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Abstract

Simulations using IPCC-class climate models are subject to fail or crash for a vari-
ety of reasons. Quantitative analysis of the failures can yield useful insights to better
understand and improve the models. During the course of uncertainty quantification
(UQ) ensemble simulations to assess the effects of ocean model parameter uncer-5

tainties on climate simulations, we experienced a series of simulation crashes within
the Parallel Ocean Program (POP2) component of the Community Climate System
Model (CCSM4). About 8.5 % of our CCSM4 simulations failed for numerical reasons
at combinations of POP2 parameter values. We apply support vector machine (SVM)
classification from machine learning to quantify and predict the probability of failure as10

a function of the values of 18 POP2 parameters. A committee of SVM classifiers read-
ily predicts model failures in an independent validation ensemble, as assessed by the
area under the receiver operating characteristic (ROC) curve metric (AUC> 0.96). The
causes of the simulation failures are determined through a global sensitivity analysis.
Combinations of 8 parameters related to ocean mixing and viscosity from three dif-15

ferent POP2 parameterizations are the major sources of the failures. This information
can be used to improve POP2 and CCSM4 by incorporating correlations across the
relevant parameters. Our method can also be used to quantify, predict, and understand
simulation crashes in other complex geoscientific models.

1 Introduction20

Modern global three-dimensional climate models are extraordinarily complex pieces
of science (e.g. Randall et al., 2007; Gent et al., 2011; The HadGEM2 Development
Team, 2011) and software engineering (Easterbrook et al., 2011; Rugaber et al., 2011;
Easterbrook, 2010). They contain over a million lines of code (Easterbrook and Johns,
2009; Easterbrook, 2012) and use hundreds to thousands of files, functions, and sub-25

routines to solve equations of state and conservation laws for the flows of matter,
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energy, and momentum within and between the atmosphere, oceans, land, and other
reservoirs of the Earth system (Washington and Parkinson, 2005). They also use nu-
merous algorithms of biological, chemical, geologic, and anthropogenic processes to
simulate the cycles of carbon, nitrogen, sulfur, aerosols, ozone, greenhouse gases,
and other climate-relevant quantities of interest. To compound this complexity, these5

algorithms operate across many orders of magnitude in space and time, and contain
constituents that exist in gas, liquid, solid and mixed phases.

Given this enormous range of scientific complexity, climate models are vulnerable to
many types of software design and implementation issues. Climate models are devel-
oped in a manner analogous to large open source and agile software projects (Easter-10

brook and Johns, 2009). Based on current best understanding, small groups of scien-
tists create, test, and refine modules for select climate processes or sub-systems (e.g.
atmospheric convection or aerosol microphysics). Their software changes are com-
mitted upstream to the climate model codebase, and the cycle is repeated until the
model simulations reproduce desired features (i.e. model validation). Varying amounts15

of software testing are conducted throughout the cycle, but formal code verification
practices (e.g. see D’Silva et al., 2008) are only recently starting to be considered for
climate model development (Clune and Rood, 2011; Farrell et al., 2011). Nonetheless,
the concentration on sound science, as opposed to software correctness, has led to cli-
mate models that contain fewer software defects than other comparably-sized projects20

(Pipitone and Easterbrook, 2012).
Software issues aside, many potential problems still arise with scientific represen-

tations in complex models. As code verification can be used to find software bugs,
emerging tools being developed in the field of uncertainty quantification (UQ) (see Na-
tional Research Council Report, 2012) can help pinpoint scientific discrepancies in25

simulation models, the knowledge of which can be used to guide and improve model
development. Primary UQ targets for climate models are schemes containing param-
eters with adjustable values. These schemes represent processes that are not fully
understood or cannot be directly simulated at the model resolutions of interest (e.g.
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Stensrud, 2009). Parameterizations like this are often developed in isolation, so they
can respond in unexpected ways when inserted in nonlinear climate models and cou-
pled to other parameterizations. Small perturbations to the values of the adjustable pa-
rameters can amplify and lead to large changes in simulation outputs. In some cases,
the simulations may fail altogether.5

We report here on a series of simulation crashes encountered while running per-
turbed parameter UQ ensembles of the Community Climate System Model Version 4
(CCSM4) (Gent et al., 2011; CCSM4, 2012). Treating the problem as a black box in
which we know only the values of the input parameters and a binary outcome flag indi-
cating whether the simulations ultimately failed or completed, information that does not10

require detailed scientific knowledge, we present a method that successfully predicts
crashes in independent simulations and pinpoints the model parameters causing the
failures. We expect that our failure analysis method may be beneficial to understanding
and improving other complex, geoscientific models.

