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Abstract

We have designed an orthogonal curvilinear terrain-following coordinate (the
orthogonal o coordinate, or the OS coordinate) to overcome two well-known problems
in the classic o coordinate, namely, pressure gradient force (PGF) errors and advection
errors. First, in the design of basis vectors, we rotate the basis vectors of the
z coordinate in a particular way in order to reduce the PGF errors and add a special
rotation parameter b to each rotation angel in order to reduce the advection errors.
Second, the corresponding definition of each OS coordinate is solved through its basis
vectors. Third, the scalar equations of the OS coordinate are solved by expanding the
vector equation using the basis vectors. Since the computational form of PGF has only
one term in each momentum equation of the OS coordinate, the PGF errors will be
significantly reduced, according to Li et al. (2012). When a proper b is chosen, the
o levels over a steep terrain can be significantly smoothed, therefore alleviating the
advection errors in the OS coordinate. This is demonstrated by a series of 2-D linear
advection experiments under a unified framework.

1 Introduction

The complex surface of the Earth is the lower boundary for numerical models,
which have become more and more important for operational forecast and scientific
research. There are mainly two kinds of methods to tackle the terrain in a model:
using a proper vertical coordinate, such as the terrain-following coordinate proposed
by Phillips (1957), or using the cut-cell method that has been used in the computational
fluid dynamics and recently been developed by many researchers for simulating
atmospheric and oceanic flows over irregular geometry (Adcroft et al., 1997; Yamazaki
and Satomura, 2010; Adcroft, 2013; Steppeler et al., 2013). Until now, the terrain-
following coordinate is the most popular choice for the atmospheric and oceanic
models; for example, the grid-point atmospheric model of IAP LASG, GAMIL (Wang
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et al., 2004); the Met Office’s unified model, MetUM (Davies et al., 2005); the
weather research and forecasting modeling system, WRF (Skamarock et al., 2008);
the consortium for small-scale modelling, COSMO (Schéttler et al., 2012); the model for
prediction across scales, MPAS (Skamarock et al., 2012); the hybrid coordinate ocean
model, HYCOM (Bleck, 2002; Wallcraft et al., 2009); and the nucleus for European
modelling of the ocean, NEMO (Madec, 2008).

The terrain-following coordinate (o coordinate) can be classified into two types:
the pressure-based o coordinate originated by Phillips (1957), and the height-based
o coordinate first designed by Gal-Chen and Somerville (1975). Both types are non-
orthogonal coordinates, in which the o coordinate levels are non-horizontal, and the
computational form of pressure gradient force (PGF) has two terms (Zangl, 2002;
Steppeler et al., 2003; Li et al., 2011, 2012; Siddorn and Furner, 2013). For these
o coordinate models, there are two well-known computational errors near a steep
terrain (Sangster, 1960; Smagorinsky et al., 1967; Sundquist, 1975, 1976; Janji¢, 1977;
Mesinger, 1982; Haney, 1991; Konor and Arakawa, 1997; Ji et al., 2005; Mesinger,
et al., 2012): the PGF errors and the advection errors.

So far, the two errors have been tackled separately. To overcome the PGF errors,
methods have been designed based on the classic o coordinate. Most of them tried
to alleviate the PGF errors to an acceptable level, but kept on using two terms for
the PGF in the o coordinate (Corby et al., 1972; Gary, 1973; Qian and Zhong, 1986;
Blumberg and Mellor, 1987; Yu, 1989; Lin et al., 1997; Adcroft et al., 2008; Sikiri¢
et al., 2009; Berntsen, 2011; Bradley and Dowling, 2012). Alternatively, Li et al. (2012)
proposed to use the covariant scalar equations of the o coordinate in a numerical
model, which can keep the computational form of PGF as one term in the o coordinate
as in the z coordinate, so as to reduce the PGF errors significantly. However, there are
additional terms in their equations associated with the non-orthogonal characteristic of
the o coordinate, which may potentially cause numerical problems. In conclusion, all
these efforts have been done in the non-orthogonal ¢ coordinate.
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For the advection errors, methods were mostly designed to smooth the ¢ coordinate
levels above the steep terrain to decrease the advection errors. A common method is
the hybrid vertical coordinate used in many numerical models (Arakawa and Lamb,
1977; Simmons and Burridge, 1981; Simmons and Strifing 1983). More recently,
Schér et al. (2002) proposed a new smooth level vertical coordinate (SLEVE), which is
a height-based coordinate to smooth the o coordinate levels above a complex terrain
and has been implemented in the COSMO model. Zangl (2003) developed the SLEVE
into a pressure-based coordinate, and Leuenberger (2010) generalized it into more
practicable form. Lately, a smooth terrain-following (STF) coordinate was proposed,
which can smooth the o levels much more than the SLEVE and has been implemented
in the MPAS model (Klemp, 2011, 2012). Note that all these methods have been
successful at alleviating the advection errors in the o coordinate via smoothing the
o coordinate levels above a steep terrain; however, they did not consider handling the
“PGF errors” at the same time.

In this study, we aim to deal with the two well-known computational errors of
the classic o coordinate (CS coordinate) together, through designing an orthogonal
curvilinear terrain-following coordinate (OS coordinate) in a unique way. First, we take
“reversed” steps from those of the CS coordinate, which is to solve the basis vectors
of this new coordinate first and then the definition of every coordinate. Based on the
basis vectors of the OS coordinate, we solve its scalar equations. Then, a unified
framework is proposed to combine the z coordinate, the CS coordinate, and the
OS coordinate. Finally, a series of idealized advection experiments are tested using this
unified framework to exam the performance of the CS coordinate and OS coordinate
in terms of advection errors.

2 The orthogonal curvilinear terrain-following coordinate

The basic principle of designing a terrain-following coordinate is to turn the surface of
the Earth into a coordinate surface, therefore simplifying the lower boundary condition
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in a numerical model. When designing a CS coordinate, researchers first designed the
expression of the vertical coordinate in order to turn the terrain into a sigma level, as in
Phillips (1957) and Gal-Chen and Somerville (1975), and then solved the basis vectors
of the CS coordinate (black arrows in Fig. 1). However, we take an opposite approach.
First, we solve the basis vectors of the OS coordinate, which are terrain-following and
orthogonal, and then use the definitions of these basis vectors to solve the expression
of every coordinate of the OS coordinate (green arrows in Fig. 1).

All the principles of the basis vectors and the OS coordinate are summarized
in Table 1. In the following sub-sections, we first solve the basis vectors of the
OS coordinate and the definition of each coordinate. Then, we demonstrate the basic
characteristics of the OS coordinate.

