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Abstract

A hydrostatic atmospheric dynamical core is developed for the purpose of global cli-
mate modelling. The model applies finite-difference methods to discretize the primitive
equations on spherical icosahedral grids, using C-type staggering with triangles as
control volumes for mass. This paper documents the numerical methods employed5

in the baseline version of the model, discusses their properties, and presents results
from various idealized test cases. The evaluation shows that the new dynamical core
is able to correctly represent the evolution of baroclinic eddies in the atmosphere as
well as their role in heat and momentum transport. The simulations compare well with
the reference solutions, and show a clear trend of convergence as the horizontal res-10

olution increases. First results from two aqua-planet simulations are also presented,
in which the equatorial wave spectra derived from tropical precipitation agree well with
those simulated by a spectral transform model. The new dynamical core thus provides
a good basis for further model development. Certain aspects of the model formulation
that need further investigation and improvement are also pointed out.15

1 Introduction

In the development of general circulation models (GCMs) for the purpose of numerical
weather prediction (NWP) and climate research, one of the essential tasks is to design
numerically accurate, robust, and computationally efficient algorithms to solve the adi-
abatic fluid dynamics equations that govern the atmospheric motions. This component20

of a GCM, commonly referred to as the dynamical core, provides meteorological back-
ground for and interacts with large scale tracer transport as well as diabatic processes
like radiative heating/cooling and cumulus convection. Numerical properties of the dy-
namical core play an important role in determining the behavior of an atmospheric
model.25
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Until the 1990’s, spectral transform methods applied on latitude-longitude grids had
been a popular choice for dynamical cores at many weather forecasting services and
climate research centers, due to the excellent accuracy and efficiency in approximating
wave propagation in a spherical domain without lateral boundaries. As the resolution
of global models starts to increase toward cloud resolving scales, and as the applica-5

tion scope extends to include chemical and biogeochemical processes, other numerical
features such as conservation properties and tracer-and-air-mass consistency become
increasingly desirable or even crucial. Hence, grid point methods have been considered
again as an alternative to the spectral transform method. The idea of using grid point
based methods on geodesic grids, originally proposed in the late 1960’s (Williamson,10

1968; Sadourny et al., 1968), has been revisited to avoid the polar singularities of
global latitude-longitude grids. Modern numerical techniques such as high-order con-
tinuous and discontinuous Galerkin methods have also been investigated. Examples
include the work by Heikes and Randall (1995), Ringler and Randall (2002), Majew-
ski et al. (2002), Giraldo and Rosmond (2004), Tomita and Satoh (2004), to name but15

a few. A general overview of the historical development and recent advances in this
research area can be found in Bonaventura et al. (2012), along with a more complete
list of references. At the Max Planck Institute for Meteorology (MPI-M) and the Ger-
man Weather Service, a collaboration was initiated in 2001 to develop high-resolution
nonhydrostatic models with the capability of static local zooming, to be used for oper-20

ational weather prediction as well as for climate research. Previous experiences had
underlined the importance of conservation of air mass and atmospheric constituents,
as well as the advantages of developing atmosphere and ocean models in the same
framework. Based on these considerations, the two institutions chose to employ finite
difference/finite volume methods on icosahedral grids with C-type staggering, giving25

the name “ICON” (ICOsahedral Nonhydrostatic dynamical cores) to the joint project.
Based on the ICON shallow water model developed by Bonaventura and Ringler

(2005) and further tested by Rı́podas et al. (2009), a hydrostatic atmospheric dynam-
ical core (hereafter referred to as the ICOHDC) is established in this work. This is an
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intermediate step towards the ultimate goal (i.e. a nonhydrostatic core) of the ICON
project. At MPI-M rich experience has been accumulated in the past decades with the
ECHAM model series which employ the hydrostatic assumption (Roeckner et al., 1992,
1996, 2006; Giorgetta et al., 2012). In order to assess potential benefits or drawbacks
of using icosahedral grids and the proposed finite difference discretization in an iso-5

lated manner, i.e. to separate them from other aspects such as choice of governing
equations and dynamics-physics interaction, the hydrostatic dynamical core we de-
scribe here has been developed and tested using the same governing equations as
in ECHAM. Again to facilitate testing and understanding, the first version of the ICO-
HDC uses the same vertical discretization and time stepping method as in the spectral10

transform dynamical core of ECHAM. This baseline version of the new dynamical core
is the focus of the present paper. The numerical formulation is described, and its per-
formance evaluated in various idealized test cases. For the purpose of achieving the
consistency between tracer and air mass, other time stepping schemes have been in-
vestigated. These alternatives, together with additional investigations in the choice of15

the horizontal grid optimization and spatial discretization, are discussed in a companion
paper.

The remainder of this paper is organized as follows: Sects. 2 and 3 present the gov-
erning equations and the computational mesh used in the ICOHDC; Sects. 4 and 5
discuss the discrete formulation; Sects. 6 and 7 evaluate the performance of the dy-20

namical core in idealized test cases. Conclusions are summarized in Sect. 8.

2 Governing equations

The governing equations solved by the hydrostatic dynamical core are the primitive
equations in velocity-temperature form. A generic pressure-based terrain-following ver-
tical coordinate η is used, the value of which ranges from 0 at the top of the model to25

1 at the Earth’s surface. The pressure value at the model top is set to 0 hPa to include
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the total mass of the atmosphere. The prognostic equations of our model read

∂v
∂t

= − (f + ζ )k × v −∇K − η̇∂p
∂η

∂v
∂p
−
RdT
p
∇p−∇φ (1)

∂T
∂t

= −v · ∇T − η̇∂p
∂η

∂T
∂p

+
1
Cp

[
RdT
p

v · ∇p+
RdT
p

(
∂p
∂t

+ η̇
∂p
∂η

)]
(2)

∂ps

∂t
= −

1∫
0

∇ ·
(
v
∂p
∂η

)
dη. (3)5

They are complemented by two diagnostic equations

η̇
∂p
∂η

= −
η∫

0

∇ ·
(
v
∂p
∂η

)
dη− ∂p

∂ps

∂ps

∂t
(4)

φ = −
η∫

0

RdT lnpdη . (5)

10

Here, v stands for the horizontal wind vector, ∇ denotes the horizontal gradient, and k

is the local unit vector pointing to the upward direction. ζ = (∇×v )·k denotes the vertical
component of the relative vorticity. K is the kinetic energy per unit mass, K = |v |2/2.
φ is the geopotential. η̇ = dη/dt stands for the material derivative of η. All the other
symbols have their conventional meanings.15
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3 Computational mesh

The horizontal grid generation algorithm used here starts from projecting a regular
icosahedron onto the sphere, with two of the twelve vertices coinciding with the North
and South Poles. The other five vertices in each hemisphere are located along the
latitude circle of 26.6◦N/S with equal longitude intervals of 72◦. The second step of grid5

generation is to divide each great circle arc of the projected icosahedron into nr arcs
of equal length, and each icosahedron face into n2

r small triangles, as described by
Sadourny et al. (1968). This is referred to as the root division. The resulting mesh is
designated as the grid level 0. Further mesh refinement is achieved by bisecting each
spherical triangle edge and connecting the midpoints by great circle arcs, yielding four10

small cells for each parent triangle. In our terminology, a root division of the original
spherical icosahedron edge into nr arcs followed by nb recursive edge bisections leads
to the “RnrBnb grid”.

From grid level 0 onwards, only the twelve icosahedron vertices are surrounded by
five triangles (they are thus also referred to as the pentagon points), while the other15

vertices are surrounded by six cells. This introduces irregularity into the grid, resulting
in inequality in cell areas and edge lengths. Triangles closest to the pentagon points
feature the most severe deformation. At each grid level, the algorithm of Tomita et al.
(2001) is applied to slightly relocate the vertices, so as to ensure smooth transition of
geometric properties. Table 1 shows the properties of various grids.20

Like in Bonaventura and Ringler (2005, hereafter referred to as BR05), C-staggering
is applied to the triangular cells by placing mass and temperature at triangle circum-
centers. This particular choice of cell center (as opposed to, e.g. barycenter) results in
the property that the arc connecting two neighboring mass points is orthogonal to and
bisects the shared triangle edge. These bisection points are used as velocity points,25

at which the component of horizontal wind perpendicular to the edge (denoted by vn
in this paper, cf. Fig. 1) is predicted using Eq. (1). In the vertical, the widely used hy-
brid p-σ coordinate of Simmons and Strüfing (1981) (“coordinate 4” in their report) is
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employed. The staggering follows Lorenz (1960), meaning that the horizontal wind and
temperature are carried at “full levels” representing layer-mean values, while the ver-
tical velocity is diagnosed at “half levels” (i.e. layer interfaces, cf. Fig. 1). The vertical
grid is identical to that used in the ECHAM models (cf., e.g. Roeckner et al., 2006).

4 C-grid discretization5

In this section we briefly describe the C-grid discretization inherited from the ICON
shallow water model of BR05, then present an analysis of its properties.

4.1 Basic operators

BR05 established a spatial discretization method for solving the shallow water equa-
tions on the spherical triangular grid described in the previous section. This method10

forms the basis for the hydrostatic model discussed here. Their discretization concept
is a mimetic finite difference scheme consisting of the following elements:

– The discrete model predicts the normal component of the horizontal wind vn with
respect to triangle edges. The tangential component vτ, needed for the vorticity
flux term in the momentum equation, is reconstructed from the normal compo-15

nents using vector radial basis functions (cf. references in Sect. 5.2).

– Horizontal derivatives are represented by four discrete operators. The divergence
operator div(v ) applies the Gauss theorem on each triangular control volume to
approximate the spatially averaged divergence over that cell (Fig. 2a). The curl
operator curl(v ) uses the Stokes’ theorem to approximate the vertical compo-20

nent of the relative vorticity averaged over a dual (hexagonal or pentagonal) cell
centered at a triangle vertex and bounded by arcs connecting the centers of all
triangles sharing the vertex (Fig. 2a). The directional derivative of a scalar field at
the midpoint of a triangle edge in the normal direction, gradn(·), is approximated
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by a straightforward finite-difference discretization involving two cell centers, and
referred to as the (normal) gradient operator (Fig. 2b). The horizontal derivative
tangential to the edge, gradτ(·), is also defined at the edge midpoint, approxi-
mated by a central difference using values at the two ends of the edge (Fig. 2b).
The mathematical formulations of the four operators are given by Eqs. (4), (5), (7),5

and (8) in BR05.

– Higher order spatial derivatives (Laplacian and hyper-Laplacian) are constructed
from the four basic operators outlined above (see, e.g. Eq. 14 in Sect. 4.3). These
derivatives are needed, for example, in semi-implicit time stepping schemes and
for horizontal diffusion.10

This discretization scheme is conceptually the same as the widely used C-type dis-
cretization on quadrilateral grids. The basic operators are simple, but nevertheless
have nice properties. For example the divergence operator per construction makes it
straightforward to achieve mass conservation, while the curl operator guarantees that
the global integral of the relative vorticity vanishes. The divergence and gradient oper-15

ators are mimetic in the sense that the rule of integration by parts has a counterpart
in the discrete model (cf. Eqs. 9 and 10 in BR05), a desirable property for achieving
conservation properties. The basic operators are also highly localized (i.e. defined on
small stencils), which is beneficial in massively parallel computing.

However, a question remains whether the good properties of the quadrilateral C-20

grids in terms of the faithful representation of inertia-gravity waves are inherited by
the triangular C-grid without limitation. For the hexagonal/pentagonal grids (which can
been viewed as the dual meshes of the triangular grids), the wave dispersion analysis
in Ničković et al. (2002) revealed that discretization approaches using C-staggering
could produce spurious geostrophic modes. A technique to avoid such modes on the25

hexagonal/pentagonal meshes was proposed in Thuburn (2008) and further developed
in (Thuburn et al., 2009). On the triangular C-grids, spurious modes have also been no-
ticed (e.g. Le Roux et al., 2007; Danilov, 2010). Some recent articles discussed this
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issue by analyzing the linearized shallow water equations and the representation of
vector fields in a trivariate coordinate system (Danilov, 2010; Gassmann, 2011). Here,
we take a different perspective and use truncation error analysis to show that the diver-
gence operator on the triangular C-grid described above inherently produces grid-scale
checkerboard error patterns. The same analysis leads to a proposal for estimating the5

specific amount of numerical hyper-diffusion necessary to reduce the impact of these
systematic errors on numerical simulations.