2 Overview of climate simulations15

Different sets of perturbed parameter UQ ensembles were executed as part of a broad
effort to quantify and constrain uncertainties in the atmospheric, sea ice, and ocean
model components of CCSM4 (Gent et al., 2011). The failures reported here occurred
during simulations that perturbed parameter values in the Parallel Ocean Program
(POP2), the ocean component of CCSM4. For these experiments, POP2 was cou-20

pled with the sea ice model, while data-based components were used for the land and
atmosphere. The simulations were integrated for 10 yr, and the system was forced
with climatological air-sea flux data using normal year forcing from Large and Yeager
(2009). Further details about POP2 and the UQ ensembles are given below.
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2.1 Ocean model and parameters

POP2 is a state of the art depth-level ocean model of the general ocean circulation
that solves the 3-D primitive equations of rotational fluid dynamics and thermodynam-
ics with standard approximations of Boussinesq and hydrostatics. It is developed and
maintained at Los Alamos National Laboratory (Smith et al., 2010) and is the ocean5

component of CCSM4 developed at National Center for Atmospheric Research (Gent
et al., 2011; Danabasoglu et al., 2012). The current simulations use the displaced-pole
coordinate grid with the pole centered over Greenland and have a nominal horizontal
resolution of 1◦. Vertically it resolves 60 depth levels with resolution varying from 10 m
in the upper ocean (surface to 200 m) to 250 m in the deeper ocean. Refer to Smith10

et al. (2010) and Danabasoglu et al. (2012) for more information.
The ocean model parameters perturbed in this study were selected by POP2 model

developers. They are used in six different sub-grid scale parameterizations to simulate
the effects of horizontal and vertical turbulent mixing in the oceans. The parameters
and their uncertainty ranges are summarized in Table 1. Parameters 1–6 are used15

to capture horizontal mixing of momentum with spatially anisotropic viscosity (Large
et al., 2001; Smith and McWilliams, 2003). Parameters 7–9 are used for horizontal
mixing of tracers via isopycnal eddy-induced transport (Gent and McWilliams, 1990).
Parameters 10–12 are used in recently developed schemes to simulate sub-mesoscale
and mixed-layer eddies (Fox-Kemper et al., 2008) and abyssal tidal mixing (Jayne,20

2009). Parameters 13–18 are used for vertical convection and vertical mixing with the
K-Profile Parameterization (KPP) scheme (Large et al., 1994).

2.2 UQ ensembles

Table 2 summarizes the UQ ensemble simulations. Three separate studies were con-
ducted, each consisting of 180 simulations. Out of 540 total simulations, there were 4625

failures, with the failures occurring at various times during the integration period. Each
of the three studies sampled the values of the 18 POP2 parameters simultaneously
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using a space-filling Latin hypercube design (Helton and Davis, 2003). Parameter val-
ues were normalized to [0, 1] using the ranges (low and high values) and scales (linear
and logarithm) noted in Table 1 and sampled as standard uniform probability distribu-
tion functions. The sample point coverage is illustrated in Figs. 1 and 2 for four param-
eters in one and two dimensions.5

Ensembles were generated using the Lawrence Livermore National Laboratory UQ
Pipeline (Walter, 2010; Tannahill et al., 2011), which is a Python-based scientific work-
flow system for running and analyzing concurrent UQ simulations on high performance
computers. Using a simple, non-intrusive interface to simulation models, it provides
strategies for sampling high dimensional uncertainty spaces, analyzing ensemble out-10

put, constructing surrogate approximation models (e.g. Forrester et al., 2008), incorpo-
rating observational data, performing statistical inferences, and estimating parameter
values and probability distributions using maximum likelihood and Bayesian methods.
Of the many capabilities provided by the UQ Pipeline, the failure analysis presented
here uses the simulation parameter values and a method for calculating parameter15

sensitivities.

3 Descriptive failure analysis

Figures 1 and 2 show simulation successes and failures for the three Latin hypercube
studies (540 runs) as a function of the values of 4 of the 18 parameters sampled in
POP2. Similar figures were generated for the other parameters, but are not displayed20

to keep the discussion brief and because the failures are highly sensitive to changes
in these parameters (see Sect. 5). It is not possible to directly visualize the dependen-
cies in high dimensions, so the figures show the outcomes projected in one and two
parameter dimensions (Figs. 1 and 2, respectively).

From the figures it is clear that the failures are generally concentrated around25

high values of parameters vconst corr and vconst 2, and at low values
of backgrnd vdc1 . A weaker dependence of the failures on high values of
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convect corr is also apparent. The analysis presented in following sections does
not require a detailed understanding of the physical reasons that connect parameter
values to simulation failures, though we briefly summarize the connections to help with
the interpretation.

The parameters vconst corr and vconst 2 are part of the anisotropic horizon-5

tal viscosity parameterization applied to the momentum equations in POP2 (Smith
et al., 2010). Their values are subject to 3 main constraints, considering the physi-
cal processes and limitations to maintain numerical stability; their lower bounds are
constrained by the grid Reynolds number representing the ratio between advection and
diffusion, the Munk boundary layer constraint is needed to represent western boundary10

currents (Jochum et al., 2008), and their upper bounds are limited by a linear diffusion
stability requirement specified by a viscous Courant–Friedrichs–Lewy (CFL) condition,
which depends on the integration time step (one hour in this study) and grid resolution
(Griffies, 2004; Large et al., 2001). High values of these parameters may trigger the
limit set by the CFL condition and is the likely reason for the model failures seen in15

the experiments. The bckgrnd vdc1 parameter is used to set the background diffu-
sivity for diapycnal mixing from internal waves in the KPP vertical mixing parameteriza-
tion (Large et al., 1994). Reducing the values of bckgrnd vdc1 and other bckgrnd
parameters increase the numerical noise in the solution and consequently cause nu-
merical instability. Similarly, increasing the value of convect corr , which increases20

diffusivity and viscosity in the implicit KPP vertical mixing scheme, leads to instabilities
in the vertical density profile. For detailed descriptions of all the POP2 parameters used
in the current study please refer to Smith and McWilliams (2003), Large et al. (2001),
and Danabasoglu et al. (2012).