2.1 The basis vectors

In order to achieve the requirements of the basis vectors described in Table 1, we
use a special coordinate rotation to obtain the basis vectors of the OS coordinate,
which is orthogonal and terrain-following. Specifically, we rotate the basis vectors of
the z coordinate until its z axis is in line with the normal vector of the terrain, and
a 2-D schematic of this rotation is shown in Fig. 2. In a 3-D rotation, we view it as
a combination of two sets of 2-D rotation revolved around the coordinate axes, which
will be illustrated later.

Since the basis vectors of the z coordinate are orthogonal, and the rotations revolved
around the coordinate axes are orthogonal transformation, which keeps the original
characteristics of the basis vectors, the rotated basis vectors are orthogonal. On the
other hand, the z axis of the rotated basis vector is in line with the normal vector of the
terrain, so the x axis and y axis of the rotated basis vectors are in the tangent plane of
the terrain, which means the rotated basis vectors are terrain-following. In conclusion,
the rotated basis vectors are both orthogonal and terrain-following.

In a 3-D system, there are four kinds of rotations to solve the basis vectors of the
OS coordinate. Here, we use one of them as an example; the other three will be
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introduced in Appendix A. First, we rotate the basis vectors of the z coordinate (the
black arrows in Fig. 3) around its y axis until its z axis is in line with the projection
of the normal vector of the terrain on the plane Oxz (the burgundy dash-dotted line),
then we obtain the coordinate system [O; x4, ¥, 24], which is drawn as the blue arrows
in Fig. 3. Second, we rotate the coordinate [O; x4, ¥4,2z4] around its x; axis until the
z,4 axis is in line with the normal vector of the terrain (the burgundy arrow in Fig. 3), and
then we obtain a coordinate system [O; x,, ¥», Z,], which has a set of orthogonal and
terrain-following basis vectors. Finally, using the two rotation angels 8’ and 1’ shown in
Fig. 3, we can solve the expression of these basis vectors.

Here, we solve the basis vectors expressed by the rotation angels 8'and A'in a 3-D
rotation. The relationship between the original basis vectors and the rotated ones are
given by

i cosay cos 34 CosYy; i

J | = | cosa, cosB, cosy, il (1)
!

k COS 3 COS B3 COS Y3 k

where i, j, and k are the basis vectors of the original coordinate, i’, j', and k' are
the basis vectors of the rotated coordinate, and a;, G;, and y; (/ = 1,2, and 3) are the
angels between the original x, y, and z axis and the corresponding rotated x’, y’, and
7' axis. Using the space geometry, we solve the rotation angels in the first rotation
shown in Fig. 3 as follows:

ay B1 V1 6 55-06
A BaVa | = 3 ,0 %, ; (2)
as B3 V3 5+60 % 0
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then we substitute Eq. (2) into Eq. (1) to obtain the basis vectors of the coordinate
[0;x4,¥4,24] as follows:

X4 cos@’ 0 siné’ i
yi]= 0 1 0 J - (3)
z, —sin@’ 0 cosd’ k

Using the same way, we solve the rotation angels of the second rotation shown in Fig. 3
as follows:

ay By V4 0 %, 3 ,
BBy |=|5 4 I%—,/l ; (4)
as B3 Vs S5+ A

and through substituting Eq. (4) into Eqg. (1), we solve the expression of the basis
vectors of the coordinate [O; x5, ¥5, Z5],

X 1. 0 0 X,
Yo | =|0cosA sind' | |y,]. (5)
Z, 0 —sinA’ cos A’ z,

Finally, we substitute Eq. (3) into Eq. (5) to solve the rotated basis vectors as follows:

Xo cos®’ 0 sing’ i
Yo | = | —sinA’sin@ cosA’ sinA’'cos®’ il (6)
Z, —cosA’sin@’ —sin’ cosA’cosé’ k
' 1 r (3)°+1 :
where cos8’ = ————, cosl’ = ox ,and h = h(x,y) represents the terrain.

oy
The expressions of the basis vectors solved by all four kinds of 3-D rotations can
be summarized into two sets (Table 2). Note that, since the horizontal components of
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these two sets of basis vectors, i, and j,, are in the tangent plane of the terrain, and
their vertical components k, are in line with the normal vector of the terrain, these two
sets of basis vectors are both terrain-following vectors except for the different directions
of their horizontal components (i, and j,).

Finally, we design a rotation parameter b in order to make the horizontal components
of the basis vectors more horizontal with increasing height and finally equal to the basis
vectors of the z coordinate at the top of the model. There are three principles for this
rotation parameter b: (1) it should be 1 on the surface of the terrain; (2) it should be 0 at
the top of the model; and (3) it should monotonically decrease with increasing height z.
Note that these three requirements of the rotation parameter b are exactly the same as
those of defining the vertical coordinate of the CS coordinate, which means any existed
definition for the vertical coordinate of the CS coordinate can be used as the rotation
parameter b in the OS coordinate. Then, we add the rotation parameter b with every
rotation angel in the basis vectors of Table 2, so the basis vectors of the OS coordinate
are at last solved as in Table 3.

2.2 Definition of each coordinate

Since the definition of each coordinate is to clarify the “coordinate transformation” from
one coordinate to the other, such as the definition of o, we use a “cross-point way” to
solve the coordinate transformation between the z coordinate and the OS coordinate,
instead of directly defining each coordinate in the OS coordinate.

We use the expressions of the basis vectors of the OS coordinate in Table 3 to obtain
the expression of each coordinate. First, let each coordinate of the OS coordinate be

X' =x'(x,y,2), (7)
y'=y'(x,y,2), (8)
o=0(x,y,2), 9)
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where x, y, and z are the coordinates of the z coordinate, x’, y’, and o are the
coordinates of the OS coordinate. Since the OS coordinate is orthogonal, namely, its
covariant and contravariant basis vectors are the same, we use the contravariant basis
vectors as an example. These definitions are given as follows:

91_0_)(Ii+6_)(,_+6_)(l
T ox ayl 0z

ayl. ayl. ay’
2 W i i Dk 11
€ 0xl+0y1+62 ’ (1)
3. 09;,00,,00
T ox ayl 0z

k, (10)

(12)

By comparing Egs. (10)—(12) with the expressions of the basis vectors of the
OS coordinate in Table 3, we can obtain the partial differential equations (PDEs) of each
coordinate of the OS coordinate. Then solving these PDEs, we obtain the expression
of each coordinate of the OS coordinate.

Since solving these PDEs of each coordinate of the OS coordinate is complex, we
use an alternative way to define the coordinate transformation from the z coordinate
to the OS coordinate, namely, to solve the coordinate values at a grid point using the
OS coordinate and then solve them again using the z coordinate. We call this the
“cross-point way,” which is mentioned at the beginning of Sect. 2.2. In the following
computations, we use the second kind of basis vectors of the OS coordinate in Table 3
as an example to elucidate how to carry out this coordinate transformation.

First, comparing Egs. (10)—(12) with the second kind of basis vectors of the
OS coordinate in Table 3, we obtain the PDEs of each coordinates as follows:
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the horizontal coordinate x’ of the OS coordinate,

ox'
- _ .0
o cos(b-8'),
ox'

=0,
oy

!

