronomical solution for the Milankovitch parameters or user-selected demo values.  The 15 

model outputs a 3D plot of Earth's orbital configuration (with pan-tilt-zoom capability), 16 

selected insolation time series, and numerical ancillary data.  The model is intended for both 17 

research and educational use.  We emphasize the pedagogical value of the model and envision 18 

some of its primary uses will be in the classroom.  The user-friendly GUI makes the model 19 

very accessible to non-programmers.  It is also accessible to non-experts and the primary and 20 

secondary education classroom, as minimal scientific background is required to use the model 21 

in an instructional setting.  Disciplines for which the model can be used span mathematics 22 

(e.g. spherical geometry, linear algebra, curve and surface parameterizations), astronomy, 23 

computer science, geology, Earth system science, climatology and paleoclimatology, physical 24 

geography and related fields.   25 

 26 

The authors encourage feedback and request that comments, suggestions, and reports of 27 

errors/omissions be directed to tkostadi@richmond.edu 28 

 29 

Appendix A: Code Availability & License 30 
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The files necessary to run the model "Earth Orbit v2.1" in MATLAB® are provided here as 1 

Supplement. In addition, model files are expected to be available on the website of the 2 

University of Richmond Department of Geography and the Environment 3 

(http://geography.richmond.edu), under the Resources category; documented updates may be 4 

posted there. Sources of external data files are properly acknowledged in the file header 5 

and/or the ReadMe.txt file, as well as in this manuscript.  The GUI is raised by typing the 6 

name of the associated script (‘Earth_orbit_v2_1.m’) on the MATLAB® command line.  The 7 

model has been tested in MATLAB® release R2013b on 64-bit Windows 7 Enterprise SP1 8 

and Linux Ubuntu 12.04 LTS, but should run correctly in earlier versions of MATLAB® and 9 

on different platforms.  The model is distributed under the Creative Commons BY-NC-SA 3.0 10 

license.  It is free for use, distribution and modification for non-commercial purposes.  Details 11 

are provided in the ReadMe.txt file. 12 

 13 
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Tables 1 

Table 1. Summary of constant and variable model input parameters. 2 

Symbol Constant/Variable Value Units Reference Notes 

AU Astronomical unit 149.597870700 106 km USNO (2013) constant 
a  Semi-major axis 149.598261150 106 km Standish et al. 

(1992)
1.00000261 AU 

(constant) 
T Sidereal orbital 

period 
365.256363 Days Meeus (1998) constant 

So TSI at 1 AU  1,366* W m-2 Fröhlich (2013) Also see Kopp 
and Lean (2011) 

e Eccentricity 0.01670236** -- La2004*** -- 
 Obliquity 23.4393** degrees La2004 -- 

~  Longitude of 
perihelion 

102.9179** degrees La2004 -- 

*Users can change this default value.  3 

**Default J2000 values.  Users can change these variables independently of each other or 4 

choose real astronomical solutions depending on the mode selected.  5 

***La2004 refers to Laskar et al. (2004) 6 

7 
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Figures 1 

 2 

Figure 1.  Main MATLAB® GUI window of Earth Orbit v2.1.  Input and output displayed 3 

corresponds to the graphical output of Fig. 2A, i.e. contemporary (J2000) La2004 4 

configuration for September 16, at 43o N latitude.  5 

 6 

 7 

 8 

 9 

 10 
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 1 

Figure 2. A) Present (J2000) orbital configuration for September 16, using the La2004 2 

solution and the calendar start date fixed at vernal equinox on March 20.  The orbital ellipse is 3 

shown in blue, the semi-major and semi-minor axes (perpendicular to each other) are in red 4 

and the lines connecting the solstices and equinoxes (also perpendicular to each other) are 5 

shown in black.  The perihelion point, as well as the equinoxes and solstices are labeled.  The 6 

Sun is shown as a semi-transparent yellowish sphere centered at one of the orbital ellipse's 7 

foci, both of which are marked with an 'x' along the semi-major axis.  The Earth is plotted 8 

with its center on the corresponding place along the orbit, and the angle it has swept since last 9 

perihelion passage (the true anomaly angle) is filled in semi-transparent light green. Earth's 10 
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Equator is plotted as a solid black line, as is its axis of rotation, with the North Pole marked.  1 