4.2 Truncation error analysis

To focus on the triangular geometry and the C-staggering, we carry out the analy-
sis on a planar grid consisting of equilateral triangles of edge length l . We associate10

a local Cartesian coordinate to each cell with the origin located at the triangle center
and the x-axis parallel to one edge. We then denote the normal outward unit vector
at edge midpoints by nj where j ∈ [1,3] is the edge index. A label δ is assigned to
each cell to denote its orientation, with values of 0 and 1 for upward- and downward-
pointing triangles, respectively. Thus, the three neighboring cells sharing edges with15

an upward-pointing triangle are downward-pointing, and vice versa. In the truncation
error calculation, a downward-pointing triangle is understood as the image of the corre-
sponding upward-pointing triangle mirrored at the x-axis (Fig. 3). For a generic vector
field v differentiable to a sufficiently high order, we denote its components in the x and
y directions by u and v , respectively. Applying the discrete divergence operator point-20

wise values of the vector field known at edge midpoints, denoted as v j , the 2-D Taylor
expansion yields

div(v ) =

(√
3 l2

4

)−1

l
3∑
j=1

v j ·nj (6)

= (∇ · v )o + (−1)δ l H(v )o +
l2

96

[
∇2 (∇ · v )

]
o
+ (−1)δ l3 F (v )o +O(l4) . (7)

25
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Here the subscript o denotes the function evaluation at the triangle center. The func-
tions H and F read

H(v ) =

√
3

24

(
2
∂2u
∂x∂y

+
∂2v
∂x2
− ∂

2v
∂y2

)
, (8)

F (v ) =

√
3

2933

(
12

∂4u
∂x3∂y

+2
∂4u
∂x∂y3

+3
∂4v
∂x4

+6
∂4v

∂x2∂y2
−5

∂4v
∂y4

)
. (9)

5

Equation (7) indicates that the discrete divergence operator applied to pointwise val-
ues of v is a first-order approximation of the divergence at the triangle center. More
importantly, the first-order error term changes sign from an upward-pointing triangle to
a downward-pointing one, which results in a checkerboard error pattern.

In a finite-volume perspective, the divergence computed by the Gauss theorem10

should be interpreted as cell average rather than a pointwise value. However, it is worth
noting that, in an equilateral triangle, the cell-center value can be viewed as a second-
order approximation of the cell average. Therefore, the first order error term in Eq. (7)
will also be present in the approximation of the cell average. Indeed, it is not difficult to
check that15

div(v ) = (∇ · v )
c

+ (−1)δ l H(v )o −
l2

96

[
∇2 (∇ · v )

]
o
+O(l3) (10)

where ()
c

stands for cell average. The leading error remains first order and also features
a checkerboard pattern. In order to check empirically the impact of Eq. (10), numerical
calculations have been performed using the vector field20 
u(x,y) =

1
4

√
105
2π

cos2x cos2 y siny ,

v(x,y) = −1
2

√
15
2π

cosx cosy siny ,

(11)
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the divergence of which reads

∇ · v =
−1

2
√

2π

(√
105 sin2x cos2 y siny +

√
15 cosx cos2y

)
. (12)

The discrete divergence is calculated by first evaluating Eq. (11) at edge centers and
then applying operator (6). Numerical errors are calculated against the cell average
given in Appendix A. Figure 4 shows the spatial distribution of the error and the conver-5

gence with respect to resolution. These results confirm the error analysis in Eq. (10).
It could also be remarked that, if the operand of the divergence operator is inter-

preted as the average along the edge rather than the point value at the edge center,
then the Gauss theorem will give the exact cell-averaged divergence without any error.
However, it should be noted that in a C-grid discretization, the divergence operator is10

typically not applied to the horizontal velocity but to the mass flux (cf. Eqs. 3 and 4).
Since the mass flux is not a prognostic variable but needs to be derived, an accurate
edge-mean is not available. In ICON and in many other models the interpolation of
density (or equivalent variables) from neighboring cells to edges gives a second order
mass flux on a regular grid. It can be shown analytically that if the edge-mean mass15

flux is approximated to m-th order, m being a positive even number, the divergence
operator on an equilateral triangle will be of order m−1, and the sign of the lead-
ing error depends on the orientation of the triangle. (Detailed derivation can be found
in Appendix B.4 of Wan (2009), available from http://www.mpimet.mpg.de/en/science/
publications/reports-on-earth-system-science.html.)20

In summary, the truncation error analysis shows that the divergence operator defined
on the triangular C-grid yields a checkerboard error pattern. This appears to be an
inherent property related to the cell shape and the placement of the velocity variables.
The curl and gradient operators, on the other hand, are second-order accurate on the
regular planar grid due to the symmetric geometry. The derivations are omitted in this25

paper.
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4.3 Noise control

The checkerboard error pattern highlighted by the analysis in Sect. 4.2 enters the hy-
drostatic model system because of the continuity equation (3) and the temperature
advection term in Eq. (2) (cf. the discrete form in Sect. 5.5). Grid scale noise in the di-
vergence operator typically causes noise in the surface pressure ps and temperature T ,5

which then affects the velocity field through the pressure gradient force. Such numerical
noise, while less apparent in the barotropic tests reported in BR05 and Rı́podas et al.
(2009), significantly affects three-dimensional baroclinic simulations. One possibility to
avoid this problem is to improve the divergence operator by enlarging the stencil. For
example, with a four-cell stencil (one triangle plus three of its direct neighbors, involving10

nine velocity points), one can construct a second-order divergence operator on a reg-
ular grid, and apply certain measures to approach second order in spherical geometry.
Further discussions in this direction will be included in Part 2 of the paper. Here we only
point out that, if the transport of tracers in the same model is to be handled by finite vol-
ume methods using a single cell as control volume, a different stencil for divergence in15

the dynamical core will destroy the tracer-and-air-mass consistency whose importance
has been pointed out by, e.g. Lin and Rood (1996), Jöckel et al. (2001), Gross et al.
(2002) and Zhang et al. (2008). In this paper, we rely instead on a carefully chosen
numerical diffusion to suppress the checkerboard noise. Although it is generally not
a preferred practice to use filtering or damping algorithms in numerical models, there20

is an interesting relationship between the discrete divergence and vector Laplacian on
the triangular C-grid that can be exploited.

As in the ICON shallow water model described in Rı́podas et al. (2009), the vector
Laplacian

∇2v = ∇ (∇ · v )−∇× (∇× v ) (13)25

is approximated in an intuitive manner by(
∇2
d v
)

e
·Ne = gradn

[
div(v )

]
−gradτ

[
curl (v )

]
. (14)
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Here the subscript d denotes the discrete approximation, e the edge midpoint, and Ne
the unit normal vector associated to the edge. (The relationship between the unit nor-
mal vector Ne of an edge and the outward unit vector ne of a cell that the edge belongs
to is either Ne = ne or Ne = −ne.) The notations div, curl, gradn and gradτ denote the
discrete divergence, curl, normal gradient, and tangential gradient operators defined5

in Sect. 4.1. The divergence operator on a regular planar grid is defined by Eq. (6)
in Sect. 4.2. The fourth-order hyper-Laplacian, widely used for horizontal diffusion in
atmospheric models because of its scale selectivity, is approximated by

∇4
d v = ∇2

d

(
∇2
d v
)

. (15)

Like in the previous subsection, one can perform a Taylor expansion (but with respect10

to the edge midpoint e) and get(
∇4
d v
)

e
·Ne =

(
∇4v
)

e
·Ne + (−1)δ 48

√
3 l−2H(v )e +O(l0) . (16)

The function H is the same as in Eq. (7).
Assuming that the dynamical core uses a diffusion coefficient K4 and time step ∆t, if15

Eq. (16) is multiplied by (−∆tK4), applying the divergence operator, and retaining only
two leading terms on the right-hand side yields

div
(
−∆tK4∇4

d v
)
= −∆tK4 242 l−3 (−1)δH (v )o −∆tK4 div

(
∇4v
)
o
+ · · · (17)

Now we apply Eq. (7) to the second term on the right-hand side of Eq. (17), use a sym-20

bol Ediv,1 to denote the first order term in Eq. (7), i.e.

Ediv,1 = (−1)δ l H (v )o , (18)

and let l̂ = l/
√

3 to denote the distance between neighboring cell centers. After some
manipulation, Eq. (17) becomes

div
(
−∆tK4∇4

d v
)
o
= −∆tK4

(√
8/l̂
)4

Ediv,1 −∆tK4

[
∇4 (∇ · v )

]
o
+ · · · (19)25
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This shows that, when the vector Laplacian (Eq. 15) is used in the explicit numerical
diffusion for horizontal wind, apart from the hyper diffusion one usually expects (i.e.
the second term on the right-hand side of Eq. 19), there is an additional effect that
compensates (at least to some extent) the leading error in divergence. This additional
effect is similar to the divergence damping mechanism that has been adopted in many5

dynamical cores (e.g. Lin, 2004). Furthermore, if the coefficient K4 is determined via
a parameter τ∗ using the formula

K4 =
1
τ∗

(
l̂
√

8

)4

, (20)

then ∆t/τ∗ indicates the fraction of the checkerboard divergence error that can be
removed after one time step.10

In our numerical experiments it has been observed that the ratio ∆t/τ∗ = 1 is very
effective in removing the grid-scale noise and renders a reasonably stable model con-
figuration. Furthermore, given that the icosahedral grid is not strictly regular in terms
of cell sizes and edge lengths, we use the local edge length for Eq. (20) instead of the
global mean, which further improves the effectiveness of the method. Examples in the15

shallow water model can be found in (Rı́podas et al., 2009).
It should be mentioned, however, that this approach does have a clear disadvantage.

The two terms on the right-hand side of Eq. (19) are controlled by the same K4 coeffi-
cient. Because the value of K4 has to be chosen to achieve a sufficient compensation
of the checkerboard error, there is no longer the freedom to choose the magnitude of20

the hyper-diffusion by physical arguments only. Since the characteristic damping time
τ∗ corresponding to ∆t/τ∗ = 1 is considerably shorter than usually seen in climate mod-
els, there is a danger of overly strong diffusivity in our triangular ICOHDC. This is in
fact one of the major concerns we have regarding the viability of this dynamical core in
long-term climate simulations, and a point to which special attention will be paid in the25

future.
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5 Discrete formulation of the dynamical core

We introduce now the discrete form of the primitive Eqs. (1)–(4) employed in the ICO-
HDC.

5.1 Horizontal interpolation

On a staggered horizontal grid, the normal wind and the relative vorticity are not co-5

located with mass (and temperature). Horizontal interpolation is thus necessary. The
following interpolations are used in the ICOHDC:

– ψ
c2e

, linear interpolation of a scalar ψ from two neighboring cell centers to the
midpoint of the shared edge;

– ψ
v2e

, linear interpolation of a scalar ψ from two vertices of an edge to its midpoint10

(i.e. arithmetic average).

– ψ
e2c,lin

, a bilinear interpolation from the three edges of a triangle to its circumcen-
ter. The interpolation is performed in a local spherical coordinate whose equator
and primal meridian intersect at the cell center.

– ψ
e2c,aw

, an area-weighted interpolation15

ψ
e2c,aw

=
∑

e

Ac,e

Ac
ψe (21)

where Ac is the cell area, and Ac,e the area of a sub-triangle defined by the cell center
c and the two vertices of edge e (Fig. 5a).

5.2 Vorticity flux and kinetic energy gradient

The first two terms on the right-hand side of Eq. (1), i.e. the absolute vorticity flux20

and the kinetic energy gradient, represent the combination of horizontal momentum
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advection and Coriolis force in vector invariant form. The kinetic energy gradient is
calculated in our model by

gradn

(
0.5
(
v2
n + v

2
τ

)e2c,lin
)

, (22)

and the absolute vorticity flux by(
f + curl(v )

v2e
)
vτ . (23)5

As mentioned earlier, the C-grid discretization predicts only the normal component
of the horizontal wind. The tangential wind vτ needed by Eqs. (22) and (23) is recon-
structed at edge midpoints using the vector radial basis functions (RBFs) introduced in
Narcowich and Ward (1994), with an inverse multiquadric kernel. For a more complete
description and testing of this algorithm we refer to Ruppert (2007) and Bonaventura10

et al. (2011). The stencil involves four edges surrounding the target one (Fig. 5b).
Following BR05, it is assumed that the normal and tangential components form a right-
hand system.