%:sin(b-@');

the horizontal coordinate y’ of the OS coordinate,

oy' . .
2 — _sin(b-0')-sin(b-1'),
X sin( )-sin( )
oy’

a9 _ b-1),

3y cos ( )

O _ cos(b-0)-sin(b-1):
0z ’

the vertical coordinate o of the OS coordinate,

Z-j:—sin(b-e’)-cos(b-/l'),
g—;‘/:—sin(b-/l’),

0o

— = NCAE ).
7 cos(b-6')-cos(b-1")

(13)
(14)

(15)

(16)
(17)

(18)

(19)
(20)

(21)

Solving these three sets of PDEs separately, we can obtain explicit expressions of
x', y', and o of the OS coordinate. For simplicity, we solve the coordinates of the
OS coordinate in 2-D, so the PDEs of coordinate x’' and o are transformed into the
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ordinary differential equations (ODEs) as follows:
the coordinate x’,

dz

_ = = t -9’ . 22
5 =~ (b-0'); (22)
the coordinate o,

dz

— =tan(b-8). 23
Ix an(b-0') (23)

Because the explicit solution of ODEs of Egs. (22) and (23) is complex, we solve their
numerical solution instead, and then we obtain the pattern of the x’ and ¢ coordinate
lines shown in Fig. 4. Since the resolution of the x' coordinate is high near the top of
the terrain as shown in Fig. 4, the Courant—Friedrichs—Lewy (CFL) criterion should be
considered in the design of the x" coordinate, which needs to be dealt with by further
experiments.

Using these coordinate lines shown in Fig. 4, we then calculate the coordinate of
every cross point in the z coordinate and the OS coordinate, respectively, which is
exactly the coordinate transformation between the z coordinate and the OS coordinate
(Fig. 5). Specifically, the coordinate of every cross point is valued as (x4,z4) in the
z coordinate, while the coordinate value of this point in the OS coordinate is (b¢,ay4),
for the value of each coordinate line is its coordinate in the OS coordinate.

Finally, through the cross-point way illustrated in Fig. 5, the coordinate transformation
between the z coordinate and the OS coordinate is obtained (Fig. 6). Moreover, the
coordinate transformation of the OS coordinate preserves three benefits of the classic
o coordinate: (1) the points on the terrain in the z coordinate (open black circles in the
bottom of Fig. 6) are transformed into the points with their vertical coordinate being
zero in the OS coordinate (solid red squares in the bottom of Fig. 6); (2) when there
is non-terrain and at the top of the model, the points in the OS coordinate are those
in the z coordinate; (3) the irregular physical space (open black circles in Fig. 6) is
transformed into a regular computational grid in the OS coordinate (solid red squares
in Fig. 6).
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2.3 Basic characteristics

First, we use the g and the matrix of the coordinate transformation to testify
the orthogonality of the OS coordinate. Then, via solving the expression of the
basis vectors on the terrain, we verify the basis vectors of the OS coordinate are
terrain-following. Finally, we use three examples to demonstrate the ability of rotation
parameter b to smooth the ¢ levels above a steep terrain.

Since the definition of g, is given by

e,-e e;-e e, e;
gj;=162€e166,65-€;3 |, (24)
e;-e,65-6,€e; 6,

where e; (i = 1,2, and 3) are the basis vectors of a coordinate, we calculate g;; of the
OS coordinate using its basis vectors listed in Table 3,

100
001

Equation (25) manifests that the basis vectors of the OS coordinate are orthogonal
and unit vectors. Furthermore, we transform the expressions of the basis vectors of the
OS coordinate in Table 3 into a matrix:

the first kind of the basis vectors

i, cos(b-1) —sin(b-0)sin(b-1) —cos(b-6)sin(b-1) i
Jo | = 0 cos(b-0) —-sin(b-0) jl, (26)
k, sin(b-1) sin(b-08)cos(b-1) cos(b-68)cos(b-A) k

the second kind of the basis vectors
i, cos(b-6") 0 sin(b-6") i
Jo | =| -sin(b-68')sin(b-2") cos(b-1") cos(b-6')sin(b-1') il. (@7
k, —sin(b-6")cos(b-1") —sin(b-1") cos (b-6')cos (b-1") k
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The matrixes on the right hand side (RHS) of Egs. (26) and (27) are called the
transformation matrixes, which demonstrate the relationship between the transformed
coordinate and the original one. Then, we calculate the determinant of these two
transformation matrixes as follows:

the first kind of the basis vectors

cos(b-A) —sin(b-1)sin(b-6) —sin(b-1)cos(b-0)
0 cos(b-0) —-sin(b-0) =1, (28)
sin(b-1) cos(b-1)sin(b-8) cos(b-1)cos(b-0)

the second kind of the basis vectors

cos (b-6') 0 sin(b-6")
—sin(b-1")sin(b-0") cos(b-2") sin(b-A")cos(b-0") | =1. (29)
—cos (b-1")sin(b-6") —sin(b-1") cos (b-1")cos (b-8")

Equations (28) and (29) show that the transformation matrixes of the OS coordinate
are orthogonal, namely, the associated coordinate transformation is “the orthogonal
transformation of the first kind.” So the basis vectors of the OS coordinate preserve the
characteristics of the z coordinate, which means the basis vectors of the OS coordinate
are orthogonal and unit vectors.

Next, via substituting b =1 and every rotation angel into the expressions of the
basis vectors in Table 3, we obtain the vertical component of the basis vectors of the
OS coordinate on the terrain as follows:

_oh _oh 1
k, = ox i+ o j+ k
2 2 2 2 2 2
\/(%) +<g—g> +1 \/(%) +(g—g) +1 V(%) +<g—3> +1 o)
_ 1 _Oh, _oh.
- ox ayj '
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Comparing Eq. (30) with the normal vector of a terrain given by Eq. (A1), we obtain that
the vertical component of basis vectors of the OS coordinate is in line with the normal
vector of the terrain. Since the basis vectors of the OS coordinate are orthogonal, its
horizontal components are in the tangent plane of the terrain, namely, the basis vectors
of the OS coordinate are terrain-following. In addition, when there is non-terrain, which
means h = 0 and at the top of the model with b = 0, the expressions of the basis vectors
of the OS coordinate in Table 3 become,

i, =i, (31)
Jo=17, (32)
k,=k. (33)

Equations (31)—(33) manifest the basis vectors of the OS coordinate are exactly equal
to those of the z coordinate when there is no terrain and at the top of the model.

The characteristics of the basis vectors of the OS coordinate can be concluded in
three aspects as shown in Fig. 7: (1) unit and orthogonal vectors, (2) terrain-following
vectors, and (3) equal to the basis vectors of the z coordinate when there is no terrain
and at the top of the model.

