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Abstract –Two new remotely sensed Leaf Area Index (LAI) and Surface Soil Moisture 26 

(SSM) satellite-derived products are compared with two sets of simulations of the 27 

ORganizing Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and 28 

Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) land 29 

surface models. We analyze the interannual variability over the period 1991-2008. The 30 

leaf onset and the Length of the vegetation Growing Period (LGP) are derived from 31 

both the satellite-derived LAI and modelled LAI. The LGP values produced by the 32 

photosynthesis-driven phenology model of ISBA-A-gs are closer to the satellite-derived 33 

LAI LGP than those produced by ORCHIDEE. In the latter, the phenology is based on 34 

a growing degree-day model for leaf onset, and on both climatic conditions and leaf life 35 

span for senescence. Further, the interannual variability of LAI is better captured by 36 

ISBA-A-gs than by ORCHIDEE. In order to investigate how recent droughts affected 37 

vegetation over the Euro-Mediterranean area, a case study addressing the summer 2003 38 

drought is presented. It shows a relatively good agreement of the modelled LAI 39 

anomalies with the observations, but the two models underestimate plant regrowth in 40 

the autumn. A better representation of the root-zone soil moisture profile could improve 41 

the simulations of both models. The satellite-derived SSM is compared with SSM 42 

simulations of ISBA-A-gs, only, as ORCHIDEE has no explicit representation of SSM. 43 

Overall, the ISBA-A-gs simulations of SSM agree well with the satellite-derived SSM 44 

and are used to detect regions where the satellite-derived product could be improved. 45 

Finally, a correspondence is found between the interannual variability of detrended 46 

SSM and LAI. The predictability of LAI is less pronounced using remote sensing 47 

observations than using simulated variables. However, consistent results are found in 48 

July for the croplands of Ukraine and southern Russia.  49 
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1. Introduction  50 

The Global Climate Observing System (GCOS) has defined a list of atmospheric, oceanic, 51 

and terrestrial Essential Climate Variables (ECVs) which can be monitored at a global scale 52 

from satellites. Terrestrial ECV products consisting of long time series are needed to evaluate 53 

the impact of climate change on environment and human activities. They have high impact on 54 

the requirements of the Intergovernmental Panel on Climate Change (IPCC). New ECV 55 

products are now available and they can be used to characterize extreme events, such as 56 

droughts. Soil moisture is a key ECV in hydrological and agricultural processes. It constrains 57 

plant transpiration and photosynthesis (Seneviratne et al., 2010) and is one of the limiting 58 

factors of vegetation development and growth (Champagne et al., 2012), especially in water-59 

limited regions such as the Mediterranean zone, from Spring to Autumn. Microwave remote 60 

sensing observations can be related to surface soil moisture (SSM) rather than to root-zone 61 

soil moisture, as the sensing depth is limited to the first centimetres of the soil surface 62 

(Wagner et al., 1999; Kerr et al., 2007). LSMs are generally able to provide soil moisture 63 

simulations over multiple depths, depending upon their structure, i.e. bucket models vs. more 64 

complex vertically discretized soil water diffusion schemes (Dirmeyer et al., 1999; 65 

Georgakakos and Carpenter, 2006). Their outputs are affected by uncertainties in the 66 

atmospheric forcing, model physics and parameters. However, Rüdiger et al. (2009) showed 67 

the usefulness of using simulated SSM as a benchmark to intercompare independent satellite-68 

derived SSM estimates, and Albergel et al. (2013a) used hindcast SSM simulations to provide 69 

an independent check on the quality of remotely sensed SSM over time. Conversely, remotely 70 

sensed SSM can be used to benchmark hindcast SSM simulations derived from two 71 

independent modelling platforms (Albergel et al., 2013b). 72 

Leaf Area Index (LAI) is one of the terrestrial ECVs related to the vegetation growth and 73 

senescence. Monitoring LAI is essential for assessing the vegetation trends in the climate 74 
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change context, and for developing applications in agriculture, environment, carbon fluxes 75 

and climate monitoring. LAI is expressed in m2 m-2 and is defined as the total one-sided area 76 

of photosynthetic tissue per unit horizontal ground area.Monitoring LAI is essential for 77 

assessing the vegetation trends in the climate change context, and for developing applications 78 

in agriculture, environment, carbon fluxes and climate monitoring. The LAI seasonal cycle 79 

can be monitored at a global scale using medium resolution optical satellite sensors (Myneni 80 

et al., 2002; Baret et al., 2007, 2013; Weiss et al., 2007). Another way to provide LAI over 81 

large areas and over long periods of time is to use generic Land Surface Models (LSM), such 82 

as Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) (Calvet 83 

et al., 1998; Gibelin et al., 2006) or ORganizing Carbon and Hydrology In Dynamic 84 

EcosystEms (ORCHIDEE) (Krinner et al., 2005).  85 

The direct validation of climate data records, based on in situ observations, is not easy at a 86 

continental scale, as in situ observations are limited in space and time. Therefore, indirect 87 

validation plays a key role. The comparison of ECV products derived from satellite 88 

observations with ECV products derived from LSM hindcast simulations is particularly 89 

useful. Inconsistencies between two independent products permit detecting shortcomings and 90 

improving the next versions of the products. 91 

The Mediterranean basin will probably be affected by climate change to a large extent 92 