5.3 Pressure and layer thickness

The η coordinate of Simmons and Strüfing (1981), a terrain following coordinate near15

the Earth’s surface that gradually transforms into pressure coordinate in the upper
troposphere, has been widely used in atmospheric GCMs. Here we only mention a few
technical details for completeness and clarity: the pressure at layer interfaces (see
Fig. 1) is given by

pk+1/2 = Ak+1/2 +Bk+1/2ps , k = 0,1, . . . ,NLEV. (24)20

Here ps stands for surface pressure. NLEV is the total number of vertical layers.
A and B are predefined parameters (see, e.g. Roeckner et al., 2003). B = ∂p/∂ps is
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used in Eq. (4). The pressure thickness of the k-th model layer is denoted by ∆pk(
= pk+1/2 −pk−1/2

)
.

5.4 Continuity equation

To compute the right-hand side of Eq. (3) the divergence operator is applied to the mass
flux v ∂p/∂η , followed by an integral through the vertical column. This discretization5

does not introduce any spurious sources or sinks in the total air mass, as long as the
mass flux has a unique value at each edge. In this paper, the air mass flux in the normal
direction Ne of an edge e is computed by

vn
(
∂p/∂η

)c2e
. (25)

5.5 Horizontal advection of temperature10

The horizontal advection of temperature at cell c in layer k is discretized in an energy-
conserving form

(v · ∇T )c,k =
1

∆pc,k

[
div(v ∆pT )c,k − Tc,kdiv(v∆p)c,k

]
. (26)

The mass flux divergence in this equation is the same as in the discrete continuity
equation. The heat flux divergence is calculated by first interpolating temperature and15

layer thickness separately from cells to edges, multiplying by the normal wind and then
applying the discrete divergence operator.
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5.6 Vertical advection of momentum and temperature

The vertical advection terms in Eqs. (1) and (2) are discretized in the same way as in
ECHAM following Simmons and Burridge (1981, hereafter SB81):(
η̇
∂ψ
∂η

)
k
=
(
η̇
∂p
∂η

∂ψ
∂p

)
k

=
1

2∆pk

{(
η̇
∂p
∂η

)
k+1/2

(ψk+1 −ψk)+
(
η̇
∂p
∂η

)
k−1/2

(ψk −ψk−1)

}
. (27)5

Here ψ is either temperature or a horizontal wind component. The vertical indices
are illustrated in Fig. 1. The vertical velocities at layer interfaces are diagnosed by
Eq. (4). Note that Eq. (27) can be derived by applying the idea of Eq. (26) to the
vertical direction, then replacing the divergence operator by the central difference, and10

the cell-to-edge interpolation by the arithmetic average.
For the advection of the normal wind in the ICOHDC, Eq. (27) requires layer thick-

ness and vertical velocity at edge midpoints. These are obtained by the linear interpo-
lation mentioned earlier in Sect. 5.4.

5.7 Hydrostatic equation15

The hydrostatic equation involves only vertical discretization, thus takes the same form
in the ICOHDC as in SB81 and in the spectral core of ECHAM. The discrete counterpart
of Eq. (5) reads

φc,k+1/2 =φc,s +
NLEV∑
j=k+1

RdTc,j ln
(pc,j+1/2

pc,j−1/2

)
(28)

20
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for layer interfaces with k > 1. Here φc,s denotes the surface geopotential at cell c. The
geopotential at full levels are given by

φc,k =φc,k+1/2 +αc,k Rd Tc,k (29)

where5

αc,k =

{
ln2, for k = 1;

1− pc,k−1/2

∆pc,k
ln
(pc,k+1/2

pc,k−1/2

)
, for k > 1.

(30)

5.8 Pressure gradient force and adiabatic heating

After computing the geopotential by Eq. (29), the last term in the velocity Eq. (1) can
be obtained by applying the normal gradient operator.10

The pressure gradient term in the same equation is calculated by

(Rd T∇ lnp)e ·Ne = RdT
c2e

gradn

[
pk+1/2 lnpk+1/2 −pk−1/2 lnpk−1/2

∆pk

]
. (31)

Using Eq. (31), the first part of the adiabatic heating term in the temperature equa-
tion (2) can be obtained by15 (
RdT
p

v · ∇p
)

c,k
=

2vn∆p
[
(Rd T∇ lnp) ·Ne

]e2c,aw

∆pc,k
. (32)

The remaining part is approximated by[
RdT
p

(
∂p
∂t

+ η̇
∂p
∂η

)]
c,k

=

−
RdTc,k

∆pc,k

ln
(pc,k+1/2

pc,k−1/2

) k−1∑
j=1

div(v∆p)c,j +αc,k div(v∆p)c,k

 . (33)20
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Both Eqs. (32) and (33) are derived following the energy conservation constraint in
SB81.

5.9 A few remarks on the spatial discretization

In this section we have mentioned repeatedly the C-grid discretization of SB81, which is
an energy-conserving scheme on regular latitude-longitude grids, designed for an early5

finite-difference version of the NWP model of the European Centre for Medium-range
Weather Forecasts. In the baseline version of the ICOHDC, the kinetic energy gradient
and the absolute vorticity flux discretized on the triangular grid (Eqs. 22 and 23) do not
guarantee energy conservation to machine precision, partly due to the tangential wind
reconstruction using the RBFs. The other discrete formulae described in Sects. 5.4–10

5.8, on the other hand, do help avoid spurious energy sources/sinks.
Potentially, there might be another issue related to the RBF reconstruction. As dis-

cussed in Hollingsworth et al. (1983) and Gassmann (2012), certain inconsistencies
between the discrete vorticity flux and kinetic energy gradient can trigger nonlinear in-
stability that manifests itself as small scale noise at high resolutions. So far we have not15

seen clear evidences of such instability in the test results of the ICOHDC (cf. Sect. 6).

5.10 Time stepping scheme

In the baseline version of the ICOHDC we use a time stepping method similar to that of
the ECHAM dynamical core. This consists of the leapfrog scheme, the Asselin (1972)
filter, and the widely used semi-implicit correction scheme for linear gravity waves (see,20

e.g. SB81). The reference atmosphere used by the semi-implicit correction is isother-
mal (T r = 300 K), at rest (v r = 0) on a flat surface (φrs = 0) with constant surface pres-
sure (prs = 800 hPa). To achieve computational efficiency, the resulting 3-D Helmholtz
equation of divergence is decomposed into a series of 2-D equations, each corre-
sponding to one vertical mode. The 2-D equations associated with phase speed higher25

78

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 59–119, 2013

A dynamical core on
triangular grids –

Part 1

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

than 30 ms−1 are numerically solved using the generalized minimal residual method
(GMRES, Saad and Schultz, 1986).

In the standard model configuration the time stepping scheme uses the following
parameters. The Asselin coefficient is 0.1 following ECHAM. In the semi-implicit cor-
rection, coefficients of the gravity wave terms evaluated at the old and new time steps5

are set to 0.3 and 0.7, respectively, following the global forecast model GME of the
German Weather Service (Majewski et al., 2002). Detailed formulation of the time inte-
gration algorithm is given in Appendix B.

6 Idealized dry dynamical core tests

In this section we present some results of numerical simulations carried out to evaluate10

the new dynamical core. The goal here is to find out whether the present version of the
ICOHDC can correctly represent basic processes of the adiabatic atmospheric dynam-
ics, and to analyze the sensitivity of the numerical solutions to horizontal resolution.
During the development of the new dynamical core we routinely perform a suite of ide-
alized dry dynamical core tests with different levels of complexity. The simplest ones15

are 3-D extensions of the widely used shallow water tests 5 and 6 from Williamson
et al. (1992). The barotropic cases are in some sense a sanity check for the 3-D for-
mulation of the ICOHDC and its practical implementation in the code. These results
can be found in Wan (2009), and are not repeated here. In this section, we concentrate
our discussions on two deterministic baroclinic tests (Sect. 6.1) and an idealized dry20

“climate” test (Sect. 6.2).
All results presented in this section are obtained using revision 6489 of the ICON

code. The vertical grid is fixed at L31, which resolves the atmosphere from the surface
to 10 hPa. This grid has been commonly used in ECHAM (see, e.g. Roeckner et al.,
2006). The triangular grids of the new dynamical core are optimized using the algorithm25

of Tomita et al. (2001) with the spring coefficient being 0.90.
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6.1 Deterministic baroclinic tests

The test case proposed by Jablonowski and Williamson (2006a,b, hereafter JW06) has
been widely used in recent years for testing 3-D atmospheric dynamical cores. Inspired
by the baroclinic instability theory, the deterministic test consists of two parts: a steady
state test followed by a baroclinic instability test.5

6.1.1 Steady state test

In the first part of the test, the dynamical core is initialized with a zonally symmetric,
geostrophically balanced condition specified by analytical functions. Since this initial
condition is a steady state solution of the primitive equations, a perfect numerical model
would retain the initial state to machine precision. The spectral core of ECHAM can pre-10

serve the zonal symmetry in an arbitrarily long integration. Meanwhile, the model state
evolves continuously (but very slowly) from the initial state because of the horizontal
diffusion. In the ICOHDC, zonal asymmetries are triggered immediately after model
initialization due to grid irregularity near the pentagon points (cf. Sect. 3), resulting in
wavenumber 5 patterns near 26.6◦N/S. Embedded in the dynamically unstable mean15

state of this test case, the perturbations amplify for more than 10 days, then reach
a quasi-equilibrium state after 20 to 30 days (not shown). As the horizontal resolu-
tion increases, the magnitude of the numerical errors is reduced and the perturbations
evolve less rapidly. These behaviors agree with our expectation, and are similar to the
results of the GME model (also built on icosahedral grids) presented in JW06.20

6.1.2 Baroclinic wave test and equivalent resolutions

The second part of this test case focuses on the evolution of an idealized baroclinic
wave in the Northern Hemisphere, triggered by an analytically specified large-scale
perturbation in the wind field. Cyclone-like structures develop in the course of about 10
days, featuring lows and highs in the surface pressure field (Fig. 6, left column) and25
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accompanying fronts in the lower troposphere temperature (Fig. 6, right column). This
figure shows the ICOHDC simulation at R2B5 resolution which has an average grid
spacing of 70 km between neighboring mass points. The key features of the simulated
baroclinic wave evolution, including the slow development of the perturbations in the
first 6 days and the subsequent exponential intensification, as well as the magnitude of5

the closed cells in surface pressure and the fronts in temperature, agree well with the
reference solutions given by JW06.

Figure 7 shows the same fields but after 9 days of integration, and at 5 different
horizontal resolutions. The average grid spacing between mass points ranges from
280 km (at R2B3) to 17.5 km (at R2B7). The solution obtained on the coarsest grid10

(R2B3) is of unsatisfactory quality, in that the depressions are too weak, while the
spurious perturbations at the rear of the wave train are too strong. This resolution is
thus not recommended for future applications of the new dynamical core. The next
solution, at R2B4, is significantly improved, although the first two low pressure cells
are still somewhat weak, and there is an easily detectable phase lag in the propagation15

of the wave in comparison with the solution at R2B7. As the grid is further refined,
the phase lag gets smaller, and the depressions become deeper. The two runs at the
highest resolutions look very similar, and are hardly distinguishable from the reference
solutions in JW06 by visual comparison.

To quantitatively assess the convergence of these numerical solutions, we follow20

JW06 and use the l1, l2 and l∞ differences norms of surface pressure as the metric.
In the work of JW06 it was found that differences among solutions from four models
using very different discretization methods stopped decreasing once the resolutions
increased beyond a certain limit. Based on this observation, the uncertainty in their
reference solutions was estimated. The corresponding uncertainties in the difference25

norms are shown by the yellow shading in Fig. 8. When the difference norms fall below
the uncertainty limit, the solution being tested is considered as of the same quality as
the reference solution.
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In Fig. 8 the norms of ps differences are shown between the R2B3 to R2B6 sim-
ulations and the R2B7 run (upper row), as well as between the ICOHDC simulations
and a reference solution in JW06 from the National Center for Atmospheric Research
Semi-Lagrangian dynamical core (NCAR SLD, Fig. 8 second row). Difference norms
computed against the other reference solutions in JW06 are very similar (not shown).5

Regardless of the choice of reference, panels in Fig. 8 clearly indicate a decrease in the
difference norms when the horizontal resolution increases. Convergence of the numer-
ical solution is achieved at R2B6. The R2B6 and R2B7 solutions are able to represent
the baroclinic wave evolution within the uncertainty in the reference solution.