Finally, we propose three definitions of rotation parameter b in the basis vectors of
the OS coordinate to show its ability in smoothing the ¢ levels above a steep terrain.
These definitions are given as follows:

Linear b (Br1),

p=thzZ (34)
" H,-h

Squared b (Br2),
“\H,-h) "’
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Exponential b (Br3),

2(Hy—h
N e, =1 e

S , 36
e2(H—h) _ 1 (36)

T g2(H—h) _ 1
where H, is the top of the model, and h = h(x,y) represents the terrain. All these
three definitions satisfy the requirements of rotation parameter b, but with increasing
complexity in terms of vertical variation from Eq. (34) to Eq. (36).

Figure 8 shows the o levels along with these three kinds of b used in the basis
vectors of the OS coordinate. First, all the slopes of the o levels in the OS coordinate
(colored lines) are no more than those of the CS coordinate (black lines). Second, while
the height z increases, the slopes of the ¢ levels using these three definitions decrease
significantly from Br1 (red lines) to Br3 (green lines). Third, the lowest o-level is right
along the terrain in all three definitions of b.

In conclusion, we have verified that the basis vectors of the OS coordinate are unit,
orthogonal, and terrain-following. Particularly, the rotation parameter b in the basis
vectors of the OS coordinate can significantly smooth the o levels above a steep terrain.

3 Equations solved in the OS coordinate
3.1 The scalar equations

Using the basis vectors of the OS coordinate to expand a vector equation, we can
obtain the scalar equations of the OS coordinate. In the following calculations, we use
the vector equation of the atmosphere as an example, to solve the momentum, mass,
and heat equations in the OS coordinate.

First, we expand the vector form of the momentum equation,

‘?3_':+(V.v)y=—%Vp—2§2xv+g. (37)
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The left hand side (LHS) of Eq. (37) is transformed into

ov _0ovi . 094;_ 0vi
ot otV Vi T 9
and

0
(v-V)v =(v,q;-V)v,q; = (Vi'_,-) viq;.
2q

While the RHS of Eq. (37) is transformed as follows,

1 10p
-—Vp=-——Lg,,
p' P 0 dq ai
—2Qx Vv = -2(Qyv3 - QaV5) G4 — 2(=Q4 V3 + Q3V1) G2 — 2(Q4Vp — Qy14) g3,
and
g9=49:q;
Second, we expand the vector form of the mass equation,
Z—’? +V-(ov)=0.

Only the second term on the LHS of Eq. (43) changes to

V-<pv>=%aiq,(\/§pv/)-

Via Eq. (25), we obtain /g = 1, and then Eq. (44) becomes

0
V-(ov)= a—q/(PV/)-
5816
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(39)
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Third, the vector form of the heat equation is given by

6_T+V.VT_ﬂd_p =£_
ot Copdt C,
The second term on the LHS of Eq. (46) becomes
v.-V7 =y 6_T
aq’

Now, the scalar equations of the OS coordinate can be solved as follows:

the momentum equations,

ou ou ou ou 10p
61‘0 +U, ax? +v, Oy? +w, a; =S —2(QuoW, — Qup3V,) + Io1»
ov, ov, ov, ov, 10p
ot Toax Toay T %0 T Thay
ow, ow, ow, ow, 10p

(Qo1 Wy — QOSUO) + Goo;

ot +u0 aX, an, WO do __;%_2(901'/ QOQUO)+g03’
the mass equation,

6,0 0

Bt ax, (ou,) + (pVo) + 5= 30 (pWo) =0;

the heat equation,

or or or

or OT  OT oT AT dp_Q
ot °ox' oy

°80 Cppdt - C,

and the equation of state,

p = pRT.
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(46)

(47)

(48)
(49)

(50)

(51)

(52)

(53)
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In Egs. (48)—(53), the parameters with subscript o are the scalars in the OS coordinate,
which should be solved following the procedure described in Appendix B.

Note that the expression of the PGF in all three momentum equations, Eqs. (48)—
(50), has only one term, which means the OS coordinate will significantly reduce the
PGF errors, as suggested by Li et al. (2012) in their new method of implementing
the classic o coordinate. More importantly, the forms of the momentum equations in
the OS coordinate are as simple as those in the z coordinate, which do not have the
additional terms, such as the curvature terms existed in the equations of Li et al. (2012),
therefore avoiding the potential numerical problems all together. However, the effect of
the components of gravity in each momentum equation of the OS coordinate still needs
to be investigated using more numerical experiments.

3.2 A unified framework

To show a way of implementing the OS coordinate in a numerical model, we first
propose a unified framework to combine the equations in the z coordinate, the
CS coordinate, and the OS coordinate. And there are two aspects to deal with
these equation sets, “the difference in form” and “the difference in value” We set
corresponding parameters to unify the different forms, and then separately define the
different values of scalars in the three coordinates.
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The unified equations of this framework are written as follows:

@+uau +V0u +Wau + A4 = 161, op =2, (Qow —QgV) + 94, (54)
ot  9q' 092  0q° o "aq
ov ov ov ov 1 op
—+u +V +w + =-—6 + 21, (Qqw — QaU) + go, 55
at "Uoq1 TV og2 T o 2= 2 5q7 2 (€24 3U) + g (55)
ow ow ow ow 1 op
—+u +vV +w + A3 = ——08q — Qv -Q,u)+ga, 56
ot aq1 aqg aq3 13 0 BIaql ( 1 2 ) g3 ( )
0,0 1 0 0 0

— = u) + Apv Arpw 57
31 T 1 5 Pt gge NPV + 5 (1e0w) =0 (57)
oT oT oT or RT dp Q@
—+u +Vv +w - - == (58)
ot  9q' 8g? 8g® Cppdt C,

where, i sums from 1 to 3, g’ are the coordinates, the values of Aimy Ao, @and 6,
(m=1,2,and 3) are listed in the Table C1 of Appendix C. The scalars in Egs. (54)—(59)
represent their values in different coordinates, such as the scalars of velocity v, v, and
w, the scalars of angular velocity Q,,, and the scalars of gravity g,,, which should be
solved separately in each coordinate using the corresponding matrix t;; proposed in
Appendix C.

In conclusion, through defining different values of the parameters in each coordinate
as in Table C1 and choosing the different coordinate transformation matrix t;;
described in Appendix C, we can obtain the unified equations of the z coordinate,
the CS coordinate, and the OS coordinate. Moreover, the equations of each coordinate
can be conveniently switched from one to the other in this unified framework.

5819

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

4 I|dealized experiments used to compare advection errors

In order to examine the ability of the OS coordinate at handling the advection errors of
the CS coordinate, we use the unified framework proposed in Sect. 3.2 to implement
a series of 2-D idealized advection experiments. First, we make a basic comparison
of the advection errors between the CS coordinate and the OS coordinate using an
experiment of fixed spatial resolution. Then, we carry out sensitive experiments using
various horizontal and vertical resolutions to investigate the variation of the advection
errors in both coordinates.