(Gibelin and Déqué, 2003; Planton et al., 2012). Over Europe and Mediterranean areas, the 93 

annual mean temperature of the air is likely to increase more than the global mean (IPCC 94 

assessment, 2007). In most Mediterranean regions, this trend would be associated with a 95 

decrease in annual precipitation (Christensen et al., 2007). In this context, it is important to 96 

build monitoring systems of the land surface variables over this region, able to describe 97 

extreme climatic events such as droughts and to analyze their severity with respect to past 98 

droughts. 99 
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This study was performed in the framework of the HYMEX (Hydrological cycle in the 100 

Mediterranean EXperiment) initiative (HYMEX White Book, 2008; Drobinski et al., 2009a, 101 

2009b, 2010), with the aim of investigating the interannual variability of LAI and SSM ECV 102 

products over the Euro-Mediterranean area. While an attempt was made in a previous work 103 

(Szczypta et al., 2012) to simulate the hydrological droughts over the Euro-Mediterranean 104 

area, this study focuses on the monitoring of agricultural droughts and complements the joint 105 

evaluation of the ORCHIDEE and ISBA-A-gs land surface model performed by Lafont et al. 106 

(2012) over France using satellite-derived LAI. A 18 yr time period (1991-2008) is 107 

considered against a 8 yr period (2000-2007) in Lafont et al. (2012). Using the modelling 108 

framework implemented by Szczypta et al. (2012), we compare ISBA-A-gs and ORCHIDEE 109 

simulations of LAI, and we evaluate new homogenized remotely sensed LAI and SSM 110 

datasets. The satellite-derived SSM is compared with ISBA-A-gs simulations of SSM, as 111 

ORCHIDEE has no explicit representation of this quantity. The capacity of the two models to 112 

represent the interannual variability of the vegetation growth and the impact of extreme 113 

events such as the 2003 heat wave is assessed. Finally, the synergy between SSM and LAI is 114 

investigated using the satellite products and the ISBA-A-gs model. 115 

The data, including the leaf onset and the Length of the vegetation Growing Period (LGP) 116 

derived from the observed and simulated LAI are first described. Then, anomalies of the 117 

detrended LAI are compared over the 1991-2008 period with a focus on the 2003 western 118 

European drought (Rebetez et al., 2006; Vidal et al., 2010). Lastly, we investigate to what 119 

extent SSM observations can be used to predict mean anomalous vegetation state conditions 120 

in the current growing season. The interannual SSM variability, resulting from satellite 121 

observations and LSM simulations, is used as an indicator able to anticipate LAI anomalies 122 

during key periods.  123 
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 124 
2. Data and methods 125 

In this study, several data sets (either model simulations, atmospheric variables, or satellite-126 

derived products) were produced or collected, over the Euro-Mediterranean area. In order to 127 

force the two LSMs simulations of SSM and LAI (Sect. 2.1), the ERA-Interim surface 128 

atmospheric variables (Simmons et al., 2010) are used. The ERA-Interim data are available 129 

on a 0.5° × 0.5° grid and the LSM simulations use the same grid (Szczypta et al., 2012). The 130 

1991-2008 18 yr period is considered, as in Szczypta et al. (2012). During this period, SSM 131 

products from both active (ERS-1/2, ASCAT) and passive (SSM/I, TMI, AMSR-E) 132 

microwave sensors are available and can be combined (Sect. 2.2), together with LAI products 133 

(Sect. 2.3). In order to compare the LSM simulations with the satellite products, the latter are 134 

aggregated on the same 0.5° × 0.5° grid using linear interpolation and averaging techniques. 135 

2.1 Models 136 

Although the generic ISBA-A-gs and ORCHIDEE LSMs share the same general structure, 137 

based on the description of the main biophysical processes, they were developed 138 

independently and differ in the way photosynthesis, transpiration, and phenology are 139 

represented. The main differences between the two models are summarized in Table 1. More 140 

details about the differences between the two models can be found in Lafont et al. (2012). 141 

2.1.1 ISBA-A-gs 142 

ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998, 2004; Gibelin et al., 2006; Calvet 143 

et al., 2008), simulating the diurnal cycle of carbon and water vapour fluxes, together with 144 

LAI and soil moisture evolution. The soil hydrology is represented by three layers: a skin 145 

surface layer 1 cm thick, a bulk root-zone reservoir, and a deep soil layer (Boone et al., 1999) 146 

contributing to evaporation through capillarity rises. Over the Euro-Mediterranean area, the 147 

rooting depth varies from 0.5-1.5 m for grasslands, to 2.0-2.5 m for broadleaf forests. The 148 

model includes an original representation of the impact of drought on photosynthesis (Calvet, 149 
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2000; Calvet et al., 2004). The version of the model used in this study corresponds to the 150 

"NIT" simulations performed by Szczypta et al. (2012). This version interactively calculates 151 

the leaf biomass and LAI, using a plant growth model (Calvet et al., 1998; Calvet and 152 

Soussana, 2001) driven by photosynthesis. In contrast to ORCHIDEE, no GDD-based 153 

phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely 154 

driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by 155 

photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by 156 

a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and 157 

a minimum LAI value is prescribed (LAImin in Table 1). The maximum annual value of LAI 158 

is prognostic, i.e. it is predicted by the model. Gibelin et al. (2006) and Brut et al. (2009) 159 

showed that ISBA-A-gs provides reasonable LAI values at regional and global scales under 160 

various environmental conditions. Calvet et al. (2012) showed that the model can be used to 161 

assess the interannual variability of fodder and cereal crops production over regions of 162 