Since the ultimate purpose of developing the new dynamical core is to use it in cli-10

mate research, a natural question one would expect from the potential users, especially
from those having been using ECHAM, is the equivalent resolutions between the ICO-
HDC and the spectral core. In Fig. 9 the ICOHDC results are presented side-by-side
with simulations from the spectral core at four spectral resolutions that have been used
for the full model in various applications. By comparing the strength of the vortices,15

the magnitude of the horizontal gradients, and the level of details of the characteristic
patterns represented by the models, we come to the conclusion that each ICOHDC so-
lution in this figure is of slightly higher resolution than the spectral model results shown
in the same row. The difference of the spectral model results w.r.t. the NCAR SLD so-
lution is shown in Fig. 10. Note that although from the 850 hPa vorticity snapshots in20

Fig. 9 we conclude that R2B5 is higher than T85, the T85 simulation captures the refer-
ence solution within the uncertainty while R2B5 does not. According to the snapshots,
the errors in the lower resolution spectral model results are mainly in the strength of
the vortices and the spatial gradients, while in the ICOHDC the phase speed is also
a major source of numerical error.25

Phase error is a typical problem associated with dynamical cores using second (or
lower) order spatial discretization methods. It is also one of the main disadvantages of
such models at medium and low resolutions in comparison with the spectral transform
method. It is worth noting that in JW06 the finite-difference model GME has a similar
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phase problem, while the NCAR finite volume core (Lin, 2004), which uses the third-
order piecewise parabolic advection algorithm, does not. Skamarock and Gassmann
(2011) showed that in the ICON non-hydrostatic model (Gassmann, 2010) and in the
Model for Prediction Across Scales (MPAS; Skamarock et al., 2010), replacing the
second-order potential temperature transport by third-order schemes can significantly5

reduce the magnitude of the phase error in this test case and suppress its growth. For
the hydrostatic dynamical core discussed here, it will probably also be beneficial to use
a higher-order scheme for temperature advection in Eq. (26) in Sect. 5. On the other
hand, Fig. 9 also suggests that the phase error in the ICOHDC becomes negligible
at R2B6 (35 km). Since the ICON models are developed for high-resolution modelling,10

the phase error is not expected to be an obstacle in real applications of the new model
system.

Coming back to the question of equivalent resolutions, we have performed the baro-
clinic wave test at several other resolutions in addition to those in Fig. 9, both with
the ICOHDC and with the spectral core of ECHAM, and established the relationships15

presented in Table 2. The equivalent resolutions (in this particular test case) are estab-
lished by the following procedure: first, simulations are performed on all the icosahedral
grids listed in the table, and at the spectral truncations given without parenthesis (see
Table 2). From visual comparisons similar to Fig. 9, we establish resolution pairs like
R5B3–T63, R2B5–T106, etc., that produce similar results. It turns out that for these20

visually identified pairs, the ratios between the average grid spacing of different icosa-
hedral grids match well with the ratios between the corresponding truncation wavenum-
bers. Using this relationship, we then derived the wavenumbers given in parenthesis,
which are not “standard” resolutions of the ECHAM model. In principle, it would be
useful to verify the established equivalent resolutions in some quantitative manner, for25

example by calculating the difference norms of surface pressure in each pair, and com-
paring them with the uncertainty estimates (the yellow shading in Figs. 8 and 10). At the
current stage, however, the difference norms between the medium- and low-resolution
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pairs would lie outside the uncertainty range unless the phase error in the ICOHDC
was reduced. The verification is thus not done in this study.

It is interesting to notice that, in the table, the average grid spacings of the ICON
grids match well the zonal grid size at 60◦N on the Gaussian grids of the correspond-
ing spectral resolution. This is probably not a coincidence, but a result of the fact that5

in this test case the baroclinic wave evolves and propagates near this latitude. Non-
linear terms in the primitive equations play a crucial role in the baroclinic instability
development. In both models these terms are computed in grid-point space, and using
similar discretization schemes following the work of SB81. It is thus not surprising that
the equivalent resolutions we identified turn out to have similar spacing at 60◦N. In10

a different test case that features dynamical processes confined to, say, the tropics, the
conclusions on equivalent resolutions will probably be different.

From the perspective of the numerical solution of partial differential equations, one
may attempt to establish equivalent resolutions by comparing the total number of de-
grees of freedom (DOF). The DOF alone, however, is not a very relevant index if the two15

models in question use vastly different numerics. The order of accuracy of the numer-
ical schemes, the algorithmic complexity, and the amount of arithmetic computations
involved in solving a single degree of freedom need to be taken into account as well.
In our case, the ICOHDC uses rather simple finite-difference schemes of relatively low
(first and second) order, while the spectral core requires Fourier and Legendre trans-20

form in each integration step, and is accurate to infinite order in problems where the
simulated flow is smooth. It thus should not be expected that equivalent resolutions be-
tween the two cores have the same total DOF. For the hydrostatic model, if we define
the DOF of one vertical level to be the total number of prognostic equations, i.e. veloc-
ity plus temperature grid points for the ICOHDC, and in the case of the spectral model25

the total number of spectral coefficients of vorticity, divergence and temperature of the
resolved wavenumbers,1 then the ratio of DOF between the equivalent resolutions we

1The continuity equation is ignored here because hydrostatic models uses surface pressure
as the prognostic variable which is defined only at the Earth’s surface.
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identified above is about 6–7 to 1 (ICOHDC to spectral). To put the number into per-
spective, one can do a similar computation for the resolutions presented in JW06 for
the GME model and the NCAR Finite Volume (FV) and spectral cores, to get the ratios
5.5 : 1 (GME versus spectral) and 7 : 1 (FV versus spectral), respectively.

As a note of caution, we emphasize again that the equivalent resolutions presented5

in Table 2 are established for this particular case. For other dynamical core tests and
for the idealized and real-world simulations performed with parameterizations, these
relations do not necessarily hold.

In the simulations presented in Fig. 7 and Table 2, the ICOHDC time step is 1200 s at
R2B3, and decreases linearly with the average grid spacing (Table 2). The simulated10

flow does not appear noisy (cf. e.g. Fig. 9). These indicate that the grid-scale noise
originating from the divergence operator is effectively suppressed by the kind of hori-
zontal diffusion employed. Meanwhile, the simulated baroclinic vorticies are strong at
high resolutions and the horizontal gradients sharp (Fig. 9). In this comparison, there
is no clear evidence of overly strong damping in the ICOHDC.15

6.2 Held-Suarez test

After the adiabatic deterministic test cases discussed above, we consider here the dry
“climate” experiment proposed by Held and Suarez (1994), in which the dynamical core
is forced by Rayleigh damping of horizontal wind in the near-surface layers as well as
relaxation of the temperature field towards a prescribed, north-south and zonally sym-20

metric radiative equilibrium. The original goal of this popular test was to evaluate the
zonal-mean climatology obtained from the last 1000 days of a 1200-day simulation.
However, a more comprehensive analysis of the inherent low-frequency variability was
carried out in Wan et al. (2008), where an ensemble approach was proposed for the
evaluation of the results. Here we follow this approach and perform ensembles con-25

sisting of 10 independent 300-day integrations. Each integration starts from the JW06
zonally symmetric initial condition with random noise of magnitude 1 ms−1 added to
the wind field. (This choice is rather arbitrary. As long as the 10 integrations within an
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ensemble are independent, the conclusions drawn in this subsection are not affected by
the initial condition.) Simulations are performed at resolutions R2B3, R2B4 and R2B5
using the same configurations as in the deterministic test cases. The zonal-mean cli-
mate states are diagnosed from the last 100 days of each integration.

Figure 11 presents the ensemble mean model climate at R2B5. Although simple by5

design, the Held-Suarez test is able to reproduce many realistic features of the global
circulation. Baroclinic eddies cause strong poleward heat and momentum transport
(Fig. 11d and c, respectively). The heat transport reduces the meridional tempera-
ture gradient in comparison to the prescribed radiative equilibrium (Fig. 11b, here in
comparison to Fig. 1c in Held and Suarez, 1994). The meridional transport of angular10

momentum converges in the mid-latitudes, forming a single westerly jet in each hemi-
sphere (Fig. 11a). The core regions of the jets are located near 250 hPa. The maximum
time- and zonal-mean zonal wind is about 30 ms−1. Easterlies appear in the equatorial
and polar lower atmosphere, as well as in the tropics near the model top. The baro-
clinic wave activities concentrate in the mid-latitudes, as depicted by the transient eddy15

kinetic energy and temperature variance (Fig. 11e and f). The single maximum of eddy
kinetic energy in each hemisphere appears in the upper troposphere near 45◦ latitude,
close to the core region of the westerly jet. Easterlies in the tropics show little variance.
In each hemisphere, the maximum temperature variance appears near the Earth’s sur-
face and extends upward and poleward. A second maximum of smaller magnitude20

occurs near the tropopause. These features of the simulated circulation agree well with
results reported in the literature (e.g. Held and Suarez, 1994; Jablonowski, 1998; Lin,
2004; Wan et al., 2008).

Sensitivity of the ICOHDC results to horizontal resolution is revealed by Figs. 12
and 13. The contour lines show the differences in the ensemble average of the quan-25

tities displayed in Fig. 11, while the gray and light-blue shadings indicate where the
differences are significant (at 0.05 and 0.01 significance levels, respectively) according
to the Kolmogorov-Smirnov test (Press et al., 1992). Comparing R2B3 with R2B5, the
increase in horizontal resolution leads to a substantial enhancement of the eddy activity
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in the mid-latitudes, stronger poleward transport, and consequently higher temperature
in the Polar Regions as well as a poleward shift of the westerly jets. The differences
between the R2B4 and R2B5 ensembles are much smaller (Figs. 13). Although one
can still see enhancement in the eddy activities in Fig. 13d–f and temperature differ-
ences in high altitudes/latitudes regions in Fig. 13b, the discrepancies are generally5

much less significant than between R2B3 and R2B5. Figures 12 and 13 together show
a clear trend of convergence in the ICOHDC results.

7 First results from the aqua-planet experiments

In the previous section we have evaluated the ICOHDC using dry dynamical core tests
at various resolutions. On the whole, the new core produces results that agree reason-10

ably well with those from the spectral core of ECHAM, as well as with the reference
solutions available in the literature. It turns out that in these test cases, the grid-scale
noise discussed in Sect. 4 is well under control and has not yet brought obvious detri-
mental effects. One might argue that when moist processes are included in the model,
condensational heating will act as a positive feedback which will amplify the grid-scale15

noise and make the model unstable. To find out whether this is the case, we perform
aqua-planet simulations following the proposal of Neale and Hoskins (2000). The sim-
ulations are carried out using revision 6489 of the ICON code.

For this exercise, the ICOHDC is coupled to the cumulus convection, large-scale
condensation, turbulent mixing and radiation parameterizations of the ECHAM6 model20

(Giorgetta et al., 2012). Second-order horizontal diffusion is applied to the three up-
permost model layers to enhance horizontal damping. This is a widely used technique
in climate models to effectively dissipate upward propagating waves of various scales
and avoid spurious reflection of the vertically propagating waves triggered by cumulus
convection and other sub-grid processes. Radiative transfer calculation is performed25

every other hour as in ECHAM. We refer to the resulting model configuration as the
ICOsahedral Hydrostatic Atmospheric Model (ICOHAM).
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Simulations are performed at R2B4L31 (∆t = 480 s) using the “Control” and “Qobs”
sea surface temperature (SST) profiles of Neale and Hoskins (2000). The reference
solutions are from ECHAM6 at T63L47 (∆t = 600 s). Both models are integrated for
1200 days. The last 800 days are used in the analysis presented in this paper. Here we
do not attempt to investigate the convergence of the aqua-planet experiments (APE)5

from either ICOHAM or ECHAM6, because both models are new, and neither has been
tuned at many resolutions. The intention here is rather to have a first look at the main
features of the model climate. A more comprehensive evaluation of the ICOHAM aqua-
planet simulations will be presented in a separate paper.

By comparing ICOHAM at R2B4 and ECHAM6 at T63 we are not suggesting that10

they are an equivalent pair. These resolutions are chosen because T63L47 is the most
commonly used configuration of ECHAM6 (which has also been used in the CMIP5
simulations), while R2B4L31 is the resolution used by the ICOHDC and ICOHAM de-
velopers in the day-to-day routine tests. The L31 and L47 grids are identical between
the surface and 100 hPa and thus differ only in the vertical extent and resolution above15

the tropopause.
The latitudinal variations of the simulated time- and zonal-mean surface precipitation

rate in ICOHAM are shown in Fig. 14. In the “Control” case the total precipitation rate
peaks at the equator and at about 35◦ latitudes, with the main contributors being cumu-
lus convection and large-scale condensation, respectively. In the “Qobs” case, which20

has the same SST at the equator but weaker meridional gradients in the low latitudes,
the tropical precipitation features two peaks, while the mid-latitude rainfall shifts slightly
poleward. These results are reasonable in comparison to the APE Atlas (Williamson
et al., 2011).