4.1 Parameters of the 2-D advection experiments

Since the contravariant equations of the CS coordinate are the equations commonly
used in many numerical models, in the following experiments we only make
comparisons of the advection errors between the OS coordinate and the CS coordinate
using the contravariant equations. Here we use the definition of o as ¢ = Htﬁt;—l;v’ which
was proposed by Gal-Chen and Somerville (1975). In addition, in the OS coordinate we
choose its second kind of basis vectors as an example in the following computation.
The expressions of the velocities in these two coordinates are respectively given as
follows:

the CS coordinate using the covariant basis vectors,

1 M=z o\ 7! 1 H,- Z‘th.%
(U' WI) = (U W) <O H,7_//t7__h6x> = (U W) 0 (Ht;th) 1, (60)
Hy H~-h

the OS coordinate using the second kind of basis vectors,

W w)=ww) (TG s d)) =@M (Gl coss.0)
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The linear advection equation is used in all the experiments,

0q ,0q 09

atVaxtWaz =0 (62)

where g represents the anomaly field, v’ and w’ are the velocity components in the
unified framework, and X and Z are the horizontal and vertical coordinates in the
unified framework. Note that in the CS coordinate, the coordinates are solved by the
definitions of x’ and o, while in the OS coordinate, the coordinates are calculated
following the coordinate transformation illustrated in Figs. 5 and 6. Then, we discretize
the advection Eq. (62) using the leapfrog scheme, so the discretization of Eq. (62) is
written as follows:
QZ? - q/,'v,k1 Ak =Giak ket =k
+u +w
2At 20X 207

- 0. (63)

And the periodic boundary condition is used in the horizontal, while the rigid-lid
boundary condition is used in the vertical.

The other parameters of the 2-D advection experiments are shown in Fig. 9. In
particular, the domain of the experiments is fixed with 0-300 m in the horizontal and
0-25m in the vertical. And the definitions of the anomaly field g and the horizontal
velocity v both follow the advection experiments designed by Schér et al. (2002). The
expression of the anomaly field g is given by

cosz(%-r), r<i

0 ) (64)

Q(X,Z) =QO'{
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2 2
where go=1,r=\/(52) +(52) ,x,=100m, z,=9m, A, =25m,and A, =3m.
0 Ay A, 0 0 X z

The u field is given by

1, Z, <z
(2) = uy-< sin® (L. 224 71<2<2 (65)
u(z) = ug (3 5==), 215252,

0, zZ<2z4

where ugy = 1 ms™', z; =4m, and z, = 5m. Then, we use a bell-shaped terrain, which

is a common choice in a theoretical analysis of airflow over a mountain, and the
definition of it is given by

a2

Ax)=H —2
) (x — h,)? + a2

(66)

where H =3m, h, =150m, and a = 10 m.

In each experiment, we integrate 400 time steps using the time step of df = 0.25s.
The horizontal and vertical resolutions in the transformed space are dX =1m and
dZ = 0.5m, respectively, for the basic comparison as shown in Fig. 10a. For the
sensitivity comparison, we use five different horizontal and vertical resolutions. Since
in the OS coordinate we designed three different kinds of rotation parameter b, which
are given by Eq. (34)—(36), we have four groups of experiments for the two coordinates,
which are the CS coordinate and the OS coordinate with three different kinds of rotation
parameter b. Here, we abbreviate all four groups of experiments as Cs, OsBr1, OsBr2,
and OsBr3 correspondingly in the following comparison.

The computational grids in the basic comparison of the CS coordinate and the
OS coordinate with three different rotation parameter b are shown in Fig. 10b—e.
The horizontal Courant number in the CS coordinate is ay = ‘g—; = 0.25. Since the
resolution of the x’ coordinate is high near the top of the terrain in the OS coordinate as
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shown in Fig. 10c—e, we calculate the minimum dx in OsBr1, OsBr2, and OsBr3, which
are dx =0.5m, dx =0.6m, and dx = 0.9m. Then the maximum horizontal Courant
numbers in the OsBr1, OsBr2, and OsBr3 are solved as follows: @yg,q = L&'—f’f =0.5,

Uosorz = L2 =0.42, and @pepg = 4% = 0.28. In addition, we calculate the maximum
vertical Courant numbers in the CS, OsBr1, OsBr2, and OsBr3 as follows: G5 = Wd—zdf =
0.093, Bosprt = 55 = 0.084, Bogprn = 43¢ = 0.073, Bosprz = Y53 = 0.008. Note that, the

more smoothing the o levels become through the rotation parameter b, the lower the
resolution of x" over the top of terrain in the OS coordinate is (Fig. 10c—e).

4.2 Basic comparison

Following Schéar et al. (2002), we also calculate the absolute errors (AE) of the
advection in the OS coordinate and the CS coordinate by comparing them with the
results obtained from non-terrain simulations.

First, we compare the AE of both coordinates when the advection is over the top of
the terrain (Fig. 11). Their patterns are similar; however, the maximum values of AE
are significantly different. In particular, all the errors obtained by the three experiments
of the OS coordinate (Fig. 11b—d) are much smaller than those in the CS coordinate
(Fig. 11a). Note that the AE of OsBr3 (Fig. 11d) is two orders of magnitude smaller
than those of the OS coordinate (Fig. 11a).

Then, we calculate the root mean square errors (RMSESs) of the advection in all the
experiments at every time step (Fig. 12). The RMSEs of all the experiments using the
OS coordinate (colored curves in Fig. 12) are consistently smaller than those in the
CS coordinate, especially when using the exponential rotation parameters b (OsBr3;
green), which is two orders of magnitude smaller than those in the CS coordinate at
every time step.

5823

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

4.3 Sensitive comparison of different spatial resolutions

Since the spatial resolution is an important factor in simulating the advection over
terrain in the terrain-following coordinate (Schéar et al., 2002), we use five different
horizontal and vertical spatial resolutions listed in Table 4 to compare the variation of
the advection errors between the CS coordinate and the OS coordinate. The maximum
horizontal Courant number in the CS coordinate is a.; = 0.5, and the maximum
horizontal Courant number in the OS coordinate is a1 = 0.96,which is calculated
from the experiment of dX = 0.5m in OsBr1. For each fixed-resolution experiment, we
carry out four groups of experiments, which are Cs, OsBr1, OsBr2, and OsBr3; so there
are a total of 32 groups (since four groups were implemented in the basic comparison
in Sect. 4.2).

First, we compare the pattern of advection in both coordinates and use the results
obtained by the experiment of dX = 8.0m and dZ = 0.5m as an example (Fig. 13). The
results in the CS coordinate show large deformation, while the advection is over the top
of the terrain as shown in the middle of Fig. 13a. However, using the OS coordinate
with three kinds of rotation parameters, this deformation is alleviated, especially in the
results obtained by OsBr3 (Fig. 13d).