France. The ISBA-A-gs LSM is embedded into the SURFEX modelling platform (Masson et 163 

al., 2013), and the simulations performed in this study correspond to SURFEX version 6.2 164 

runs. 165 

2.1.2 ORCHIDEE 166 

ORCHIDEE (Krinner et al., 2005) is a process-based terrestrial biosphere model designed to 167 

simulate energy, water and carbon fluxes of ecosystems and is based on three sub-modules: 168 

(1) SECHIBA (Schématisation des Echanges Hydriques à l’Interface Biosphère-Atmosphère) 169 

is a land surface energy and water balance model (Ducoudré et al., 1993), (2) STOMATE 170 

(Saclay Toulouse Orsay Model for the Analysis of Terrestrial Ecosystems) is a land carbon 171 

cycle model (Friedlingstein et al., 1999; Ruimy et al., 1996; Botta et al., 2000), and (3) LPJ 172 

(Lund-Postdam-Jena) is a dynamic model of long-term vegetation dynamics including 173 

competition and disturbances (Sitch et al., 2003). ORCHIDEE uses a phenology model based 174 
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on Growing Degree Days (GDD) for leaf onset. The parameters of the GDD model were 175 

calibrated by Botta et al. (2000) using remotely sensed NDVI observations. The LAI cycle 176 

simulated by ORCHIDEE is characterized by a dormancy phase, a sharp increase of LAI over 177 

a few days at the leaf onset, a more gradual growth governed by photosynthesis, until a 178 

predefined maximum LAI value has been reached (LAImax in Table 1). Note that the 179 

prescribed LAImax is not necessarily reached in a simulation over a grid cell. The senescence 180 

phase presents an exponential decline of LAI. The leaf offset depends on leaf life span and 181 

climatic parameters. The ORCHIDEE 1.9.5.1 tag was used to perform these simulations. 182 

Only the ORCHIDEE LAI variable is used since the simple bucket soil hydrology version of 183 

this version of ORCHIDEE has no explicit representation of SSM (Table 1). An attempt was 184 

made by Rebel et al. (2012) to compare the soil moisture simulated by ORCHIDEE with the 185 

AMSR-E SSM product. They concluded that the shallow soil moisture estimates they derived 186 

from the ORCHIDEE simulations were not an explicit representation of SSM and could not 187 

be compared with the AMSR-E SSM product. Instead, they compared the AMSR-E SSM 188 

with the root-zone soil moisture simulated by ORCHIDEE, and they observed that the 189 

satellite-derived SSM had a much faster reaction time and a much shorter characteristic lag-190 

time than the simulations. This can be explained by the shallow penetration depth (<5 cm) of 191 

the C-band microwave signal measured by AMSR-E, which is not representative of deep soil 192 

layers. 193 

2.1.3 Design of the simulations 194 

In this study, the two models use the same spatial distribution of vegetation types, based on 195 

the ECOCLIMAP-II (Faroux et al., 2013) database of ecosystems and model parameters, over 196 

the area 11°W - 62°E, 25°N - 75°N (Fig. 1) covering the Mediterranean basin, northern 197 

Europe, Scandinavia and part of Russia. Further, ISBA-A-gs and ORCHIDEE are driven by 198 

the same atmospheric forcing, the ERA-Interim global ECMWF atmospheric reanalysis 199 
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(projected onto a 0.5° × 0.5° grid). ERA-Interim tends to underestimate precipitation, as 200 

observed over France by Szczypta et al. (2011) and over the Euro-Mediterranean area by 201 

Szczypta et al. (2012). In the latter study, the monthly Global Precipitation Climatology 202 

Centre (GPCC) precipitation product was used to bias-correct the 3-hourly ERA-Interim 203 

precipitation estimates over the whole Euro-Mediterranean area. The resulting 3-hourly 204 

precipitation was indirectly validated using river discharges simulations and observations.  205 

The two models are driven by the 3-hourly atmospheric variables from the bias-corrected 206 

ERA-Interim and perform half-hourly simulations of the surface fluxes, of soil moisture and 207 

of surface temperature, together with daily LAI simulations. Irrigation is not represented. The 208 

daily LAI values are produced for each Plant Functional Type (PFT) present in the grid-cell. 209 

Similarly, daily mean SSM values are produced for each PFT. The grid-cell simulated LAI 210 

(SSM) is the average of the PFT-dependent LAI (SSM) multiplied by the fractional area of 211 

each PFT. 212 

The model runs are performed at a spatial resolution of 0.5° × 0.5°, over the ECOCLIMAP-II 213 

Euro-Mediterranean area, corresponding to: 214 

• 103 ecosystem classes used to map the fractional coverage of twelve plant functional 215 

types (PFT) (see Figs. 7 and 9 in Faroux et al. (2013), respectively); 216 

• 8142 land grid cells. 217 

The fractional coverage of the various PFTs is provided by ECOCLIMAP-II at a spatial 218 

resolution of 1 km, aggregated at a spatial resolution of 0.5°, and the two models account for 219 

the subgrid variability by simulating separate LAI values for each surface type present in the 220 

grid-cell. ISBA-A-gs simulates separate SSM values for each surface type present in the grid-221 

cell. Figure 2 shows the spatial distribution of the dominant vegetation types over the studied 222 

domain.  223 

224 
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2.2 ESA-CCI surface soil moisture  224 