Next, we follow Williamson (2008) and consider the equatorial wave propaga-25

tion characteristics. Figure 15 presents the wavenumber-frequency diagrams of trop-
ical precipitation (meridionally averaged between 10◦ S–10◦N), diagnosed using the
methodology of Wheeler and Kiladis (1999). The quantity shown is the logarithm of the
power of the symmetric component of the unnormalized spectra. It has been shown by
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Williamson (2008) that the power of the background spectrum, usually used for normal-
izing the “raw” spectrum to identify spectral peaks, is sensitive to model resolution. In
order not to lose such signal, we choose to show the raw spectra in Fig. 15, which are
also meant to serve as a reference for future work. The normalized spectra are shown
in Appendix C. The black lines that indicate the dispersion relationships of equatorial5

Rossby waves, Kelvin waves and inertia-gravity waves are the same as in Fig. 6 of
Williamson (2008).

In both “Control” and “Qobs” simulations, the tropical precipitation has higher power
at lower frequencies. The Kelvin waves are more evident in the “Control” case (upper
row in Fig. 15), while the Rossby waves show the opposite sensitivity. Interestingly,10

the Rossby waves in ICOHAM show a clear peak at westward zonal wavenumber 5 in
Fig. 15c. A question naturally arises whether this is an imprint of the icosahedral grid. It
should be noted not only that the corresponding ECHAM simulation indicates a similar
(albeit weaker) peak (Fig. 15d), but also that the APE Atlas has revealed wavenumber
5 features in the global circulation in many models that employ different types of grids15

and discretization methods (Williamson et al., 2011, Fig. 4.99). So far it is not yet clear
whether and to what extent the icosahedral grid imprint is interacting with this mode.

Comparing the four panels in Fig. 15, one can see that on the whole, the power
of the waves in ICOHAM at R2B4 is comparable to that in ECHAM6 at T63L47. The
differences between the ICOHAM and ECHAM6 results are much smaller than the20

sensitivity to SST. This is an indication that the ICOHAM model behaves well in these
simulations. In the future it will be useful to perform and analyze simulations at higher
resolutions and assess the convergence of the model behavior.

8 Conclusions

In this paper we presented and evaluated a hydrostatic atmospheric dynamical core25

employing spherical triangular grids. The finite-difference discretization is based on
the numerical techniques employed in the ICON shallow water model of Bonaventura
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and Ringler (2005) and Rı́podas et al. (2009), as well as the vertical discretization
of Simmons and Burridge (1981). The baseline version of the new dynamical core
ICOHDC uses leapfrog time stepping scheme, with additional semi-implicit correction
to handle the fastest gravity waves.

The first outcome of this effort is improved understanding of the numerical properties5

of the C-grid discretization on triangular grids. Through the truncation error analysis,
it is shown that the discrete divergence operator defined using the Gauss theorem is
of first-order accuracy even on equilateral triangles. The leading error changes its sign
from one cell to its immediate neighbors. This explains the grid-scale noise encoun-
tered in the development of the new dynamical core, and meanwhile provides useful10

hints for finding a remedy to control such noise through numerical diffusion. In recent
years, similar problems on triangular C-grids have been reported and investigated by
other modelling groups (e.g. Le Roux et al., 2007; Danilov, 2010). Our truncation error
analysis provides more insight into the origin of the numerical noise from a different
perspective.15

After the theoretical analysis, the ICOHDC is evaluated using idealized test cases
of various complexity. In this paper we have focused on the deterministic baroclinic
instability test of Jablonowski and Williamson (2006a,b), carried out simulations at var-
ious horizontal resolutions, and compared the ICOHDC results with those from the
spectral dynamical core of ECHAM and one reference model from NCAR. Longer,20

idealized “climate-like” simulations are also performed following the proposals of Held
and Suarez (1994) and Neale and Hoskins (2000). On the whole the new dynami-
cal core behaves well in the evaluation. In the dry dynamical core tests, the ICOHDC
can correctly capture the key features of the dynamical processes in question. As the
horizontal resolution increases, the numerical solutions clearly converge towards the25

references. In the aqua-planet experiments, the ICOHAM model is able to reproduce
the same equatorial wave propagation characteristics as in ECHAM6, including the
sensitivity of such characteristics to the meridional SST profile. At least in the dry tests
down to 17 km grid spacing, and in the aqua-planet experiments at 140 km resolution,
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the new model has not shown clear evidence of contamination by grid-scale noise or
overly strong numerical damping. We thus conclude that the ICOHDC can serve as
a good basis for further development of a global model for climate research.

In the next steps it will be useful to carry out more comprehensive analysis of the
aqua-planet results, perform simulations at higher resolutions to investigate the inter-5

action between numerical errors in the dynamical core and the parameterized moist
physics, and investigate the impact of horizontal diffusion on long-term, aqua-planet
and real-world climate simulations. In the ECHAM model, it has been observed that
the precipitation and cloud fields simulated over the oceans typically feature wave-like
patterns resulting from the Gibbs phenomenon associated with the spectral dynam-10

ical core. Such spurious responses to discontinuous forcing are not expected in the
ICON models. It will be interesting to see what impacts this will have on climate sim-
ulations. Furthermore, the finite-difference methods and relatively small stencils used
in the discretization of the ICOHDC make it less difficult to parallelize than the spec-
tral core in high-resolution simulations using distributed memory. As the present paper15

focuses only on the accuracy of the numerical solutions, the computational efficiency
and scalability of the new model will be reported elsewhere.

Appendix A

Cell-averaged divergence of the vector field defined by Eq. (11)

Assume a planar grid consisting of equilateral triangles with edge length l . Denote20

the center and the vertices of a generic cell by o and κj (j = 1,2,3, see Fig. 3), the
Cartesian coordinates of which are (xo,yo) and (xj ,yj ), respectively. For the vector
field defined by Eq. (10), the divergence averaged over the cell reads
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(√
3 l2

4

)−1 ∫ ∫
cell

(
∂u
∂x

+
∂v
∂y

)
dxdy =

√
70Dx

23
√
π l2

sin2xo +

√
5Dy

11
√

2π l2
, (A1)

where

Dx = 10
√

3(siny3 − cos l siny2)− (−1)δ 24 sin l cosy2

+ 2
√

3(sin3 y3 − cos l sin3 y2)+ (−1)δ 9 sin l cos3 y2 (A2)5

Dy = 2
√

3 (2 cos2y3 cosx3 − cos2y2 cosx2 − cos2y1 cosx1)

+ (−1)δ 12 (sin2y2 sinx2 − sin2y1 sinx1) . (A3)

Appendix B

Leapfrog time stepping scheme with semi-implicit correction10

For a generic prognostic equation

∂ψ
∂t

= F (ψ) (B1)

we denote the numerical solution given by the leapfrog scheme as

ψn+1
expl = ψ

n−1 +2∆t F (ψn) . (B2)

Here the superscripts denote time steps that are evenly distributed with interval ∆t.15

Assume the forcing term on the right-hand side of Eq. (B1) can be split into a fast
linear part Ffl and the slow and/or nonlinear part Fsn. The semi-implicit scheme can be
formally written as(
∂ψ
∂t

)n
=

1
2

[
θF n+1

fl + (2−θ)F n−1
fl

]
+ F nsn , (B3)
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where θ/2 is the weight of the implicitly evaluated forcing. Further manipulation of
Eq. (B3) gives(
∂ψ
∂t

)n
=

1
2

[
θF n+1

fl + (2−θ)F n−1
fl −2F nf l

]
︸ ︷︷ ︸ +

(
F nfl + F nsn

)︸ ︷︷ ︸
=

1
2
∆θttFfl + F n .

(B4)

Applying central difference to the left-hand side of Eq. (B4) and using Eq. (B2), one can
get5

ψn+1 = ψn+1
expl +∆t∆θttFfl . (B5)

In the following we use underlines to denote column vectors (matrices) containing
discrete values of a quantity defined at all vertical layers at the same horizontal location,
e.g.10

vn =
(
vn1

,vn2
, . . . ,vnNLEV

)T
, (B6)

T = (T1,T2, . . . ,TNLEV)T , (B7)

D = (D1,D2, . . . ,DNLEV)T , (B8)

in which D stands for divergence, and the superscript T denotes matrix transpose.15

Using the reference atmosphere defined in Sect. 5.10 to linearize the following gravity
wave related terms
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F (v )fl = −
RdT
p
∇p−∇φ , (B9)

F (T )fl =
Rd
Cp

T
p
dp
dt

, (B10)

F (ps)fl = −
1∫

0

∇ ·
(
v
∂p
∂η

)
dη , (B11)

one can derive the semi-implicit leap-frog scheme for normal velocity, temperature and5

surface pressure in the following form:

vn
n+1 =

(
vn

)n+1

expl
−∆t∇

(
γ
∼
∆θttT +h∆θttps

)
, (B12)

T
n+1 =

(
T
)n+1

expl −∆tτ∼∆
θ
ttD , (B13)

pn+1
s = (ps)n+1

expl −∆tν∼
T ∆θttD . (B14)

10

The square matrices γ
∼

, τ
∼

and column vectors h , ν are defined as

(
γ
∼

)
kj

=


0 for j < k
Rd α

r
k for j = k

Rd ln
(
pr
j+1/2

pr
j−1/2

)
for j > k

(B15)
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(
τ
∼

)
kj

=
∆prj
∆prk

T r

Cp

(
γ
∼

)
jk

(B16)

ν =
(
∆pr1, ∆pr2, · · · , ∆prNLEV

)T
(B17)

h =
RdT

r

prs
(1, 1, · · · , 1)T

1×NLEV
. (B18)

5

Equations (B15–B18) can be seen a simplified version of the formulae in the ap-
pendix of Simmons and Burridge (1981). In the ICOHDC we have followed ECHAM
and chosen an isothermal reference state, whilst the reference temperature in Sim-
mons and Burridge (1981) changes with vertical level.

Define a time-independent matrix10

B
∼
= γ
∼
τ
∼
+hνT (B19)

and the notation

∆θtt,explψ = θψn+1
expl + (2−θ)ψn−1 −2ψn . (B20)

Use I
∼

to denote the NLEV×NLEV identity matrix. From Eqs. (B12)–(B14) the dis-

cretized Helmholtz equation of divergence can be obtained, which takes the form15 [
I
∼
− (θ∆t)2∇2

dB
∼

]
∆θttD = ∆θtt,explD−θ∆t∇

2
d

(
γ
∼
∆θtt,expl T +h∆θtt,explps

)
. (B21)

The discrete scalar Laplacian is defined as(
∇2
d ψ
)
= div

[
gradn(ψ)

]
. (B22)

95

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 59–119, 2013

A dynamical core on
triangular grids –

Part 1

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where div and gradn are the discrete divergence and normal gradient operators, re-
spectively.

The semi-implicit time integration scheme applied in the hydrostatic model can be
summarized as the following algorithm:

1. Apply the explicit leapfrog scheme to obtain
(
vn

)n+1

expl
, Tn+1

expl and (ps)n+1
expl. Calculate5

∆θtt,explD using Eq. (B20).

2. Solve Eq. (B21) for ∆θttD.

3. Substitute ∆θttD into Eqs. (B13) and (B14) to update temperature and surface
pressure.

4. Substitute the newly obtained T
n+1 and pn+1

s into Eq. (B12) to get the normal10

velocity at the new time step.

5. Apply Asselin filter to vn, T and ps.

6. Switch time indices: n−1← n , n← n+1, then go to step 1.

Appendix C

Normalized wavenumber-prequency diagrams of the aqua-planet simulations15

See Fig. C1.
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Table 1. Total number of triangle cells and edges in various grids with root division nr = 2, the
average distance between neighboring cells, and the area ratio of largest to smallest triangles.
Grid −1 is the icosahedron projected onto the sphere.