In spite of the obvious relationships between the parameter values and simulation25

outcomes, other features present in the figures suggest that the ability to determine the
causes of the failures is potentially complicated. Figure 2, for instance, indicates that
there are strong correlations between failed simulations and pairs of parameter values.
As one example, failures occur at the combination of high values of vconst corr and
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low values of backgrnd vdc1 . These two parameters reside in different modules in
POP2 (hmix aniso , and vmix kpp , respectively), which makes it difficult for POP2
model developers and users to discover and attribute simulation failures to correlations
in these parameters.

A more important complication arises from the overlap of simulation successes and5

failures in the low dimensional projections shown in the figures. Some simulations ap-
pear to fail in the same general vicinity of parameter space where other simulations
succeed, and vice versa. To illustrate, the upper right portion of the scatterplot be-
tween vconst corr and vconst 2 in Fig. 2 contains a high density of failures and
successes. Another notable example is the isolated failure event shown in the lower10

left hand corner of the same scatterplot.
These overlaps can lead to serious misclassification errors in statistical models used

to predict failures as a function of parameter values. Two types of misclassification
errors can occur. Simulations that are predicted to fail, but actually succeed are false
positives or type I errors; those that are predicted to succeed, but actually fail are15

false negatives or type II errors (see Sect. 4 for further details). Imbalanced data, in
which the population of one class greatly outnumbers the populations of other classes,
are associated with class overlap (Prati et al., 2004), and the POP2 outcomes are
highly imbalanced (i.e. 46 failures out of 540 simulations). Another related explanation
is that higher parameter dimensions, and possibly a non-linear decision boundary, are20

required to effectively separate the outcomes.
Statistical approaches more powerful than the descriptive relationships illustrated in

Figs. 1 and 2 are therefore needed to attack our problem. As described in the remain-
ing sections, we turn to algorithms and diagnostics developed in the fields of pattern
recognition, machine learning, and signal detection. These methods provide us with25

the ability to predict simulation failures in advance of running the model and a tool to
quantify the causes of the failures. This latter capability can be used to improve POP2
by making it more robust to parameter changes.
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4 Probabilistic failure classification

For a given set of model input parameters, a POP2 simulation will either succeed or fail.
We denote these outcomes by a two-class categorical variable in which failures belong
to class Cf and successes belong to class Cs. The present discussion considers only
a single failure class, but we recognize that simulations can fail for a variety of reasons5

(e.g. lack of iterative convergence, numerical instabilities, etc). Without difficulty, the
two-class methodology described below can be extended to handle multiple modes of
failure.

Our goal for probabilistic failure classification is to determine the probability that
a POP2 simulation will fail for a vector of model input parameters x = (x1,x2, . . . ,x18).10

We denote this using the conditional probability P (Cf|x). Using Bayes’ rule, the poste-
rior conditional probability can be written

P (Cf|x) =
P (x|Cf)P (Cf)

P (x|Cf)P (Cf)+P (x|Cs)P (Cs)
, (1)

where P (x|Ci ) and P (Ci ) correspond to class-conditional densities and class priors,
respectively. By introducing a variable λ representing the natural logarithm of the15

likelihood-odds ratio,

λ = ln
[P (x|Cf)

P (x|Cs)

P (Cf)

P (Cs)

]
, (2)

Eq. (1) can be rewritten as the “S-shaped” logistic sigmoid function

P (Cf|x) =
1

1+exp(−λ)
. (3)

The λ term is a function of x and takes values in (−∞,∞). As illustrated in Fig. 3,20

the sigmoid function is bounded between 0 and 1, inclusive. This formalism provides
a mechanism to transform an input vector of model parameter values to a probability
that the corresponding simulation will fail or succeed.
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4.1 SVM classification

Support vector machine (SVM) classification (Vapnik, 1995; Cortes and Vapnik, 1995;
Burges, 1998) from the fields of pattern recognition and supervised machine learning
(Bishop, 2007; Kotsiantis, 2007) is used to assign a simulation to class Cf or Cs for
input vector x. Briefly, the SVM method is based on maximizing the distance between5

hyperplanes that separate the classes (i.e. the margin), while allowing for misclassifi-
cations from overlapping data points during training (i.e. a soft margin). For non-linearly
separable classes, the hyperplanes are determined by transforming the input space to
a higher-dimensional feature space using kernel functions. The purpose of the transfor-
mation is to make it easier to separate the classes, as illustrated conceptually in Fig. 4.10