The European Space Agency Climate Change Initiative (ESA-CCI) project dedicated to soil 225 

moisture has produced a global 32-yr SSM time series described in Liu et al. (2011, 2012). 226 

The ESA-CCI SSM product is today the only multi-decadal SSM dataset derived from 227 

satellite observations. The daily data are available on a 0.25° grid and can be downloaded 228 

from http://www.esa-soilmoisture-cci.org/. Several SSM products based on either active or 229 

passive single satellite microwave sensors were combined to build a blended harmonized time 230 

series of SSM at the global scale from 1978 to 2010: scatterometer-based products from ERS-231 

1/2 and ASCAT (July 1991–May 2006 and 2007–2010, respectively), and radiometer-based 232 

products from SMMR, SSM/I, TMI, and AMSR-E (November 1978–August 1987, July 233 

1987–2007, 1998–2008, July 2002–2010, respectively). The method used to combine the 234 

different data sets is described in details in Liu et al. (2011, 2012) and takes advantage of the 235 

assets of both passive and active systems. In most of the Euro-Mediterranean area, active 236 

microwave products are used. The passive microwave products mainly cover North Africa. In 237 

some parts of the area (e.g. in Spain), the average of both active and passive microwave 238 

products is used (see Fig. 14 in Liu et al. (2012)). It must be noted that the sensing depth of 239 

microwave remote sensing observations is limited to the first centimetres of the soil surface. 240 

The ESA-CCI dataset was used by Dorigo et al. (2012) to analyze trends in SSM, while 241 

Muñoz et al. (2013) and Barichivich et al. (2014) showed its strong connectivity with 242 

vegetation development. Loew et al. (2013) have assessed this product and showed that the 243 

agreement with other soil moisture datasets from modeling studies as well as with rainfall 244 

data is generally good. The ESA-CCI SSM temporal and spatial coverage is much better after 245 

1990 than before but is limited at high latitudes due to snow cover and frozen soil conditions. 246 

2.3 GEOV1 LAI 247 
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The European Copernicus Global Land Service provides a global LAI product in near-real-248 

time called GEOV1 (Baret et al., 2013). This product was extensively validated and 249 

benchmarked with pre-existing satellite-derived LAI products using an ensemble of ground 250 

observations at 30 sites in Europe, Africa, and North America (Camacho et al., 2013). It must 251 

be noted that this direct validation does not completely address the seasonality of LAI as for a 252 

given site, LAI observations are available at only one or very few dates. It was found that the 253 

GEOV1 LAI correlates very well with in situ observations (r2 = 0.81), with a root mean 254 

square error of 0.74 m2m-2. The GEOV1 scores are better than those obtained by other 255 

products such as MODIS c5, CYCLOPES v3.1, and GLOBCARBON v2. A 32-yr LAI time 256 

series based on the GEOV1 algorithm was produced by the GEOLAND-2 project. Ten-daily 257 

data are available from 1981 to present and can be downloaded on 258 

http://land.copernicus.eu/global/. For the period before 1999, the AVHRR Long Term Data 259 

Record (LTDR) reflectances (Vermote et al., 2009) are used to generate the LAI product at a 260 

spatial resolution of 5 km. From 1999 onward, the SPOT-VGT reflectances are used to 261 

generate the LAI product at a spatial resolution of 1 km. The harmonized time series is 262 

produced by neural networks trained to produce consistent estimates of LAI from the 263 

reflectance measured by different sensors (Verger et al., 2008).  264 

2.4 Seasonal and interannual variability  265 

2.4.1 Surface Soil Moisture 266 

In this study, we focus on the seasonal and interannual variability of SSM after removing the 267 

trends from both satellite-derived and simulated time series. The detrended time series at a 268 

given location and for a given 10-daily period of the year is obtained by subtracting the least-269 

squares-fit straight line. The same 10-daily periods as for the GEOV1 LAI product are used. 270 

Hereafter, this quantity is referred to as SSMd, for both satellite observations and model 271 

simulations. 272 
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In order to characterize the day-to-day variability of SSMd, anomalies are calculated using 273 

Eq. (6) in Albergel et al. (2009). For each SSMd estimate at day (j), a period F is defined, 274 

with F =[j−17d, j+17d]. If at least five measurements are available in this period of time, the 275 

average SSMd value and the standard deviation are first calculated. Then, the scaled anomaly 276 