Grid Number of Number of Average Max : min
triangular triangle distance between cell area

cells edges cell centers ratio

−1 20 30 4431.0 km 1.00
R2B0 80 120 2215.5 km 1.20
R2B1 320 480 1107.8 km 1.20
R2B2 1280 1920 553.9 km 1.27
R2B3 5120 7680 276.9 km 1.32
R2B4 20 480 30 720 138.4 km 1.38
R2B5 81 920 122 880 69.2 km 1.44
R2B6 327 680 491 520 34.6 km 1.49
R2B7 1 310 720 1 966 080 17.3 km 1.53
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Table 2. Resolutions of the ICOHDC and the spectral core of ECHAM that produce similar
results in the baroclinic wave test case. The degrees of freedom (DOF) of the ICOHDC are
defined as the total number of velocity and mass (temperature) points on one vertical level;
Those of the spectral core are defined as the total number of spectral coefficients of vorticity,
divergence, and temperature on one vertical level. nM stands for the total number of mass
points, again on one vertical level. The nM in the spectral model is that of the corresponding
Gauss grid. “dx” in the right half of the table refers to the zonal spacing of the Gauss grid.

ICOHDC Spectral core of ECHAM

Grid Name Grid Size DOF nM Truncation dx at 60◦ N dx at Equator DOF nM

R2B4 138.5 km 51 200 20 480 (T51) 130.0 km 260.0 km 8268 11 858
R5B3 110.8 km 80 000 32 000 T63 105.3 km 210.7 km 12 480 18 050
R3B4 92.3 km 115 200 46 080 (T76) 87.0 km 174.1 km 18 018 26 450
R2B5 69.2 km 204 800 81 920 T106 62.6 km 125.1 km 34 668 51 200
R5B4 55.4 km 320 000 128 000 T127 52.4 km 104.8 km 49 536 72 962
R3B5 46.2 km 460 800 184 320 (T151) 44.1 km 88.2 km 69 768 103 058
R2B6 34.6 km 819 200 327 680 (T213) 31.3 km 62.5 km 138 030 204 800
R5B5 27.7 km 1 280 000 512 000 T255 26.1 km 52.3 km 197 376 293 378
R3B6 23.1 km 1 843 200 737 280 (T302) 22.0 km 44.1 km 276 336 412 232
R2B7 17.3 km 3 276 800 1 310 720 (T403) 16.5 km 33.1 km 490 860 732 050

103

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 59–119, 2013

A dynamical core on
triangular grids –

Part 1

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wan et al.: A dynamical core on triangular grids, Part I 3

Table 1. Total number of triangle cells and edges in various grids
with root division nr=2, the average distance between neighboring
cells, and the area ratio of largest to smallest triangles. Grid -1 is
the icosahedron projected onto the sphere.

Grid
Number of
triangular

cells

Number of
triangle
edges

Average
distance
between

cell centers

Max:min
cell area

ratio

-1 20 30 4431.0 km 1.00
R2B0 80 120 2215.5 km 1.20
R2B1 320 480 1107.8 km 1.20
R2B2 1280 1920 553.9 km 1.27
R2B3 5120 7680 276.9 km 1.32
R2B4 20480 30720 138.4 km 1.38
R2B5 81920 122880 69.2 km 1.44
R2B6 327680 491520 34.6 km 1.49
R2B7 1310720 1966080 17.3 km 1.53

b

b

b

b

b

b

b

b

b

b

b

b

bc

bc

bc

bc

bc
k − 1/2

k

k + 1/2

b p , φ , η̇
∂p

∂η

b T , p , φ

vn
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Fig. 1. Illustration of the triangular grid and the location of main
variables. Vertical level indices are shown to the left of the sketch.
The meaning of the symbols can be found in Sections 2 and 3.

Like in Bonaventura and Ringler (2005, hereafter referred
to as BR05), C-staggering is applied to the triangular cells by
placing mass and temperature at triangle circumcenters. This
particular choice of cell center (as opposed to, e.g., barycen-
ter) results in the property that the arc connecting two neigh-
boring mass points is orthogonal to and bisects the shared
triangle edge. These bisection points are used as velocity
points, at which the component of horizontal wind perpen-
dicular to the edge (denoted by vn in this paper, cf. Fig. 1) is
predicted using Eqn. (1). In the vertical, the widely used hy-
brid p-σ coordinate of Simmons and Strüfing (1981) (”coor-
dinate 4” in their report) is employed. The staggering follows
Lorenz (1960), meaning that the horizontal wind and temper-
ature are carried at ”full levels” representing layer-mean val-
ues, while the vertical velocity is diagnosed at ”half levels”
(i.e., layer interfaces, cf. Fig. 1). The vertical grid is identical
to that used in the ECHAM models (cf., e.g., Roeckner et al.,
2006).

(a)

b

b

b

b

b

b

b

(b)

b

b

bb
τ

n

Fig. 2. Schematic showing the stencils of (a) the divergence and
curl operators, and (b) the normal and tangential gradient operators
described in Section 4.1.

4 C-grid discretization

In this section we briefly describe the C-grid discretization
inherited from the ICON shallow water model of BR05, then
present an analysis of its properties.

4.1 Basic operators

BR05 established a spatial discretization method for solving
the shallow water equations on the spherical triangular grid
described in the previous section. This method forms the ba-
sis for the hydrostatic model discussed here. Their discretiza-
tion concept is a mimetic finite difference scheme consisting
of the following elements:

– The discrete model predicts the normal component of
the horizontal wind vn with respect to triangle edges.
The tangential component vτ , needed for the vorticity
flux term in the momentum equation, is reconstructed
from the normal components using vector radial basis
functions (cf. references in section 5.2).

– Horizontal derivatives are represented by four discrete
operators. The divergence operator div(v) applies the
Gauss theorem on each triangular control volume to ap-
proximate the spatially averaged divergence over that
cell (Fig. 2a). The curl operator curl(v) uses the
Stokes’ theorem to approximate the vertical component
of the relative vorticity averaged over a dual (hexago-
nal or pentagonal) cell centered at a triangle vertex and
bounded by arcs connecting the centers of all triangles
sharing the vertex (Fig. 2a). The directional deriva-
tive of a scalar field at the midpoint of a triangle edge
in the normal direction, gradn(·), is approximated by
a straightforward finite-difference discretization involv-
ing two cell centers, and referred to as the (normal) gra-
dient operator (Fig. 2b). The horizontal derivative tan-

Fig. 1. Illustration of the triangular grid and the location of main variables. Vertical level indices
are shown to the left of the sketch. The meaning of the symbols can be found in Sects. 2 and 3.
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Table 1. Total number of triangle cells and edges in various grids
with root division nr=2, the average distance between neighboring
cells, and the area ratio of largest to smallest triangles. Grid -1 is
the icosahedron projected onto the sphere.

Grid
Number of
triangular

cells

Number of
triangle
edges

Average
distance
between

cell centers

Max:min
cell area

ratio

-1 20 30 4431.0 km 1.00
R2B0 80 120 2215.5 km 1.20
R2B1 320 480 1107.8 km 1.20
R2B2 1280 1920 553.9 km 1.27
R2B3 5120 7680 276.9 km 1.32
R2B4 20480 30720 138.4 km 1.38
R2B5 81920 122880 69.2 km 1.44
R2B6 327680 491520 34.6 km 1.49
R2B7 1310720 1966080 17.3 km 1.53
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Fig. 1. Illustration of the triangular grid and the location of main
variables. Vertical level indices are shown to the left of the sketch.
The meaning of the symbols can be found in Sections 2 and 3.

Like in Bonaventura and Ringler (2005, hereafter referred
to as BR05), C-staggering is applied to the triangular cells by
placing mass and temperature at triangle circumcenters. This
particular choice of cell center (as opposed to, e.g., barycen-
ter) results in the property that the arc connecting two neigh-
boring mass points is orthogonal to and bisects the shared
triangle edge. These bisection points are used as velocity
points, at which the component of horizontal wind perpen-
dicular to the edge (denoted by vn in this paper, cf. Fig. 1) is
predicted using Eqn. (1). In the vertical, the widely used hy-
brid p-σ coordinate of Simmons and Strüfing (1981) (”coor-
dinate 4” in their report) is employed. The staggering follows
Lorenz (1960), meaning that the horizontal wind and temper-
ature are carried at ”full levels” representing layer-mean val-
ues, while the vertical velocity is diagnosed at ”half levels”
(i.e., layer interfaces, cf. Fig. 1). The vertical grid is identical
to that used in the ECHAM models (cf., e.g., Roeckner et al.,
2006).

(a)
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bb
τ

n

Fig. 2. Schematic showing the stencils of (a) the divergence and
curl operators, and (b) the normal and tangential gradient operators
described in Section 4.1.

4 C-grid discretization

In this section we briefly describe the C-grid discretization
inherited from the ICON shallow water model of BR05, then
present an analysis of its properties.

4.1 Basic operators

BR05 established a spatial discretization method for solving
the shallow water equations on the spherical triangular grid
described in the previous section. This method forms the ba-
sis for the hydrostatic model discussed here. Their discretiza-
tion concept is a mimetic finite difference scheme consisting
of the following elements:

– The discrete model predicts the normal component of
the horizontal wind vn with respect to triangle edges.
The tangential component vτ , needed for the vorticity
flux term in the momentum equation, is reconstructed
from the normal components using vector radial basis
functions (cf. references in section 5.2).

– Horizontal derivatives are represented by four discrete
operators. The divergence operator div(v) applies the
Gauss theorem on each triangular control volume to ap-
proximate the spatially averaged divergence over that
cell (Fig. 2a). The curl operator curl(v) uses the
Stokes’ theorem to approximate the vertical component
of the relative vorticity averaged over a dual (hexago-
nal or pentagonal) cell centered at a triangle vertex and
bounded by arcs connecting the centers of all triangles
sharing the vertex (Fig. 2a). The directional deriva-
tive of a scalar field at the midpoint of a triangle edge
in the normal direction, gradn(·), is approximated by
a straightforward finite-difference discretization involv-
ing two cell centers, and referred to as the (normal) gra-
dient operator (Fig. 2b). The horizontal derivative tan-

Fig. 2. Schematic showing the stencils of (a) the divergence and curl operators, and (b) the
normal and tangential gradient operators described in Sect. 4.1.
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4 Wan et al.: A dynamical core on triangular grids, Part I

gential to the edge, gradτ (·), is also defined at the edge
midpoint, approximated by a central difference using
values at the two ends of the edge (Fig. 2b). The mathe-
matical formulations of the four operators are given by
Eqns. (4), (5), (7), and (8) in BR05.

– Higher order spatial derivatives (Laplacian and hyper-
Laplacian) are constructed from the four basic opera-
tors outlined above (see, e.g., Eqn. (14) in Section 4.3).
These derivatives are needed, for example, in semi-
implicit time stepping schemes and for horizontal dif-
fusion.

This discretization scheme is conceptually the same as the
widely used C-type discretization on quadrilateral grids. The
basic operators are simple, but nevertheless have nice prop-
erties. For example the divergence operator per construction
makes it straightforward to achieve mass conservation, while
the curl operator guarantees that the global integral of the
relative vorticity vanishes. The divergence and gradient op-
erators are mimetic in the sense that the rule of integration
by parts has a counterpart in the discrete model (cf. Eqns. (9)
and (10) in BR05), a desirable property for achieving con-
servation properties. The basic operators are also highly lo-
calized (i.e., defined on small stencils), which is beneficial in
massively parallel computing.

However, a question remains whether the good properties
of the quadrilateral C-grids in terms of the faithful represen-
tation of inertia-gravity waves are inherited by the triangu-
lar C-grid without limitation. For the hexagonal/pentagonal
grids (which can been viewed as the dual meshes of the
triangular grids), the wave dispersion analysis in Ničković
et al. (2002) revealed that discretization approaches using
C-staggering could produce spurious geostrophic modes. A
technique to avoid such modes on the hexagonal/pentagonal
meshes was proposed in Thuburn (2008) and further devel-
oped in (Thuburn et al., 2009). On the triangular C-grids,
spurious modes have also been noticed (e.g., Le Roux et al.,
2007; Danilov, 2010). Some recent articles discussed this is-
sue by analyzing the linearized shallow water equations and
the representation of vector fields in a trivariate coordinate
system (Danilov, 2010; Gassmann, 2011). Here, we take
a different perspective and use truncation error analysis to
show that the divergence operator on the triangular C-grid
described above inherently produces grid-scale checkerboard
error patterns. The same analysis leads to a proposal for esti-
mating the specific amount of numerical hyper-diffusion nec-
essary to reduce the impact of these systematic errors on nu-
merical simulations.