Second, we calculate the RMSEs of the advection in both coordinates in all five
different horizontal spatial resolutions at every time step (Fig. 14). Being consistent
with the results obtained by the basic comparison (Fig. 12), the RMSEs in all the
experiments using the OS coordinate (Fig. 14b—d) are smaller than those in the
CS coordinate, especially the RMSE of OsBr3 (Fig. 14d); it is constantly two orders
of magnitude smaller than those in the CS coordinate (Fig. 14a) in each experiment.

Next, we calculate the RMSEs obtained by using five different vertical spatial
resolutions (Fig. 15). Again, the RMSEs in the OS coordinate (Fig. 15b—d) are smaller
than those in the CS coordinate (Fig. 15a). Especially, the RMSE in OsBr3 (Fig. 15d) is
constantly two orders of magnitude smaller than those in the CS coordinate (Fig. 15a).
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Finally, we analyze the reason for the improvements of the OS coordinate via
comparing the slopes of ¢ levels in the OS coordinate and the CS coordinate. The

expression of the slopes of every ¢ levels in the CS coordinate are (%)0 = Z::; . % (Li
etal., 2011), and those in the OS coordinate are given by (42) _=tan (b-arctan (22)).
Here, we only calculate the slopes above z =4.0m, since the v field is zero below
z=4.0m as expressed in Eq. (65). The slopes of ¢ levels above the top of terrain in
the CS coordinate and OS coordinate are shown in Fig. 16, which is calculated by
using the experiment of dX =2.0m and dZ = 0.5m as an example.

Comparing with the RMSEs of the two sensitive experiments shown in Figs. 14
and 15, the values of the slopes show similar variation from the CS coordinate to the
OS coordinate using three rotation parameters (Fig. 16). Specifically, all the values of
the slopes in the OS coordinate are smaller than those in the CS coordinate; especially
in the experiment of OsBr3, the values of the slopes are one order of magnitude smaller
than those in the CS coordinate. In conclusion, through alleviating the slopes of the
o levels above the steep terrain, the OS coordinate significantly reduces the advection
errors of the CS coordinate.

5 Conclusion and discussion

In order to overcome the two well known computational errors, the “PGF errors” and
the “advection errors” in the classic o coordinate together, an orthogonal curvilinear
terrain-following coordinate that has a set of orthogonal and terrain-following basis
vectors are proposed. The key is to use a very different approach to re-design a terrain-
following coordinate. Since the OS coordinate is orthogonal, the computational form of
PGF in each momentum equation has only one term so it will reduce the “PGF errors”
significantly. Via designing a proper rotation parameter b in the OS coordinate, this
new coordinate can conveniently smooth the o levels, therefore significantly reducing
the “advection errors” of the classic o coordinate.
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The design of the OS coordinate uses the opposite order from the design of
the classic o coordinate, which is to first construct the basis vectors and then the
corresponding definition of each coordinate. Specifically, we rotate the basis vectors
of the z coordinate until its vertical basis vector is in line with the normal vector of
the terrain, and add a rotation parameter b to each rotation angle (Table 3), which
make the new coordinate unit, orthogonal, and terrain-following (Fig. 7). Then, we use
a “cross-point way” to solve the coordinate transformation between the z coordinate
and the OS coordinate, instead of solving the explicit definition of each coordinate as
commonly done. Furthermore, using the basis vectors of the OS coordinate to expand
the vector equation, we solve the scalar equations of the OS coordinate; as a result, the
computational form of PGF has only one term, therefore reducing the PGF errors, as
illustrated in Li et al. (2012). Finally, based on the characteristics of the scalar equations
of the OS coordinate, we design a unified framework to implement both the classic and
the orthogonal ¢ coordinate using a set of unified equations, which is a facility for the
application of this new coordinate in a numerical model.

Using this unified framework, we carried out a series of 2-D linear advection
experiments to compare the advection errors of the two o-coordinates associated with
three different forms of rotation parameter b. First, in a basic comparison using the
fixed resolution, the RMSEs in the OS coordinate are all smaller than those of the
CS coordinate (Fig. 12). And then, in the sensitive experiments of increasing horizontal
and vertical resolutions, the RMSEs in the OS coordinate are also much smaller than
those of the CS coordinate (Figs. 14 and 15); especially when the OS coordinate uses
the exponential rotation parameter b (Figs. 14d and 15d), the RMSEs are consistently
two orders of magnitude smaller than those of the CS coordinate. Finally, we analyze
the reason for the improvements of the OS coordinate and find that it is through
alleviating the slopes of o levels that the OS coordinate significantly reduces the
advection errors of the CS coordinate.

Since the two well-known computational errors exist in both atmospheric and oceanic
models that use the o coordinate, the OS coordinate can be used for numerical
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ocean models as well, potentially representing the dynamic effects of terrain more
precisely and therefore simulating more realistic circulations near complex terrains. We
understand that though the OS coordinate proposed in this study is theoretically sound,
it may encounter some problems in practice, such as the effects of the component
of gravity g,, in each momentum equation, and the CFL criterion above the steep
terrain. Moreover, the effect of reduced advection errors by the OS coordinate should
be compared with that by other methods, such as the hybrid ¢ coordinate, SLEVE and
STF, and the comparison between the OS coordinate with the cut-cell method should
be investigated by further experiments in terms of reducing the computational errors.
The true benefits of the new coordinate need to be confirmed by more idealized and
realistic experiments.

Appendix A

Coordinate rotations for solving the basis vectors of OS coordinate

There are four ways to rotate the basis vectors of the z coordinate to obtain the basis
vectors of the OS coordinate. Specifically, there are two ways of rotations on the
upslope and two on the downslope: (1) first rotation is around the x axis, and then
around the rotated y axis, and (2) first rotation is around the y axis, and then around
the rotated x axis. We introduced one way in Sect. 2, and now solve the expressions
of the other three here.