AnoSSM is computed: 277 

 278 
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279 

 280 

This procedure is applied to the ESA-CCI SSM observations and to the ISBA-A-gs SSM 281 

simulations. 282 

2.4.2 Leaf Area Index 283 

Three metrics are calculated to characterize LAI seasonal and interannual variability: the leaf 284 

onset, the leaf offset, and the monthly (or 10-daily) scaled anomaly, for both satellite 285 

observations and model simulations. The LGP is defined as the period of time between the 286 

leaf onset and the leaf offset of a given annual cycle. The leaf onset (respectively, offset) is 287 

determined as the 10-daily period when the departure of LAI from its minimum annual value 288 

becomes higher (respectively, lower) than 40% of the amplitude of the annual cycle (Gibelin 289 

et al., 2006; Brut et al., 2009). This method is sufficiently robust to be applied to both 290 

deciduous and non-perennial vegetation, and to evergreen vegetation presenting a sufficiently 291 

marked annual cycle of LAI. Camacho et al. (2013) have shown that the neural network 292 

algorithm used to produce GEOV1 (Baret et al., 2013) was successful in reducing the 293 

saturation of optical signal for dense vegetation (i.e. at high LAI values). Since the saturation 294 

effect is the main obstacle to the derivation of LGP from LAI or other vegetation satellite-295 

derived products, it can be assumed that the GEOV1-derived LGP values are reliable. 296 
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The interannual variability of LAI for various seasons is represented by monthly or 10-daily 297 

scaled anomalies defined as: 298 

 299 

))(istdev(DLAI

yr)DLAI(i,
=yr)(i,AnoLAI :,

        (2) 300 

 301 

where DLAI(i, yr) represents the difference between LAI for a particular month (i ranging 302 

from 1 to 12) or 10-day period (i ranging from 1 to 36) of year yr and its average interannual 303 

value, and stdev(DLAI( i,:)) is the standard deviation of DLAI for a particular month or 10-304 

day period. This procedure is applied to the GEOV1 observations and to the ORCHIDEE and 305 

ISBA-A-gs LAI simulations. In the case of GEOV1, in order to cope with shortcomings in 306 

the harmonization of satellite-derived products, the calculation of DLAI is made separately 307 

for the 1991-1998 AVHRR and for the 1999-2008 SPOT-VGT periods. It was checked that 308 

the resulting time series have a zero mean and present no trend. 309 

Finally, the Annual Coefficient of Variation (ACV), is computed as the ratio of the standard 310 

deviation of the mean annual LAI to the long term mean annual LAI, over the 1991-2008 311 

period. ACV characterizes the relative interannual variability of LAI. 312 

2.4.3 Correlation scores 313 

In this study, the Pearson correlation coefficient (r) is used. Squared correlation coefficient 314 

(r2) plots are used when all the corresponding r values are greater or equal to zero. When r 315 

presents negative values, r is plotted instead of r2. 316 

2.4.4 Leaf Area Index vs.  Surface Soil Moisture 317 

In order to assess to what extent LAI anomalies are related to the SSMd anomalies observed a 318 

few 10-day periods ahead, the Pearson correlation coefficient between 18 SSMd values (one 319 

value per year over the 1991-2008 period) and 18 DLAI values is calculated on a 10-daily 320 

basis. For each considered 10-day period, SSMd is compared to DLAI values at the same 321 
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period, and to hindcast DLAI values obtained 10 days, 20 days, 30 days, 40 days and 50 days 322 

later, from March to August. Preliminary tests based on the satellite-derived products showed 323 

that significant correlations were mainly obtained over cropland areas. An explanation is that 324 

LAI is more representative of the biomass production for annual crops than for managed 325 

grasslands or natural vegetation, or that natural vegetation in water-restricted areas is better 326 

adapted to changing water variability than crops. Therefore, the correlation coefficients are 327 

computed for the grid cells with more than 50% of croplands (according to the 328 

ECOCLIMAP-II land cover data). The scores are calculated with hindcast SSMd and DLAI 329 

for 10-daily time lags derived from either (1) the SSM and LAI simulated by the ISBA-A-gs 330 

LSM or (2) the ESA-CCI SSM and GEOV1 LAI products. 331 

 332 

3 Results  333 

3.1 Modelled vs. observed SSM 334 

Figure 3 shows the absolute (original SSMd data) and anomaly (AnoSSM) correlation between 335 

the ISBA-A-gs SSM simulations and the ESA-CCI SSM product for the 1991-2008 period. In 336 

general, good absolute positive correlations are observed over all the sub-regions of Fig. 1. 337 

The best anomaly correlations are observed over the croplands of Ukraine and southern 338 

Russia. However, negative correlations are observed in mountainous areas of the 339 

Mediterranean basin, in southern Turkey (Taurus mountains) and in western Iran (Zagros 340 

mountains). In order to understand the negative absolute correlations in Fig. 3, we plotted 341 

(Fig. 4) the same figure as Fig. 3, except for the 2003-2008 period over which the AMSR-E 342 

product is available, using either the ESA-CCI blended (active/passive) product or the 343 

original AMSR-E product. While the results obtained with the blended product are similar to 344 

Fig. 3 over the whole domain and those obtained with AMSR-E are similar to Fig. 3 over the 345 

Mediterranean basin, the negative correlations are not observed in the AMSR-E product. 346 
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Over Northern Europe and Russia-Scandinavia, the correlations obtained for AMSR-E are 347 

lower than with the blended product. This shows that the blending technique used by Liu et 348 

al. (2012) is appropriate, apart from mountainous areas in southern Turkey and in western 349 

Iran where the active product is used, whereas the passive product is more relevant in these 350 

regions. Although the extreme 2003 year has more weight in the time series considered in 351 