4.2 Truncation error analysis

To focus on the triangular geometry and the C-staggering,
we carry out the analysis on a planar grid consisting of
equilateral triangles of edge length l. We associate a local
Cartesian coordinate to each cell with the origin located at

x

y

o

b b

b

κ1 κ2

κ3

n3 n2

n1

δ = 0

x

y

o

b b

b

κ1 κ2

κ3

n3 n2

n1

δ = 1

Fig. 3. Planar equilateral triangles considered in the truncation error
analysis in Section 4.2.

the triangle center and the x-axis parallel to one edge. We
then denote the normal outward unit vector at edge mid-
points by nj where j ∈ [1,3] is the edge index. A label δ
is assigned to each cell to denote its orientation, with val-
ues of 0 and 1 for upward- and downward-pointing trian-
gles, respectively. Thus, the three neighboring cells shar-
ing edges with an upward-pointing triangle are downward-
pointing, and vice versa. In the truncation error calculation,
a downward-pointing triangle is understood as the image of
the corresponding upward-pointing triangle mirrored at the
x-axis (Fig. 3). For a generic vector field v differentiable
to a sufficiently high order, we denote its components in the
x and y directions by u and v, respectively. Applying the
discrete divergence operator pointwise values of the vector
field known at edge midpoints, denoted as vj , the 2D Taylor
expansion yields

div(v) =

(√
3l2

4

)−1

l

3∑
j=1

vj ·nj (6)

= (∇·v)o+ (−1)δ lH(v)o+
l2

96

[
∇2(∇·v)

]
o

+(−1)δ l3F (v)o+O
(
l4
)
. (7)

Here the subscript o denotes the function evaluation at the
triangle center. The functions H and F read

H(v) =

√
3

24

(
2
∂2u

∂x∂y
+
∂2v

∂x2
− ∂

2v

∂y2

)
, (8)

F (v) =

√
3

2933

(
12

∂4u

∂x3∂y
+2

∂4u

∂x∂y3
+3

∂4v

∂x4
+6

∂4v

∂x2∂y2

−5
∂4v

∂y4

)
. (9)

Eqn. (7) indicates that the discrete divergence operator ap-
plied to pointwise values of v is a first-order approximation
of the divergence at the triangle center. More importantly, the
first-order error term changes sign from an upward-pointing
triangle to a downward-pointing one, which results in a
checkerboard error pattern.

Fig. 3. Planar equilateral triangles considered in the truncation error analysis in Sect. 4.2.
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Fig. 4. (a) Numerical error of the cell-averaged divergence of the
velocity field defined by Eqn. (11), calculated using Eqn. (6) on a
planar triangular grid with 10.4◦ resolution in the x direction. (b)
The l1, l2 and l∞ error norms at different resolutions. The discrete
divergence is calculated by first evaluating Eqn. (11) at edge cen-
ters then applying operator (6). Numerical error is computed with
respect to cell average.

In a finite-volume perspective, the divergence computed
by the Gauss theorem should be interpreted as cell average
rather than a pointwise value. However, it is worth noting
that, in an equilateral triangle, the cell-center value can be
viewed as a second-order approximation of the cell average.
Therefore, the first order error term in Eqn. (7) will also be
present in the approximation of the cell average. Indeed, it is
not difficult to check that

div(v) = (∇·v)
c

+ (−1)δ lH(v)o−
l2

96

[
∇2(∇·v)

]
o

+O
(
l3
)

(10)

where ()
c

stands for cell average. The leading error remains
first order and also features a checkerboard pattern. In or-
der to check empirically the impact of Eqn. (10), numerical

calculations have been performed using the vector field
u(x,y) =

1

4

√
105

2π
cos2xcos2y siny ,

v(x,y) = −1

2

√
15

2π
cosxcosy siny ,

(11)

the divergence of which reads

∇·v =
−1

2
√

2π

(√
105sin2xcos2y siny+

√
15cosxcos2y

)
.

(12)
The discrete divergence is calculated by first evaluating
Eqn. (11) at edge centers and then applying operator (6). Nu-
merical errors are calculated against the cell average given in
Appendix A. Fig. 4 shows the spatial distribution of the error
and the convergence with respect to resolution. These results
confirm the error analysis in Eqn. (10).

It could also be remarked that, if the operand of the di-
vergence operator is interpreted as the average along the
edge rather than the point value at the edge center, then
the Gauss theorem will give the exact cell-averaged diver-
gence without any error. However, it should be noted that in
a C-grid discretization, the divergence operator is typically
not applied to the horizontal velocity but to the mass flux
(cf Eqns. (3) and (4)). Since the mass flux is not a prog-
nostic variable but needs to be derived, an accurate edge-
mean is not available. In ICON and in many other models
the interpolation of density (or equivalent variables) from
neighboring cells to edges gives a second order mass flux
on a regular grid. It can be shown analytically that if the
edge-mean mass flux is approximated to m-th order, m be-
ing a positive even number, the divergence operator on an
equilateral triangle will be of order m−1, and the sign of
the leading error depends on the orientation of the trian-
gle. (Detailed derivation can be found in Appendix B.4 of
Wan (2009), available from http://www.mpimet.mpg.de/en/
science/publications/reports-on-earth-system-science.html.)

In summary, the truncation error analysis shows that the
divergence operator defined on the triangular C-grid yields
a checkerboard error pattern. This appears to be an inher-
ent property related to the cell shape and the placement of
the velocity variables. The curl and gradient operators, on
the other hand, are second-order accurate on the regular pla-
nar grid due to the symmetric geometry. The derivations are
omitted in this paper.

4.3 Noise control

The checkerboard error pattern highlighted by the analysis
in section 4.2 enters the hydrostatic model system because
of the continuity equation (3) and the temperature advection
term in Eqn. (2) (cf. the discrete form in Section 5.5). Grid
scale noise in the divergence operator typically causes noise
in the surface pressure ps and temperature T , which then af-
fects the velocity field through the pressure gradient force.
Such numerical noise, while less apparent in the barotropic

Fig. 4. (a) Numerical error of the cell-averaged divergence of the velocity field defined by
Eq. (11), calculated using Eq. (6) on a planar triangular grid with 10.4◦ resolution in the x-
direction. (b) The l1, l2 and l∞ error norms at different resolutions. The discrete divergence is
calculated by first evaluating Eq. (11) at edge centers then applying operator (6). Numerical
error is computed with respect to cell average.
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(a)
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(b)
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edge

Fig. 5. (a) Schematic for the area-weighted averaging defined by
Eqn. (21); (b) Stencil of the vector reconstruction used for obtaining
the tangential velocity in Eqns. (22) and (23).

5 Discrete formulation of the dynamical core

We introduce now the discrete form of the primitive equa-
tions (1) – (4) employed in the ICOHDC.

5.1 Horizontal interpolation

On a staggered horizontal grid, the normal wind and the rela-
tive vorticity are not co-located with mass (and temperature).
Horizontal interpolation is thus necessary. The following in-
terpolations are used in the ICOHDC:

– ψ
c2e

, linear interpolation of a scalar ψ from two neigh-
boring cell centers to the midpoint of the shared edge;

– ψ
v2e

, linear interpolation of a scalarψ from two vertices
of an edge to its midpoint (i.e., arithmetic average).

– ψ
e2c,lin

, a bilinear interpolation from the three edges
of a triangle to its circumcenter. The interpolation is
performed in a local spherical coordinate whose equator
and primal meridian intersect at the cell center.

– ψ
e2c,aw

, an area-weighted interpolation

ψ
e2c,aw

=
∑
e

Ac,e
Ac

ψe (21)

where Ac is the cell area, and Ac,e the area of a sub-triangle
defined by the cell center c and the two vertices of edge e
(Fig. 5a).

5.2 Vorticity flux and kinetic energy gradient

The first two terms on the right-hand side of Eqn. (1), i.e. the
absolute vorticity flux and the kinetic energy gradient, repre-
sent the combination of horizontal momentum advection and
Coriolis force in vector invariant form. The kinetic energy
gradient is calculated in our model by

gradn

(
0.5(v2

n+v2
τ )
e2c,lin

)
, (22)

and the absolute vorticity flux by(
f+curl(v)

v2e
)
vτ . (23)

As mentioned earlier, the C-grid discretization predicts
only the normal component of the horizontal wind. The tan-
gential wind vτ needed by (22) and (23) is reconstructed
at edge midpoints using the vector radial basis functions
(RBFs) introduced in Narcowich and Ward (1994), with an
inverse multiquadric kernel. For a more complete description
and testing of this algorithm we refer to Ruppert (2007) and
Bonaventura et al. (2011). The stencil involves four edges
surrounding the target one (Fig. 5b). Following BR05, it is
assumed that the normal and tangential components form a
right-hand system.

5.3 Pressure and layer thickness

The η coordinate of Simmons and Strüfing (1981), a terrain
following coordinate near the Earth’s surface that gradually
transforms into pressure coordinate in the upper troposphere,
has been widely used in atmospheric GCMs. Here we only
mention a few technical details for completeness and clarity:
The pressure at layer interfaces (see Fig. 1) is given by

p
k+1/2

=A
k+1/2

+B
k+1/2

ps , k= 0,1,...,NLEV . (24)

Here ps stands for surface pressure. NLEV is the total num-
ber of vertical layers. A and B are predefined parameters
(see, e.g., Roeckner et al., 2003). B = ∂p/∂ps is used in
equation (4). The pressure thickness of the k-th model layer
is denoted by ∆p

k

(
= p

k+1/2
−p

k−1/2

)
.

5.4 Continuity equation

To compute the right-hand side of Eqn. (3) the divergence
operator is applied to the mass flux v∂p/∂η , followed by
an integral through the vertical column. This discretization
does not introduce any spurious sources or sinks in the total
air mass, as long as the mass flux has a unique value at each
edge. In this paper, the air mass flux in the normal direction
Ne of an edge e is computed by

vn(∂p/∂η)
c2e
. (25)

5.5 Horizontal advection of temperature

The horizontal advection of temperature at cell c in layer k
is discretized in an energy-conserving form

(v ·∇T )c,k =
1

∆pc,k

[
div(v∆p T )c,k−Tc,kdiv(v∆p)c,k

]
.

(26)
The mass flux divergence in this equation is the same as in
the discrete continuity equation. The heat flux divergence is
calculated by first interpolating temperature and layer thick-
ness separately from cells to edges, multiplying by the nor-
mal wind and then applying the discrete divergence operator.

5.6 Vertical advection of momentum and temperature

The vertical advection terms in Eqns. (1) and (2) are dis-
cretized in the same way as in ECHAM following Simmons

Fig. 5. (a) Schematic for the area-weighted averaging defined by Eq. (21); (b) stencil of the
vector reconstruction used for obtaining the tangential velocity in Eqs. (22) and (23).
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10 Wan et al.: A dynamical core on triangular grids, Part I

Fig. 6. Evolution of the baroclinic wave in the Jablonowski and Williamson (2006a,b) test case, as shown by the surface pressure (unit: hPa,
left column) and 850 hPa temperature (unit: K, right column) simulated by the new dynamical core at R2B5 (70 km) resolution. Further
details can be found in Section 6.1.2.

stopped decreasing once the resolutions increased beyond a
certain limit. Based on this observation, the uncertainty in
their reference solutions was estimated. The corresponding
uncertainties in the difference norms are shown by the yel-
low shading in Fig. 8. When the difference norms fall below
the uncertainty limit, the solution being tested is considered
as of the same quality as the reference solution.

In Fig. 8 the norms of ps differences are shown be-
tween the R2B3 to R2B6 simulations and the R2B7 run
(upper row), as well as between the ICOHDC simulations
and a reference solution in JW06 from the National Cen-
ter for Atmospheric Research Semi-Lagrangian dynamical
core (NCAR SLD, Fig. 8 second row). Difference norms
computed against the other reference solutions in JW06 are
very similar (not shown). Regardless of the choice of ref-

erence, panels in Fig. 8 clearly indicate a decrease in the
difference norms when the horizontal resolution increases.
Convergence of the numerical solution is achieved at R2B6.
The R2B6 and R2B7 solutions are able to represent the baro-
clinic wave evolution within the uncertainty in the reference
solution.