First, we solve the expression on the upslope of the terrain as shown in Fig. A1. The
normal vector of the terrain is the burgundy arrow in Fig. A1 and its expression is given
by

1=-20i 20k, (A1)

where h = h(x,y) represents the terrain. On the upslope of the terrain, % >0 and

dh : - dh dh
3y > 0, while on the downslope of terrain, ax < 0 and oy < 0.
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In this rotation, we first rotate the basis vectors of the z coordinate around the x axis
and then the rotated y axis (the blue arrow y; shown in Fig. A1), and we get two rotation
angels 8" and 1"

Using the space geometry, we can solve the two rotation angels respectively as
follows:
the first rotation,

0 I T
a; By Vi 2 2
a B v2|=|35 © -6 |; (A2)
a. * *
3 Pa Vs I Iy0 9
the second rotation,
a; By Vi rog gk
a B v2 =1 0 & |, (A3)
a. . .
s Ps Vs Ielm I
: o (&) L .
where cos* = —— and cos A" = —, substituting Eq. (A2) into Eq. (1),
(g—g) +1 ('9—)’1)2+(‘9—£) +1
we get the basis vectors of the coordinate [O; x4,y,24] as follows:
X4 1 0 0 i
y; | =0 cos@" sing jl. (A4)
Z4 0 -sin@" cosf* ) \k

Substituting Eq. (A3) into Eq. (1), we obtain the basis vectors of the coordinate
[O; x5,¥5,25] as follows:

Xy cosA” 0 sinA” X4
Yo | = 0 1 0 yil- (A5)
Z, —-sinA” 0 cosA” z,
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Finally, we substitute Eq. (A4) into Eq. (A5) to obtain the basis vectors of the coordinate
[O; x5,¥5,25], which is orthogonal and terrain-following and its expression is given by

Xo cosA®™ -sinA"sin@" sini*cosO” i
Yo | = 0 cosg" sin@” Jl. (AB)
z, —sinA1® —cosA*sin@" cos 1" cos " k

Second, we solve the expression of the basis vectors in the coordinate rotation on the
downslope of the terrain. One of the rotations that is first around the x axis and then
the rotated y axis is shown in Fig. A2.

The rotation angels in these two rotations are solved as follows:
the first rotation,

ai B V1 0 3 5
0'2 ﬁz ]/2 = % 9 g + 6 y (A7)
a3 B3 V3 % % -6 6
the second rotation,
a1 B V1 15 5+
BBy = 72 0 F |, (A8)
a3 B3 V3 Z-1 % 2
()
where cos9 = —1— and cos 1 = . Using the same method of solving

(%)2“ (% 2+(g—’;) +1
Eqg. (A6), we can obtain the basis vectors of the coordinate [O;x,,¥»,Z,], which is
orthogonal and terrain-following and its expression is given by

X5 cosl —sinAsin@ —sinAcosé i
Yo | = 0 cosé -sin@ j1- (A9)
Z5 sin1 cosAsin@ cosAcosf k
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Finally, we solve the expression of the basis vectors in the coordinate rotation on the
downslope of the terrain, which is first around the y axis and then the rotated x axis
(Fig. A3).

The rotation angels in these two rotations are solved as follows:
the first rotation,

ai By v o 35+
A Bo Ve | = 7 0 3 ; (A10)
a3 B3 Vs 5= 6° 3 6"
the second rotation,
ay 1 Y 0 %# 2 Y
BBy |=|5 A F+1 ], (A11)
a3 B3 V3 55— PR
# # (32)°+1
where cos@" = 1 — and cosi” = o —. Using the same method of
(5 (3% (%)

solving Eq. (A6), we can obtain the basis vectors of the coordinate [O; x5, ¥, Z,] shown
in Fig. A3 as follows:

X5 cos 6" 0 -sing* i
Yo | = —sinA*sin6* cosA* —sinA* cos6* jl. (A12)
Z; cosA*sin6* sinA* cos*coso” k

Now, let’'s summarize the expressions of the basis vectors of the OS coordinate solved
by the four kinds of coordinate rotations in Table A1.
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Appendix B

Scalars in the OS coordinate

Let the expression of a vector A in the z coordinate and the OS coordinate, respectively,
be

A=(abc) ([;() (B1)

and

iO
A=(apBy) (io)- (B2)
kO

where i, j, and k are the basis vectors of the z coordinate, i,, j,, and k, are the basis
vectors of the OS coordinate, a, b, and ¢ are the scalars of vector A in the z coordinate,
and the a, B, and y are the scalars of vector A in the OS coordinate.

Using the first kind of basis vectors of the OS coordinate as an example, and
substituting its expression in Table 3 into Eq. (B2), we obtain

cos(b-1) —=sin(b-6)sin(b-1) —cos(b-0)sin(b- 1) i
A= (apy) 0 cos(b-0) —sin(b-6) j (B3)
sin(b-1) sin(b-08)cos(b-1) cos(b-B)cos(b-A) k
Comparing Egs. (B3) and (B1), we obtain
cos(b-1) —sin(b-0)sin(b-1) —cos(b-6)sin(b-1)
(abc)=(aBy) 0 cos(b-0) —sin(b-6) (B4)
sin(b-1) sin(b-08)cos(b-1) cos(b-B)cos(b-A)
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Using Eq. (B4), we can solve the scalars a, 3, and y of vector A in the OS coordinate
as follows:

cos(b-1) —sin(b-8)sin(b-1) —cos(b-0)sin(b-1) -

(aBy)=(abc) 0 cos(b-9) —sin(b-0) : (B5)
sin(b-1) sin(b-8)cos(b-1) cos(b-B)cos(b-1)

In conclusion, we can use the transformation matrix of the OS coordinate and the scalar
values of a vector in the z coordinate to calculate its scalar values in the OS coordinate.

Appendix C

Parameters and scalars in the unified framework

The values of the three parameters in the unified framework of the z coordinate,
the CS coordinate and the OS coordinate are all listed in Table C1. In addition, the
equations of the new method proposed by Li et al. (2012) can also be combined in this
unified framework, as shown in Table C1.
In order to obtain the scalars of a vector of each coordinate in the unified framework,
we use a coordinate transformation matrix t;; to define these scalars as follows:
-1

SPREIREY
(@By)=(abe)| tiztats ; (C1)

f43 fa3 f33
where a, B, and y are the scalars in the unified framework, and a, b, and ¢ are
the scalars in the z coordinate. Then, via defining the value of the matrix t;; in each

coordinate, we obtain the values of scalars in each coordinate. And the values of t; in
the z coordinate, the CS coordinate, and the OS coordinate are given as follows:
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in the z coordinate,

100
001

j in the contravariant equations of the CS coordinate,

.6h
o0x
.6h .
oy !
—h

Ht

t;; in the covariant equations of the CS coordinate,

10

t;; in the OS coordinate using the second basis vectors,

15

0
0
Hy(z- Ht oh Hi(z- Ht) oh Hy

(H—h)? 0X "(H—h)? Oy Hi=h

t;; in the OS coordinate using the first basis vectors,

cos(b-6) -sin(b-6)

(cos (b-1) —=sin(b-0)sin(b-1) —cos(b-0)sin(b- 1)

sin(b-1) sin(b-8)cos(b-1) cos(b-0)cos(b-1)

—sin(b-6')sin(b-1") cos(b A cos(;-
—sin(b-6')cos (b-1") —sin(b-A

( cos (b-6") 0

(C2)

(C3)

(C4)

(C5)

(C6)
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Table 1. Principles of the basis vectors and coordinates of the OS coordinate.