Fig. 4, Fig. 3 and the top sub-figures of Fig. 4 are similar over western Europe. This shows 352 

that the consistency between ESA-CCI and ISBA-A-gs SSM is preserved during contrasting 353 

climatic conditions. Figure 5 compares the absolute and anomaly correlationsr2 of the 354 

blended product and of AMSR-E over the 2003-2008 period. Higher values are generally 355 

observed for the blended product. The AMSR-E product is more consistent with the ISBA-A-356 

gs simulations than the blended product over 24 % of the grid cells for the absolute 357 

correlations, and over 17 % of the grid cells for the anomaly correlations. 358 

3.2 Simulated and observed phenology 359 

Figures 6 and 7 present leaf onset and LGP maps derived from the modelled LAI and from 360 

the GEOV1 LAI. Consistent leaf onset features (Fig. 6) are observed across satellite and 361 

model products: while the vegetation growing cycle may start at wintertime in some areas of 362 

the Mediterranean basin (e.g. North Africa, southern Spain), the leaf onset occurs later in 363 

northern Europe (from February to July) and even later in Russia-Scandinavia (from April to 364 

August). In contrast to leaf onset, results are quite different from one data set to another for 365 

LGP (Fig. 7). In general, the two models tend to overestimate LGP. However, the LGP values 366 

produced by the photosynthesis-driven phenology model of ISBA-A-gs are closer to the 367 

satellite-derived LAI LGP than those produced by ORCHIDEE. On average, ORCHIDEE 368 

gives relatively high LGP values (180±28 day), compared to ISBA-A-gs and GEOV1 369 

(138±41 day and 124±44 day, respectively). The largest LGP differences between GEOV1 370 

and ISBA-A-gs are obtained in the Iberian Peninsula and over Russia-Scandinavia, where 371 
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GEOV1 observes longer and shorter vegetation cycles, respectively. Figure 8  presents the 372 

differences of the two LSM simulations in leaf onset dates and LGP values (in days). It 373 

illustrates the overestimation of LGP in northern Europe by the two LSMs, and in other 374 

regions by ORCHIDEE.  375 

Figure 9 shows the simulated and observed average annual cycle of LAI for the three regions 376 

indicated in Fig. 1. It appears clearly that GEOV1 tends to produce shorter growing seasons 377 

than the other products, apart from the Mediterranean basin where the GEOV1 and ISBA-A-378 

gs annual cycles of LAI are similar. In Russia-Scandinavia, the end of the growing period in 379 

ISBA-A-gs presents a delay of about one month. This delay is not associated to a marked 380 

delay in the leaf onset (Fig. 6). This contradiction is related to very low LAI value of ISBA-381 

A-gs at wintertime. The prescribed minimum LAI value (LAImin in Table 1) is lower than 382 

the GEOV1 observations at wintertime and this bias has an impact on the leaf onset 383 

calculation. If LAImin was unbiased, the maximum LAI would probably be reached earlier. 384 

On the other hand, the prescribed maximum LAI value in ORCHIDEE is higher than the 385 

observations, especially in the Mediterranean basin. On average, the prognostic LAImin of 386 

ORCHIDEE is higher than for the other products. Figure 9 shows that the ORCHIDEE delay 387 

in the leaf onset over northern Europe and Russia-Scandinavia is caused by minimum LAI 388 

values reached in March (one to two months after GEOV1) and maximum LAI values 389 

reached one month after GEOV1 (in July for northern Europe and in August for Russia-390 

Scandinavia).  391 

3.3 Representation of the interannual variability of LAI 392 

In order to assess the interannual variability across seasons, 10-daily AnoLAI  values were put 393 

end-to-end to constitute anomaly time series for each of the three LAI products (GEOV1, 394 

ISBA-A-gs, ORCHIDEE). Figure 10 presents maps of the Pearson correlation coefficient 395 

between the simulated LAI anomalies and the observed ones. Overall, ISBA-A-gs is better 396 
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correlated with GEOV1 than ORCHIDEE (on average, r = 0.44 over the considered area, 397 

against r = 0.35 for ORCHIDEE) and slightly better scores are obtained by the two models 398 

over croplands (r = 0.48 and 0.36, respectively). Similar results are obtained considering 399 

either median or mean r values. The best correlations (r > 0.6) are obtained over the Iberian 400 

Peninsula, North Africa, southern Russia, and eastern Turkey. At high latitudes (northern 401 

Russia-Scandinavia), the year to year changes in LAI are not represented well by the two 402 

models. In these areas, the vegetation generally consists of evergreen forests presenting little 403 

seasonal and interannual variability in LAI. Moreover, up to 50% of the remotely sensed 404 

reflectances are missing, mainly due to the snow cover, clouds, high sun and view zenith 405 

angles.  406 

Figure 11 presents the relative interannual variability of LAI, i.e. the ACV indicator defined 407 

in Sect. 2.4.2. Figure 11 shows that ACV is generally higher for ISBA-A-gs than for GEOV1, 408 

except for Scandinavia and northern Russia. Conversely, ACV is generally lower for 409 

ORCHIDEE than for GEOV1, except for croplands of Ukraine and southern Russia. In these 410 

areas the ORCHIDEE mean annual LAI is extremely variable (ACV values close to 50% are 411 

observed), and this variability is more pronounced than in the GEOV1 observations (ACV 412 

values are generally below 25%).  413 

3.4 The 2003 drought in western Europe 414 

The 2003 year was marked, in Europe, by two climatic events which had a significant impact 415 

on the vegetation growth. The first one was a wintertime and springtime cold wave, which 416 

affected the growth of cereal crops in Ukraine and in southern Russia (USDA, 2003; Vetter et 417 

al., 2008). The second one was a summertime heat wave following a long Spring drought, 418 

which triggered an agricultural drought over western and central Europe (Ciais et al., 2005; 419 