The support vectors are the training points that lie on the hyperplanes of the optimized
margin. New input vectors x are assigned to a class using the sign of the predictive
decision function

f (x) =
Ns∑
i=1

yiαiK (xi ,x)+b, (4)

where f (x) > 0 and f (x) < 0 are assigned to classes Cf and Cs, respectively. The sum in15

Eq. (4) is over the Ns support vectors from the training set, yi ∈ {−1,1} is a binary out-
come indicator variable, K (xi ,x) is the kernel function, and b and αi are, respectively,
bias and Lagrange multiplier terms determined through constrained optimization of the
margin. Refer to Burges (1998), Bishop (2007), or Chang and Lin (2011) for further
details.20

The decision function in Eq. (4) assigns inputs to a class, but does not provide
a probability of class membership. An extension to the standard SVM approach was
therefore developed (Platt, 1999) that derives class probabilities by fitting λ in Eq. (2)
to a two parameter function using the training data and cross validation. A vari-
ation of this procedure is implemented in the LIBSVM package (Chang and Lin,25

2011), which we use to calculate posterior failure probabilities, P (Cf|x). From this
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package, we use the C-support version of SVM classification with Gaussian kernels,
K (xi ,x) = exp(−γ‖xi −x‖2). The values of the two SVM training parameters, the ker-
nel width (γ = 0.1) and the misclassification penalty (C = 3), were determined through
grid search, bootstrapping, and optimization of classification performance metrics (see
below).5

The training set is comprised of 360 simulations from Latin hypercube studies 1 and
2 in Table 2. The remaining 180 simulations from Latin hypercube study 3 are used
for testing and independent validation (see Sect. 4.3). There are 32 simulation failures
and 328 successes in the training set. Given the relatively small ratio of the number of
failure events to the number of classifier inputs, we utilize bootstrapping aggregation10

(i.e. “bagging”) (Breiman, 1996) to help improve the classification performance and to
quantify the variability of the predicted class posterior probabilities. The bootstrapping
is applied by resampling with replacement the training data Nb = 100 times. Each time,
we draw a random selection of 80 % of the training data to construct an individual
classifier and use the remaining 20 % for testing that classifier. The same SVM training15

parameters (γ and C) are used for all classifiers. Failure predictions are then based on
a committee of classifiers

µc =
1
Nb

Nb∑
i=1

Pi (Cf|x) (5)

and

σ2
c =

1
Nb

Nb∑
i=1

[
Pi (Cf|x)−µc

]2
, (6)20

where µc and σc are the mean and standard deviation of the committee.
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4.2 Classification performance

Using a format known as the “confusion matrix” in machine learning, Fig. 5 summa-
rizes the four possible outcomes for the two-class simulation failure problem. Classi-
fiers that correctly predict actual failures and successes are labeled true positives (TP)
and true negatives (TN), respectively; those that incorrectly predict actual failures and5

successes are denoted false negatives (FN) and false positives (FP), respectively. Of
the numerous ways to combine these outcomes to assess classifier performance, we
focus on the true positive rate (TPR) and false positive rate (FPR), which are given by
the expressions

TPR =
TP

TP+FN
, (7)10

and

FPR =
FP

FP+TN
. (8)

Perfect classifiers have TPR and FPR values of 1 and 0, respectively. As noted pre-
viously, we use a classifier committee that calculates an ensemble of probabilities of
class membership. The assignment to a particular class and resulting TPR and FPR15

values therefore depends upon a specified decision variable and threshold value. If
decisions are made using the committee average with a threshold of 0.5, for exam-
ple, then µc values above and below this value will be assigned to classes Cf and Cs,
respectively.

The quantities in Eqs. (7) and (8) are combined into a convenient diagram used in20

signal detection and decision analysis known as a receiver operating characteristic
(ROC) curve (Swets, 1988; Fawcett, 2006). ROC curves plot the FPR (horizontal axis)
versus TPR (vertical axis) of a decision variable as the threshold is varied from +∞ to
−∞. A perfect classifier is represented in ROC space by the vertical line connecting
points (0, 0) and (0, 1), followed by the horizontal line connecting points (0, 1) and (1 ,1).25
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A classifier that makes random assignments, on the other hand, is represented by the
diagonal line connecting points (0, 0) and (1, 1). The predictive capability of a classifi-
cation system can therefore be assessed by a single number, the area under the ROC
curve (AUC) (e.g. Marzban, 2004). As a rough rule of thumb, a classifier with an AUC
score of about 0.8 or higher is useful for discrimination.5

Figure 6 shows the ROC curve for the collection of test sets aggregated from the
bootstrapping procedure using the failure probabilities of the individual classifiers as
the decision variable. The aggregated test set has 7200 data instances (0.2 test frac-
tion×360 POP2 simulations×100 bootstrapped resampling size). The SVM fitting pa-
rameters (γ and C) were selected during the training phase to maximize the AUC score10

shown in the figure. The resulting AUC of 0.93 suggests that the classifiers should have
excellent predictive capability, which we confirm through independent validation.