The spheres of the Earth and the Sun are not to scale, the rest of the figure is 2 

geometrically/astronomically accurate and to scale.  This plot is in 3D and has pan-tilt-zoom 3 

capability in the Earth Orbit v2.1 model.  The corresponding GUI with numerical ancillary 4 

output is shown in Fig. 1 (for latitude 43o N and So = 1,366 W m-2). B) Real orbital 5 

configuration for September 16, 10 kyr in the future, using the La2004 solution and a March 6 

20 equinox as calendar start date; and C) demo (imaginary) orbital configuration for July 1 7 

(Vernal equinox fixed at March 20), Eccentricity = 0.6, Obliquity = 45o, Longitude of 8 

perihelion= 225o.  The geometry is consistent with Berger et al. (2010), their Fig. 1, although 9 

it is being viewed in A) from the direction of fall equinox, as opposed to from the direction of 10 

spring equinox in their figure.  The apparent eccentricity of the three orbits in Fig. 2 is also 11 

due to the view angle of the 3D plot and the respective projection onto a 2D monitor/paper; 12 

the intrinsic eccentricity can be judged by tilting the plot or observing the relative distance 13 

from the two foci (the Sun being at one of them) to the center of the ellipse, the intersection of 14 

the semi-major and semi-minor axes (red lines).     15 
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 1 

Figure 3.  A) A day of year-latitude insolation plot for 115 kyr before present (J2000) (upper 2 

panel) and the corresponding anomaly from J2000 (lower panel), using So = 1,366 W m-2. B) 3 

Insolation time series at 65oN as a function of day of year, spanning 200 kyr before and after 4 

present (J2000). Negative years are in the past.  5 
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 8 
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Figure 4. A) Insolation time series plot spanning 200 kyr before and after present (J2000) at 1 

65o N on June 20th (blue) and annual average (red); B) Time series plots of Milankovitch 2 

orbital parameters spanning 500 kyr before and after present. Panels from top to bottom 3 

display eccentricity, obliquity, and longitude of perihelion and climatic precession; C) Time 4 

series plots of paleoclimatic data spanning one million years before and after present:  EPICA 5 

ice core CO2 and deuterium temperature (upper panel) and the Lisiecki and Raymo (2005) 6 

and Zachos et al (2001) compilations of benthic oxygen isotope (18O) data (lower panel). 7 

Note the y-axis of the 18O plot is inverted. Negative years for all Fig. 4 panels are in the past. 8 
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 1 

Figure 5. Absolute differences (W m-2, solid lines with dots) between our insolation solution 2 

(using the La2004 astronomical parameters) and the Laskar (2014) insolation solution (also 3 

using the La2004 astronomical solutions; insolation provided by his Windows pre-compiled 4 

package at http://www.imcce.fr/Equipes/ASD/insola/earth/binaries/index.html) for March 21 5 

(A) and June 20 (B).  Differences between the Be78 and La2004 astronomical solutions 6 

(insolation for both computed by our model) are shown for comparison with dotted lines. 7 

Data are shown for three different latitudes – 20 oS (red), 45 oN (green), and 65 oN (blue). C) 8 

same as in A) but displaying percent insolation difference, D) same as in B) but displaying 9 

percent insolation difference.  Earth Orbit v2.1 insolation computations use the model’s own 10 

orbital geometry with no additional a-priori input other than the Milankovitch parameter 11 

solutions of La2004. Negative years are in the past. See Section 5.1 for details.  12 
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Figure 6. Solar declination validation: difference between solar declination as computed by 2 

the internal geometry of the Earth orbit model and mean actual declination from the years 3 

2009, 2010, 2011 and 2012 as computed for 12:00:00 UT for every day with the algorithms in 4 

Meeus (1998) (black solid line).  The rate of change of declination (green solid line) and the 5 

standard deviation of declination for each date for the four years (red solid line, N = 4 for 6 

each data point) are also shown for reference.  The model computations were performed with 7 

the calendar start date fixed at vernal equinox of March 20.  Feb. 29, 2012 was removed from 8 

the analysis, so the abscissa corresponds to a given date, i.e. dates, not days of year were 9 

averaged for a given mean solar declination across the four years.  Abscissa ticks represent 10 

the 15th of each month.  If 0 UT is used for the Meeus computations instead, differences 11 

(black curve) have a different pattern and are larger, but never exceed ~0.4 degrees (not 12 

shown). See Sect. 5.2 for details 13 