Values of each coordinate
Vertical Horizontal

Basis vectors

Keeping Constant at
the surface of terrain
and the top of model

Equaling to height z, Equaling to x or y,
when there is no terrain  when there is no terrain

The two horizontal basis vectors
are in the tangent plane of the terrain

Orthogonal to each other
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Table 2. Two kinds of rotated basis vectors after the 3-D rotation. %-
=]
Two kinds of basis vectors Expressions éu
D
i,=1icosA—jsin@-sind - kcos@-sind B
The first kind Jj,=jcosf - ksind —
k,=isinl+ jsin@-cosl+ kcosf-cosi o
=
i,=icosf +ksing g
The second kind Jo=—isin@ -sind" + jcosA’ + kcos®' -sinA’ 2
k,=-isin@ -cosA’ - jsinA' + kcos@'-cosA’ 5
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(7]
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=
(7]
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Table 3. Basis vectors of the OS coordinate.

Two kinds of basis vectors

Expressions

The first kind

The second kind

i,=4icos(b-1)—jsin(b-0)-sin(b-1)—kcos(b-6)-sin(b-1)
Jjo=Jjcos(b-0)—ksin(b-0)
k,=isin(b-1)+ jsin(b-0)-cos(b-1)+ kcos(b-6)-cos(b-1)

i,=icos(b-6') +k-sin(b-6)
Jo=—isin(b-0")-sin(b-A") +jcos (b-1' +kcos(b-9’)-sin(b-/1')
k,=-isin(b-0)-cos(b-1') - jsin(b-1) + kcos (b-6') -cos (b-1')
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Table 4. The horizontal and vertical spatial resolutions of all the sensitive experiments.

Fixed resolution Variable resolution The corresponding horizontal or
(horizontal or vertical) (horizontal or vertical) vertical grid number
(units: m) (units: m)
dZ = 0.5, with the vertical dX =05 600
grid number being 50 dXx =1.0* 300
dx =20 150
dX =4.0 75
dX =8.0 37
dX = 1.0, with the horizontal dZ =0.25 100
grid number being 300 dZ =0.5" 50
dZ=1.0 25
dZ=2.0 12
dZ =4.0 6

* These groups have been implemented in the basic comparison in Sect. 4.2.

5841

Jladeq uoissnosiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

GMDD
6, 5801-5862, 2013

An orthogonal
terrain-following
coordinate

Y. Li et al.

(cc) W)


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/5801/2013/gmdd-6-5801-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table A1. Expressions of the basis vectors of the OS coordinate after four kinds of coordinate
rotations.

Ways of the rotation

Expression of the basis vectors

First: on the upslope of terrain,
around the x axis and then
the rotated y axis

Second: on the upslope of terrain,
around the y axis and then
the rotated x axis

Third: on the downslope of terrain,
around the x axis and then
the rotated y axis

Fourth: on the downslope of terrain,
around the y axis and then
the rotated x axis

i,=icosA"—jsin@"-sinl”+ kcos@" -sinA”
Jo=JcosO" + ksing"
k,=—-isinA" - jsin@"-cosA" + kcos8"-cos A"

i,=icos® +ksinb’
J,=—ising -sinl' + jcosA’ + kcosf' -sinA’
k,=—isin@ -cosA’ - jsin1' + kcos®' -cosl’

i,=icosd - jsin@-sind - kcosd-sini
Jj,=JjcosO - ksinf
k, =isin1+ jsin@-cosA+ kcos@-cosl

i, =icos6" - ksing*
Jj, = —isin@”-sin1* + jcos1* - kcos6* - sin A*
k, =isin@".cosA* + jsinA* + kcos 6" -cosA*
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Table C1. Values of all the parameters in the unified framework.

Parameters Values
z coordinate CS coordinate OS coordinate
Contravariant Covariant
equations equations
(Lietal., 2012)
a nm
Aim 141 =0 441=0 A4q =—%vanag—q1 141, =0
)
/112=0 /112=0 /‘{12=—%va”% /112=0
a nm
/113=0 /113=0 A13=—%vanag_qa /113=0
Ay A, =1 A =\g= |9//| 1, =1

100 By 100 100
6mi 6mi= 010 6mi=g// 6mi =010 6mi= 010
001 001 001

)
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Fig. 3. Schematic 3-D rotation for solving the basis vectors of the OS coordinate on the upslope
of the terrain. The burgundy arrow is the normal vector of the terrain, and the burgundy dash-
dotted line is its projection on the plane Oxz. The black arrows are the basis vectors of the
z coordinate, the blue arrows are the basis vectors of the first rotated coordinate [O; x4,¥4,24],
and the green arrows are the basis vectors of the second rotated coordinate [O; x5, >, Z,].
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Fig. 7. The vertical pattern of the basis vectors of the OS coordinate. The black curve
represents the terrain, and the colored arrows are the basis vectors of the OS coordinate.
Different colors are used for the basis vectors at different o levels.
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a) Absolute Errors in Cs Max = 0.903085 (b) Absolute Errors in OsBr1 Max = 0.870202
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Fig. 11. Absolute errors of the CS coordinate and the OS coordinate with three different rotation
parameters of b compared with the non-terrain simulation, when the advection is over the top
of the terrain (¢t = 200s). Shading represents the AE. The solid black contours are for positive
values, and the dashed contours are for negative values. The contour interval is 0.2 in (a—c);

QTR R QTR

the contours in (d) are —0.0002, 0.002, 0.004, and 0.006.
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Fig. 12. RMSEs of all four experiments with respect to the non-terrain simulation at every time

step.
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Fig. 15. Same as Fig. 14, except for the RMSEs obtained using five different vertical spatial

resolutions.
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Fig. 16. Slopes of every ¢ levels above 4 m over the top of terrain in the CS coordinate and the
OS coordinate using three kinds of rotation parameter b in the experiment of dX =2.0m and
dZ = 0.5m. The shadings are the slopes. The solid black contours are for positive values, and
the dashed contours are for negative values. The contour interval in (a—c) is 0.06, but that in
(d) is 0.006.
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Fig. A1. Schematic 3-D rotation for solving the basis vectors of the OS coordinate on the =
upslope of the terrain. The burgundy arrow is the normal vector of the terrain, and the burgundy _ézu
dash-dotted line is its projection on the plane Oyz. The black arrows are the basis vectors of the @
z coordinate, the blue arrows are the basis vectors of the first rotated coordinate [O; x4,y 1,241,
and the green arrows are the basis vectors of the second rotated coordinate [O; Xx,, ¥», Z5]. o
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Fig. A2. Same as Fig. A1, except that the rotation is on the downslope of the terrain and the
first rotation is around the x axis and then the rotated y axis. The burgundy dash-dotted line is
the projection of the normal vector of terrain on the plane Oyz. @
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Fig. A3. Same as Fig. A1, except the rotation is on the downslope of the terrain and the first O
rotation is around the y axis and then the rotated x axis. The burgundy dash-dotted line is the §
projection of the normal vector of terrain on the plane Oxz. &
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