4.3 Independent validation

To demonstrate the ability to predict simulation failures, we conducted an independent
validation study using 180 additional POP2 Latin hypercube simulations that were not15

used to train the classifiers (study 3 in Table 2). Before running the simulations, the
mean and standard deviation of failure probabilities were calculated from the committee
for each run using Eqs. (5) and (6). Runs were assigned to Cf using decision criteria
denoted by

D ≡ variable ≥ threshold. (9)20

Two initial criteria were selected using the same threshold, but different decision vari-
ables. The first criterion used the committee average

Davg ≡ µc ≥ 0.5, (10)

while the second used the sum of the committee average and standard deviation

Dsum ≡ µc +σc ≥ 0.5. (11)25

597

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/585/2013/gmdd-6-585-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/585/2013/gmdd-6-585-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 585–623, 2013

Failure analysis of
climate simulation

crashes

D. D. Lucas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The second criterion was chosen to account for variability across committee members
by categorizing some simulations as Cf even though they had a committee mean below
0.5. After all of the simulations completed, a third criterion based on the signal-to-noise
ratio from the committee, Dsnr, was also considered and analyzed (see below).

The resulting predictions and actual outcomes are summarized in Table 3 and dis-5

played in Figs. 7 and 8. As noted in Table 2, there were 14 actual simulation failures
and 166 successes in the study. The classifier committee performed exceedingly well
using the two initial criteria, Davg and Dsum. Referring to the confusion matrix in Fig. 7,
both made 174 correct predictions (TP+TN, 96.7 % accuracy) and only 6 incorrect
predictions (FP+FN). The incorrect predictions, however, are distributed differently for10

the two criteria. Davg had more FNs than FPs, while Dsum had an equal number of
each. Because of this difference, Davg and Dsum operate at different points in ROC
space. Davg has ROC coordinates of (1/166, 9/14), while Dsum operates at (3/166,
11/14). Based on their Euclidean distance from a perfect classifier, which is given

by
[
FPR2 + (TPR−1)2

]1/2
, we conclude that Dsum (distance = 0.215) performs better15

than Davg (distance= 0.357).
To ascertain the cause of the performance difference between Dsum and Davg, the top

and middle panels of Fig. 8 display the µc and µc+σc decision variables for the runs in
the independent validation set. The decision criteria are represented by the horizontal
lines in the panels. Runs that are on or above the lines were predicted to fail, while20

those that actually failed are displayed in red (and those that succeeded in blue). The
figure indicates, for example, that runs 17 and 120 failed, but were misclassified by Davg
because their µc values were slightly below 0.5. By comparison Dsum assigned these
runs to the correct class, but also misdiagnosed runs 2 and 95. A visual inspection of
the figure shows that, except for the relative position of the threshold, the distribution25

of points in µc and µc +σc look very similar. We therefore attribute the performance
difference to the threshold value. If Davg had used a threshold value of about 0.4 instead
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of 0.5, it would have made the same predictions and had the same performance as
Dsum.

We also tested the performance of a criterion that uses the signal-to-noise ratio of the
committee, µc/σc, as the decision variable. Without prior knowledge about a setting for
the threshold, this criterion was not used to predict the simulation failures in advance.5

Retrospectively, we determined and tested a setting for the threshold that maximizes
the overall accuracy and minimizes the total number of false outcomes (FP+FN). The
resulting criterion is defined by

Dsnr ≡ µc/σc ≥ 3.53. (12)

The performance of this criterion is displayed in Table 3 and Figs. 7 and 8. As shown,10

Dsnr outperforms both Davg and Dsum. This criterion would have made 176 correct pre-
dictions (97.8 % accuracy) and only 4 false predictions balanced between 2 FNs (runs
27 and 44) and 2 FPs (runs 15 and 141). Dsnr operates at ROC point (2/166, 12/14),
which is a distance of 0.143 from a perfect classifier. The reason for the improved per-
formance is shown more clearly in Fig. 8. The signal-to-noise ratio better separates15

the failures and successes than either of the other decision variables, although runs
44 and 141 are still grossly misclassified. In spite of the improvement, it is also worth
noting that more simulations lie closer to Dsnr than either Davg or Dsum. This implies
that the performance of Dsnr is more sensitive to slight adjustments in the value of the
threshold than the other criteria.20

For the final retrospective analysis, we varied the thresholds for the three decision
variables and calculated the FPRs and TPRs of the independent validation set. The
resulting ROC curves and fixed locations of the decision criteria are shown in Fig. 9.
The ROC curves for µc and µc +σc nearly overlap, which confirms the previous state-
ment that the two decision variables perform similarly after accounting for threshold25

differences. Based on their AUC scores, µc performs marginally better than µc+σc be-
cause adding committee variability causes some successful simulations to get tallied
relatively sooner as FPs (see points with values close run 27 in Fig. 8). In contrast to
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these cases, the ROC curve for µc/σc is noticeably better and has an AUC of 0.966.
This occurs because µc/σc is more effective at separating the classes, which enables
it to identify more TPs as the threshold is lowered. Overall, however, all three decision
variables perform exceedingly well at classifying new simulation failures. Using these
ROC curves, we can choose decision criteria for making new predictions that consider5

the tradeoffs between TPs and FPs. Slightly lowering the threshold in Dsnr, for exam-
ple, will increase the TPR and move it to a point that lies closer to a perfect classifier in
ROC space, but this occurs at the expense of also increasing the FPR.