Reichstein et al., 2006; Vetter et al., 2008; Vidal et al., 2010). Figure 12 shows the observed 420 

and simulated monthly AnoLAI  values from May to October 2003. Negative values correspond 421 
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to a LAI deficit. In May and June, the impact of the cold wave in eastern Europe is clearly 422 

visible in the GEOV1 satellite observations. In the same period, the impact of the heat wave 423 

appears in western and central regions of France. At summertime, the impact of drought on 424 

LAI spreads towards southeastern France and central Europe and tends to gradually disappear 425 

in October. The LSM LAI anomalies show patterns that match the two climatic anomalies 426 

(drought in western and east-southern Europe; cold winter and spring in northern European 427 

Russia) but tend to maintain the agricultural drought too long in comparison to GEOV1. The 428 

AnoLAI  values derived from the simulations of the two models remain markedly negative in 429 

October 2003, while the observations show that a recovery of the vegetation LAI has 430 

occurred, especially in the Mediterranean basin area.  431 

3.5 Predictability of LAI anomalies 432 

Figure 13 presents the time lag for which the best correlation between SSMd and DLAI is 433 

obtained (see Sect. 2.4.4), for the second 10-day period of May, June, and July. For a large 434 

proportion of the cropland area (75%, 92%, 94% in May, June, July, respectively) significant 435 

correlations (p-value < 0.01) are obtained with the model. A much lower proportion is 436 

obtained with the satellite data (1%, 5%, 14%, respectively). For the three months, the 437 

average time lag of the model ranges between 16 and 20 days, and the average time lag of 438 

satellite-derived products ranges between 18 and 34 days. In April (not shown) nearly no 439 

correlation is found with the satellite data, while 45% of the cropland area presents significant 440 

correlation for the model, with an average time lag of 34 days. 441 

 442 

4 Discussion 443 

4.1 Representation of soil moisture 444 

In the two LSMs considered in this study, soil moisture impacts the LAI seasonality and 445 

interannual variability. The interannual variability of the simulated LAI is often driven by 446 
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changes in the soil moisture availability, which for the soil models of the versions of 447 

ORCHIDEE and ISBA-A-gs used in this study results from rather simple parameterizations. 448 

In particular, the ability of distinct root layers to take up water and to interact with a detailed 449 

soil moisture profile is not represented. Therefore, while the difficulty in representing the 450 

modelled LAI interannual variability, as illustrated in Sects. 3.3 and 3.4, can be partly 451 

explained by shortcomings in the phenology and leaf biomass parameterizations, another 452 

factor is the inadequate simulation of root-zone soil moisture. For example,, the difficulty in 453 

simulating the vegetation recovery in the Mediterranean basin in October 2003 (Fig. 12) can 454 

be explained by shortcomings in the representation of the soil moisture profile and by the fact 455 

that Mediterranean vegetation is rather well adapted to drought with mechanisms of 456 

‘emergency’ stomatal closure (Reichstein et al., 2003) that prevent leaf damage and 457 

cavitation. In addition, many European tree and shrub species have deep roots and can access 458 

ground water to alleviate drought stress. The soil hydrology component of the ISBA-A-gs 459 

simulations performed in this study is based on the force-restore model. The root zone is 460 

described as a single thick soil layer with a uniform root profile. After the drought, this 461 

moisture reservoir is empty, and the first precipitation events have little impact on the bulk 462 

soil moisture stress function influencing photosynthesis and plant growth. In the real world, 463 

the high root density at the top soil layer permits a more rapid response of the vegetation 464 

growth to rainfall events. The implementation of a soil multi-layer diffusion scheme in ISBA-465 

A-gs (Boone et al., 2000; Decharme et al., 2011) is expected to improve the simulation of 466 

vegetation regrowth. Similar developments are performed in the ORCHIDEE model 467 

following de Rosnay and Polcher (1998) and d'Orgeval et al. (2008). 468 

Moreover, LSM simulations are affected by large uncertainties in the Maximum Available 469 

Water Capacity (MaxAWC). The MaxAWC value depends on both soil (e.g. soil density, soil 470 

depth) and vegetation (e.g. rooting depth, shape of the root profile, capacity to extract water 471 
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from the soil in  dry conditions) characteristics. Calvet et al. (2012) showed over France that 472 

MaxAWC drives to a large extent the interannual variability of the cereal and forage biomass 473 

production simulated by ISBA-A-gs and that agricultural yield statistics can be used to 474 

retrieve these MaxAWC values. It is likely that the correlation maps of Fig. 10 could be 475 

improved adjusting MaxAWC. In ISBA-A-gs, LAImax is a prognostic quantity related to the 476 

annual biomass production, especially for crops. Therefore, LAImax values derived from the 477 

GEOV1 LAI data could be used to retrieve MaxAWC or at least better constrain this 478 

parameter together with additional soil characteristic information and a better soil model. 479 