Since the ultimate purpose of developing the new dynam-
ical core is to use it in climate research, a natural question
one would expect from the potential users, especially from
those having been using ECHAM, is the equivalent resolu-
tions between the ICOHDC and the spectral core. In Fig. 9
the ICOHDC results are presented side-by-side with simula-
tions from the spectral core at four spectral resolutions that
have been used for the full model in various applications.
By comparing the strength of the vortices, the magnitude of

Fig. 6. Evolution of the baroclinic wave in the Jablonowski and Williamson (2006a,b) test case,
as shown by the surface pressure (unit: hPa, left column) and 850 hPa temperature (unit: K,
right column) simulated by the new dynamical core at R2B5 (70 km) resolution. Further details
can be found in Sect. 6.1.2.
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Fig. 7. Surface pressure (unit: hPa, left column) and 850 hPa temperature (unit: K, right column) at day 9 in the Jablonowski and Williamson
(2006a,b) baroclinic wave test simulated by the new dynamical core at various horizontal resolutions. Further details can be found in
Section 6.1.2.

the horizontal gradients, and the level of details of the char-
acteristic patterns represented by the models, we come to
the conclusion that each ICOHDC solution in this figure is
of slightly higher resolution than the spectral model results
shown in the same row. The difference of the spectral model
results w.r.t. the NCAR SLD solution is shown in Fig. 10.
Note that although from the 850 hPa vorticity snapshots in
Fig. 9 we conclude that R2B5 is higher than T85, the T85
simulation captures the reference solution within the uncer-
tainty while R2B5 does not. According to the snapshots,
the errors in the lower resolution spectral model results are
mainly in the strength of the vortices and the spatial gradi-
ents, while in the ICOHDC the phase speed is also a major
source of numerical error.

Phase error is a typical problem associated with dynam-

ical cores using second (or lower) order spatial discretiza-
tion methods. It is also one of the main disadvantages of
such models at medium and low resolutions in compari-
son with the spectral transform method. It is worth not-
ing that in JW06 the finite-difference model GME has a
similar phase problem, while the NCAR finite volume core
(Lin, 2004), which uses the third-order piecewise parabolic
advection algorithm, does not. Skamarock and Gassmann
(2011) showed that in the ICON non-hydrostatic model
(Gassmann and coauthors, 2010) and in the Model for Pre-
diction Across Scales (MPAS; Skamarock et al., 2010), re-
placing the second-order potential temperature transport by
third-order schemes can significantly reduce the magnitude
of the phase error in this test case and suppress its growth.
For the hydrostatic dynamical core discussed here, it will

Fig. 7. Surface pressure (unit: hPa, left column) and 850 hPa temperature (unit: K, right column)
at day 9 in the Jablonowski and Williamson (2006a,b) baroclinic wave test simulated by the new
dynamical core at various horizontal resolutions. Further details can be found in Sect. 6.1.2.
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12 Wan et al.: A dynamical core on triangular grids, Part I

Fig. 8. l1, l2 and l∞ norms (left, middle and right columns, respectively) of surface pressure differences (unit: hPa) in the Jablonowski and
Williamson (2006a,b) baroclinic wave test between lower-resolution ICOHDC simulations and the R2B7 solution (upper row), and between
all ICOHDC simulations shown in Fig. 7 and the NCAR semi-Lagrangian model result at T340 resolution (lower row). Further details can
be found in Section 6.1.2.

Table 2. Resolutions of the ICOHDC and the spectral core of ECHAM that produce similar results in the baroclinic wave test case. The
degrees of freedom (DOF) of the ICOHDC are defined as the total number of velocity and mass (temperature) points on one vertical level;
Those of the spectral core are defined as the total number of spectral coefficients of vorticity, divergence, and temperature on one vertical
level. nM stands for the total number of mass points, again on one vertical level. The nM in the spectral model is that of the corresponding
Gauss grid. The ”dx” in columns 2 and 3 of the right half of the table refers to the zonal spacing of the Gauss grid.

ICOHDC Spectral core of ECHAM

Grid Name Grid Size DOF nM ∆t Truncation dx at 60 ◦N dx at Equator DOF nM

R2B4 138.5 km 51200 20480 600 s (T51) 130.0 km 260.0 km 8268 11858
R5B3 110.8 km 80000 32000 480 s T63 105.3 km 210.7 km 12480 18050
R3B4 92.3 km 115200 46080 400 s (T76) 87.0 km 174.1 km 18018 26450
R2B5 69.2 km 204800 81920 300 s T106 62.6 km 125.1 km 34668 51200
R5B4 55.4 km 320000 128000 240 s T127 52.4 km 104.8 km 49536 72962
R3B5 46.2 km 460800 184320 200 s (T151) 44.1 km 88.2 km 69768 103058
R2B6 34.6 km 819200 327680 150 s (T213) 31.3 km 62.5 km 138030 204800
R5B5 27.7 km 1280000 512000 120 s T255 26.1 km 52.3 km 197376 293378
R3B6 23.1 km 1843200 737280 100 s (T302) 22.0 km 44.1 km 276336 412232
R2B7 17.3 km 3276800 1310720 75 s (T403) 16.5 km 33.1 km 490860 732050

probably also be beneficial to use a higher-order scheme for
temperature advection in Eqn. (26) in Section 5. On the other
hand, Fig. 9 also suggests that the phase error in the ICOHDC
becomes negligible at R2B6 (35 km). Since the ICON mod-
els are developed for high-resolution modelling, the phase

error is not expected to be an obstacle in real applications of
the new model system.

Coming back to the question of equivalent resolutions, we
have performed the baroclinic wave test at several other reso-
lutions in addition to those in Fig. 9, both with the ICOHDC

Fig. 8. l1, l2 and l∞ norms (left, middle and right columns, respectively) of surface pressure
differences (unit: hPa) in the Jablonowski and Williamson (2006a,b) baroclinic wave test be-
tween lower-resolution ICOHDC simulations and the R2B7 solution (upper row), and between
all ICOHDC simulations shown in Fig. 7 and the NCAR semi-Lagrangian model result at T340
resolution (lower row). Further details can be found in Sect. 6.1.2.
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Fig. 9. 850 hPa relative vorticity (unit: 10−6 s−1) at day 9 in the Jablonowski and Williamson (2006a,b) baroclinic instability test simulated
by the new dynamical core (left column) and the spectral transform core of ECHAM (right column) at various horizontal resolutions. Further
details can be found in Section 6.1.2.

Fig. 10. As in Fig. 8 but between simulations performed with the spectral transform dynamical core of ECHAM and the reference solution
at T340 provided by the NCAR semi-Lagrangian model result.

Fig. 9. 850 hPa relative vorticity (unit: 10−6 s−1) at day 9 in the Jablonowski and Williamson
(2006a,b) baroclinic instability test simulated by the new dynamical core (left column) and the
spectral transform core of ECHAM (right column) at various horizontal resolutions. Further
details can be found in Sect. 6.1.2.
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Fig. 9. 850 hPa relative vorticity (unit: 10−6 s−1) at day 9 in the Jablonowski and Williamson (2006a,b) baroclinic instability test simulated
by the new dynamical core (left column) and the spectral transform core of ECHAM (right column) at various horizontal resolutions. Further
details can be found in Section 6.1.2.

Fig. 10. As in Fig. 8 but between simulations performed with the spectral transform dynamical core of ECHAM and the reference solution
at T340 provided by the NCAR semi-Lagrangian model result.
Fig. 10. As in Fig. 8 but between simulations performed with the spectral transform dynamical
core of ECHAM and the reference solution at T340 provided by the NCAR semi-Lagrangian
model.
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Fig. 11. Zonal mean climate state simulated by the ICOHDC in the Held-Suarez test at R2B5 resolution. The quantities shown are ensemble
averages of 10 independent integrations. Each ensemble member starts from the same initial condition but with random noise added to the
wind field. Further details can be found in Section 6.2.

Fig. 11. Zonal mean climate state simulated by the ICOHDC in the Held-Suarez test at R2B5
resolution. The quantities shown are ensemble averages of 10 independent integrations. Each
ensemble member starts from the same initial condition but with random noise added to the
wind field. Further details can be found in Sect. 6.2.
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16 Wan et al.: A dynamical core on triangular grids, Part I

Fig. 12. Differences between the ensemble mean climate statistics in the Held-Suarez tests performed with the ICOHDC at R2B3 and
R2B5 resolutions. Dashed contours indicate negative values. In the areas with gray and light blue shading the differences are judged to be
significant in the Kolmogorov-Smirnov test at 0.05 and 0.01 significance levels, respectively. Further details can be found in Section 6.2.

Fig. 12. Differences between the ensemble mean climate statistics in the Held-Suarez tests
performed with the ICOHDC at R2B3 and R2B5 resolutions. Dashed contours indicate neg-
ative values. In the areas with gray and light blue shading, the differences are judged to be
significant in the Kolmogorov-Smirnov test at 0.05 and 0.01 significance levels, respectively.
Further details can be found in Sect. 6.2.
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Fig. 13. As in Fig. 12 but for the differences between R2B4 and R2B5 simulations.
Fig. 13. As in Fig. 12 but for the differences between R2B4 and R2B5 simulations.

116

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/59/2013/gmdd-6-59-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 59–119, 2013

A dynamical core on
triangular grids –

Part 1

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wan et al.: A dynamical core on triangular grids, Part I 19

Fig. 14. Time and zonal mean surface precipitation rate (unit: mm day−1, solid black lines) simulated by ICOHAM in aqua-planet simula-
tions at R2B4L31 resolution using the ”Control” (left) and ”Qobs” (right) SST profiles. The contributions from convective (dotted red lines)
and large-scale (dashed blue lines) precipitation are also displayed. Further details can be found in Section 7.

Fig. 15. Wavenumber-frequency diagrams of tropical precipitation (meridionally averaged between 10◦S-10◦N) in aqua-planet simulations
carried out with ICOHAM at R2B4L31 (left column) and ECHAM6 at T63L47 (right column). The color shading shows the logarithm of
the power of the symmetric component of the unnormalized spectra, diagnosed using the methodology of Wheeler and Kiladis (1999). The
black lines indicate the dispersion relationships of westward propagating equatorial Rossby waves, eastward propagating Kelvin waves, and
inertia-gravity waves that can propagate either westward or eastward. The upper row shows results corresponding to the ”Control” SST
profile. The lower row correspond to the ”Qobs” profile. Further details can be found in Section 7.

Fig. 14. Time and zonal mean surface precipitation rate (unit: mm day−1, solid black lines)
simulated by ICOHAM in aqua-planet simulations at R2B4L31 resolution using the “Control”
(left) and “Qobs” (right) SST profiles. The contributions from convective (dotted red lines) and
large-scale (dashed blue lines) precipitation are also displayed. Further details can be found in
Sect. 7.
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Fig. 14. Time and zonal mean surface precipitation rate (unit: mm day−1, solid black lines) simulated by ICOHAM in aqua-planet simula-
tions at R2B4L31 resolution using the ”Control” (left) and ”Qobs” (right) SST profiles. The contributions from convective (dotted red lines)
and large-scale (dashed blue lines) precipitation are also displayed. Further details can be found in Section 7.

Fig. 15. Wavenumber-frequency diagrams of tropical precipitation (meridionally averaged between 10◦S-10◦N) in aqua-planet simulations
carried out with ICOHAM at R2B4L31 (left column) and ECHAM6 at T63L47 (right column). The color shading shows the logarithm of
the power of the symmetric component of the unnormalized spectra, diagnosed using the methodology of Wheeler and Kiladis (1999). The
black lines indicate the dispersion relationships of westward propagating equatorial Rossby waves, eastward propagating Kelvin waves, and
inertia-gravity waves that can propagate either westward or eastward. The upper row shows results corresponding to the ”Control” SST
profile. The lower row correspond to the ”Qobs” profile. Further details can be found in Section 7.

Fig. 15. Wavenumber-frequency diagrams of tropical precipitation (meridionally averaged be-
tween 10◦ S–10◦ N) in aqua-planet simulations carried out with ICOHAM at R2B4L31 (left col-
umn) and ECHAM6 at T63L47 (right column). The color shading shows the logarithm of the
power of the symmetric component of the unnormalized spectra, diagnosed using the method-
ology of Wheeler and Kiladis (1999). The black lines indicate the dispersion relationships
of westward propagating equatorial Rossby waves, eastward propagating Kelvin waves, and
inertia-gravity waves that can propagate either westward or eastward. The upper row shows
results corresponding to the “Control” SST profile. The lower row correspond to the “Qobs”
profile. Further details can be found in Sect. 7.
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Fig. C1. As in Fig. 15 but showing the normalized spectra. Further details can be found in Section 7.
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