5 Sensitivity analysis of simulation failures

Following on the demonstrated success of the independent validation study, we use10

the classifier committee to identify, quantify, and rank the importance of the model
parameters responsible for the simulation failures. This information can be used to
make the model more robust to parameter perturbations by improving the modules
associated with the most sensitive parameters. For this analysis, we draw 104 Latin
hypercube samples from uniform distributions representing the 18 POP2 parameters,15

calculate the average failure probability from a committee of classifiers (µc) at each of
the sample points, and then perform a global sensitivity analysis (Saltelli et al., 2000;
Helton et al., 2006) on the parameter-induced variance of log µc. All of the available
simulation data are used to compute the parameter sensitivities by re-training a new
committee of 100 SVM classifiers with the full set of 540 simulations from studies 1–320

in Table 1. The training follows the procedure previously described in Sect. 4.1 (i.e.
bootstrap aggregation using 80 % of the data for training and and 20 % for testing
individual classifiers). Also note that the sensitivity analysis is illustrated below using
µc as the committee response, but the same general results are obtained using the
signal-to-noise ratio (µc/σc).25

Parameter sensitivities are measured and ranked using Sobol indices (Sobol, 2001;
Saltelli et al., 2000), which decompose the variance of log µc into contributions from
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individual parameters and various higher-order combinations of parameters. Polyno-
mial chaos expansions (Wiener, 1938) provide a convenient format for the sensitivity
analysis because the squares of the expansion coefficients are directly proportional to
Sobol indices (Sudret, 2008; Lucas and Prinn, 2005; Tatang et al., 1997). The distri-
bution of log µc is fit to Np = 18 parameters using a second-order polynomial chaos5

expansion expressed as

log µc = a0 +
Np∑
i=1

[biP1(ξi )+ciP2(ξi )]+
Np−1∑
i=1

Np∑
j=i+1

di jP1(ξi )P1(ξj ), (13)

where ξi is the random variable representation of parameter i , Pn(ξi ) is an nth order
orthogonal polynomial in ξi , and the a0, bi , ci and di j are expansion coefficients to
be determined. For the case where the ξi are standard uniform random variables, the10

Pn(ξi ) are the shifted Legendre polynomials (see Xiu and Karnidakis, 2002) with the
following orthogonality property

1∫
0

Pm(ξi )Pn(ξi )dξi =
1

2n+1
δmn, (14)

where δmn is the Kronecker delta function. The first and second order shifted Legendre
polynomials are given by15

P1(ξi ) = 2ξi −1 (15)

and

P2(ξi ) = 6ξ2
i −6ξi +1. (16)

The coefficients in Eq. (13) are determined through least squares, and higher-order
terms are not considered because the second-order expansion fits the data very well20
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(adjusted R2 = 0.98). The resulting fit is given in Table 4, which shows the leading terms
of the expansion in two forms.

Analytical expressions for the moments of log µc as a function of the POP2 param-
eters are derived by directly taking expectation values of Eq. (13). The average value
and variance are5

avg(log µc) = a0, (17)

and

var(log µc) =

individual parameters︷ ︸︸ ︷
Np∑
i=1

(
b2
i

3
+
c2
i

5

)
+

pairs of parameters︷ ︸︸ ︷
Np−1∑
i=1

Np∑
j=i+1

d2
i j

9
. (18)

The two groups of terms labeled on the right hand side of Eq. (18) signify variance
contributions from individual parameters (linear and quadratic) and pairs of parame-10

ters. The fractional values of the squared polynomial chaos expansion coefficients in
Eq. (18) follow from application of Eq. (14).

Given a parameter-based decomposition of the variance, we have developed a tech-
nique to visualize complex variance connections using network graphs with nodes and
edges. The size of nodei in the graph is proportional to the fractional contribution from15

parameter i ,

nodei ∝
b2
i /3+c2

i /5

var(log µc)
, (19)

while the thickness of edgei j connecting nodei and nodej is proportional to the frac-
tional contribution from joint variations of parameters i and j ,

edgei j ∝
d2
i j/9

var(log µc)
. (20)20
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The technique has been extended to include higher order effects (e.g. using edgei jk for
3rd-order terms), but this is not needed for the current application. Important parame-
ters on the resulting network graph are represented by nodes that are large or make
significant connections to other nodes.

Figure 10 displays the network graph for the variance decomposition of log µc. Based5

on node size and connectivity, the graph indicates that 8 out of the 18 parameters are
the main drivers of the simulation failures (see parameters labeled in red in the graph).
These 8 parameters account for about 95 % of the variance of log µc, as quantified us-
ing Eq. (18). Of these, vconst corr , vconst 2, convect corr , and bckgrnd vdc1
stand out distinctly as the top 4 parameters in the graph. Recall that the same 4 pa-10

rameters are described in Sect. 3 and displayed in Figs. 1 and 2. The top 4 parameters
have the largest overall and most heavily connected nodes in the graph, and they
collectively account for about 88 % of the variance of log µc. The strong connections
indicate that the probability of simulation failure depends on correlations between the
top 4 parameters. The direction of the dependence is determined by inspecting the15

signs of the corresponding coefficients in the polynomial chaos expansion (i.e. for ξ1,
ξ2, ξ13, and ξ14). Referring to Table 4, the failure probability increases for increasing
values of vconst corr , vconst 2, and convect corr , and decreasing values of
bckgrnd vdc1 , which is in accordance with the results in Figs. 1 and 2.

The variance decomposition therefore validates the descriptive relationships given in20

Sect. 3. However, it also extends the failure analysis in important ways. Equation (18)
quantitatively ranks the effects of the parameters on the simulation failures, which pro-
vides a way to prioritize efforts to improve the model. This type of ranking cannot be
easily obtained using just the scatterplots in Figs. 1 and 2. Moreover, the scatterplots
show the correlations between the parameter values and simulation failures, but the25

one and two dimensional projections are not sufficient for separating the overlapping
Cf and Cs classes. Figure 10, on the other hand, very clearly shows that four or more
parameter dimensions are required to explain and separate the simulation failures from
the successes.
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6 Summary and conclusions

We experienced a series of code crashes while running Latin hypercube ensemble
simulations that sampled the values of 18 ocean mixing and viscosity parameters in the
POP2 component of CCSM4. The crashes occurred for numerical reasons at different
combinations of parameter values, which we surmise is due to violations of numerical5

conditions defined in the model (e.g. CFL as described in Sect. 3). Assuming no special
knowledge or physical insight about the specific nature of the crashes, we formulate the
simulations as a binary problem (i.e. they fail or succeed) and use machine learning
classification to quantify failure probabilities as a function of the 18 model parameters.
A highly predictive classification system is trained from a dataset containing only 3210

failure instances out of 360 simulations and validated using an independent set of
180 simulations. The resulting classification system has an area under the ROC curve
exceeding 0.96 and achieves discrimination accuracies above 97 %. Global sensitivity
analysis is then used to identify 8 model parameters from 4 different modules that drive
high probabilities of failing, the results of which can be used to increase the robustness15

of CCSM4 to parameter perturbations and to characterize simulation failures in other
complex scientific computer models.
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Table 1. Parmeters Sampled in the CCSM4 Parallel Ocean Model.

Parametera [low, default, high] Scaleb Module Description

1 vconst corr [0.3, 0.6, 1.2]×107 lin hmix aniso variable viscosity parameter (vconst 1, vconst 6)
2 vconst 2 [0.25, 0.5, 2.0] log hmix aniso variable viscosity parameter
3 vconst 3 [0.16, 0.16, 0.2] lin hmix aniso variable viscosity parameter
4 vconst 4 [0.5, 2.0, 10.0]×10−8 log hmix aniso variable viscosity parameter
5 vconst 5 [2, 3, 5] lin hmix aniso variable viscosity parameter
6 vconst 7 [30.0, 45.0, 60.0] lin hmix aniso variable viscosity parameter
7 ah corr [2.0, 3.0, 4.0]×107 lin hmix gm diffusion coefficient for Redi mixing (ah) and background

horizontal diffusivity within the surface boundary layer (ah bkg srfbl)
8 ah bolus [2.0, 3.0, 4.0]×107 lin hmix gm diffusion coefficient for bolus mixing
9 slm corr [0.05, 0.3, 0.3] log hmix gm maximum slope for bolus (slm b) and Redi terms (slm r)
10 efficiency factor [0.05, 0.07, 0.1] lin mix submeso efficiency factor for submesoscale eddies
11 tidal mix max [25.0, 100.0, 200.0] log tidal tidal mixing threshold
12 vertical decay scale [2.5, 5.0, 20.0]×104 log tidal vertical decay scale for tide induced turbulence
13 convect corr [1.0, 10.0, 50.0]×103 log vertical mix tracer (convect diff) and momentum (convect visc)

mixing coefficients in diffusion option
14 bckgrnd vdc1 [0.032, 0.16, 0.8] log vmix kpp base background vertical diffusivity
15 bckgrnd vdc ban [0.5, 1.0, 1.0] lin vmix kpp Banda Sea diffusivity
16 bckgrnd vdc eq [0.01, 0.01, 0.5] log vmix kpp equatorial diffusivity
17 bckgrnd vdc psim [0.1, 0.13, 0.5] log vmix kpp maximum PSI induced diffusivity
18 Prandtl [4.0, 10.0, 20.0] log vmix kpp ratio of background vertical viscosity and diffusivity

a Individual corr parameters (numbers 1, 7, 9, and 13) are used to represent the correlated pair of parameters given in the description. For example, values drawn for vconst corr
are assigned to vconst 1 and vconst 6.
b Linear and logarithmic scales are used for parameter ranges that have ratios of high/low < 5 and high/low ≥ 5, respectively.
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Table 2. Latin Hypercube Studies of the CCSM4 Parallel Ocean Program.

Study Simulations Successes Failures Failure rate

1 180 160 20 11.1 %
2 180 168 12 6.7 %
3 180 166 14 7.8 %
Total 540 494 46 8.5 %
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Table 3. Predictions and Outcomes of Independent Validation Study.

Run µc σc Predicteda,b Actual

Davg Dsum Dsnr

002 0.47 0.13 Success Failure Success Success
006 0.54 0.14 Failure Failure Failure Failure
015 0.37 0.10 Success Success Failure Success
017 0.42 0.12 Success Failure Failure Failure
027 0.25 0.09 Success Success Success Failure
044 0.04 0.02 Success Success Success Failure
060 0.80 0.10 Failure Failure Failure Failure
073 0.52 0.15 Failure Failure Failure Failure
088 0.63 0.11 Failure Failure Failure Failure
095 0.47 0.15 Success Failure Success Success
097 0.83 0.09 Failure Failure Failure Failure
120 0.49 0.13 Success Failure Failure Failure
141 0.88 0.09 Failure Failure Failure Success
148 0.76 0.12 Failure Failure Failure Failure
155 0.31 0.08 Success Success Failure Failure
166 0.64 0.11 Failure Failure Failure Failure
173 0.75 0.12 Failure Failure Failure Failure
177 0.67 0.14 Failure Failure Failure Failure

a For the sake of brevity, actual successes predicted by all decision criteria are not
reported here.
b Decision criteria are given in Eqs. (10)–(12).
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Table 4. Polynomial chaos expansion of failure probability.

Expansion Leading terms∗

ξi

log µc ≈ −4.347+4.049 ξ1 +3.400 ξ2 +2.267 ξ13 −1.980 ξ14 −1.393 ξ16 −
1.253 ξ5 −1.143 ξ4 −1.007 ξ17 −0.885 ξ2 ξ1 −0.796 ξ13 ξ1 −0.739 ξ6 −
0.637 ξ13 ξ2 −0.610 ξ9 +0.578 ξ14 ξ2 +0.480 ξ16 ξ2 −0.471 ξ15 −0.414 ξ2

1 +
0.382 ξ5 ξ1 +0.372 ξ14 ξ1 +0.351 ξ17 ξ2 +0.320 ξ2 ξ5 +0.320 ξ2

8 + . . .

Pn(ξi )

log µc ≈ −2.609+1.628P1(ξ1)+1.546P1(ξ2)+1.061P1(ξ13)−
0.895P1(ξ14)−0.475P1(ξ5)−0.455P1(ξ16)−0.338P1(ξ4)−0.311P1(ξ17)−
0.245P1(ξ9)−0.221P1(ξ1)P1(ξ2)−0.199P1(ξ1)P1(ξ13)+0.196P1(ξ12)+
0.174P1(ξ10)+0.164P1(ξ11)−0.159P1(ξ2)P1(ξ13)+0.145P1(ξ2)P1(ξ14)+
0.133P1(ξ18)+0.120P1(ξ2)P1(ξ16)+0.096P1(ξ1)P1(ξ5)+0.093P1(ξ1)P1(ξ14)+
0.088P1(ξ2)P1(ξ17)−0.082P1(ξ6)+ . . .

∗Leading terms are based on the magnitude of the absolute value of the coefficients of the polynomial chaos
expansion. Refer to Table 1 for the parameter labels that correspond to the numbers.
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Fig. 1. Climate model simulation successes and failures are shown for one-dimensional pro-
jections of the values of 4 ocean parameters in 540 Latin hypercube experiments that sampled
18 model parameters. Parameter values are normalized using the ranges in Table 1.
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Fig. 2. Same as Fig. 1, but showing the two-dimensional projections for the same four model
parameters.
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Fig. 3. Logistic sigmoid function defined in Eq. (3) with λ(x) = x.
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Fig. 4. Conceptual image showing the separability of the red and blue classes through kernel
transformations in SVMs.
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Fig. 5. The confusion matrix showing the four possible outcomes for a two-class simulation
failure problem.
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Fig. 6. Receiver operating characteristic for the bootstrapped set of individual SVM classifiers
assessed using holdout test data. SVM training parameters (γ = 0.1, C = 3) are chosen to
maximize the area under the ROC curve.
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Fig. 8. Actual and predicted climate model simulation outcomes are shown for the 180 indepen-
dent validation experiments. Predictions are based on three decision variables and thresholds
(µc and Davg, top; µc +σc and Dsum, middle; µc/σc and Dsnr, bottom). The horizontal axis dis-
plays simulation numbers based on their order in the ensemble. Actual failures and successes
are shown in red and blue, respectively. Larger symbols with the labeled run numbers highlight
true positives and misclassifications (false positives and false negatives) by one or more of the
criteria.
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Fig. 10. Sensitivity of the probability of simulation failure to climate model parameters is shown
using a network graph. Node size and connector thickness are proportional to sensitivity contri-
butions from individual parameters and pairs of parameters, respectively. The eight parameters
labeled in red are the main causes of simulation failures.
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