4.2 Representation of LAI 480 

Apart from indirectly adjusting MaxAWC (see above), the GEOV1 LAI could help 481 

improving the phenology of the two models.  482 

In ISBA-A-gs, the LAImin parameter could be easily adapted to better match the 483 

observations before the leaf onset. In particular LAImin is mostly underestimated over 484 

grasslands (not shown). Improving the whole plant growth cycle is not easy as the ISBA-A-gs 485 

phenology is driven by photosynthesis and, therefore, depends on all the factors impacting 486 

photosynthesis, including the absorption of solar radiation by the vegetation canopy. For 487 

example, preliminary tests using a new shortwave radiative transfer within the vegetation 488 

canopy (Carrer et al., 2013) indicate that this new parameterization tends to slightly reduce 489 

the LGP value (results not shown).  490 

Regarding ORCHIDEE, this study revealed a number of shortcomings in the phenology 491 

parameterization. The LGP values were generally overestimated (Fig. 7) and the senescence 492 

model for grasses was deficient at northern latitudes, with a much too long growing season 493 

ending at the beginning of the following year (Fig. 9). A new version is being developed, in 494 

which the phenological parameters are optimized using both in situ and satellite observations. 495 

The in situ data are derived from the FLUXNET data base (Baldocchi et al., 2008). For boreal 496 
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and temperate PFTs, the leaf life span parameter is systematically reduced, leading to a 497 

shorter LGP (see e.g. Kuppel et al., 2012). A new phenological model for crop senescence 498 

involving a GDD threshold, described in Bondeau et al. (2007) and evaluated in Maignan et 499 

al. (2011), results in much shorter LGP values for crops. Finally, a temperature threshold is 500 

activated in order to improve the simulation of the senescence of grasslands.  501 

4.3 Can LAI anomalies be anticipated using SSM ? 502 

The biomass accumulated at a given date is the result of past carbon uptake through 503 

photosynthesis, and in water-limited regions it depends on past soil moisture conditions. For 504 

example, using the ISBA-A-gs model over the Puy-de-Dôme area in the centre of France, 505 

Calvet et al. (2012) found a very good squared correlation coefficient values (r2=0.64) 506 

between the simulated root-zone soil moisture in May (July) and the simulated annual cereal 507 

(managed grassland) biomass production. To some extent, SSM can be used as a proxy for 508 

soil moisture available for plant transpiration and LAI can be used as a proxy for biomass. In 509 

water-limited areas, the annual biomass production of rainfed crops and natural vegetation 510 

depends on soil moisture (among other factors) at critical periods on the year. 511 

Figure 13The differences in predictability of LAI shown in Fig. 13 may be due to 512 

shortcomings in both observations and simulations. Significant correlations with the satellite 513 

data are only observed in homogeneous cropland plains, such as in southern Russia, 514 

especially in July. The accuracy of satellite-derived LAI and SSM products is affected by 515 

heterogeneities and by topography. This may explain why the synergy between the two 516 

variables only appears in rather uniform landscapes, while the modelled variables are more 517 

easily comparable in various conditions. The ISBA-A-gs simulations present weaknesses 518 

related to the representation of the soil moisture profile (Sect. 4.1). In particular, the force-519 

restore representation of SSM tends to enhance the coupling between SSM and the root-zone 520 

soil moisture (end hence to LAI through the plant water stress). Parrens et al. (2014) showed 521 
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that the decoupling between the surface soil layers and the deepest layers in dry conditions 522 

can be simulated using a multilayer soil model. Apart from these uncertainties, the main 523 

reason of the differences in predictability of LAI is probably that the satellite-derived LAI 524 

and SSM are completely independent while deterministic interactions between the two 525 

variables are simulated by the model.  526 

4.4 From benchmarking to data assimilation 527 

The direct validation of long time series of satellite-derived ECV products is not easy, as in 528 

situ observations are limited in space and time (Dorigo et al., 2014). Therefore, indirect 529 

validation based on the comparison with independent products (e.g. products derived from 530 

model simulations) has a key role to play (Albergel et al., 2013a). In this study, the new ESA-531 

CCI SSM product and the new GEOV1 LAI product were compared with LSM simulations. 532 

Hindcast simulations can be used to validate satellite-derived ECV products (Sect. 3.1) and 533 

conversely, the latter can be used to detect problems in the models (Sect. 4.2). The results 534 

presented in Sect. 3.1 suggest that SSM simulations could be used to improve the blending of 535 

the active and passive microwave products. The most advanced indirect validation technique 536 

consists in integrating the products into a LSM using a data assimilation scheme. The 537 

obtained reanalysis accounts for the synergies of the various upstream products and provides 538 

statistics which can be used to monitor the quality of the assimilated observations. Barbu et 539 

al. (2011, 2014) have developed a Land Data Assimilation System over France (LDAS-540 

France) using the multi-patch ISBA-A-gs LSM and a simplified extended Kalman filter. The 541 

LDAS-France assimilates GEOV1 data together with ASCAT SSM estimates and accounts 542 

for the synergies of the two upstream products. While the main objective of LDAS-France is 543 

to reduce the model uncertainties, the obtained reanalysis provides statistics which can be 544 

used to monitor the quality of the assimilated observations. The long-term LDAS statistics 545 

can be analyzed in order to detect possible drifts in the quality of the products: innovations 546 
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(observations vs. model forecast), residuals (observations vs. analysis), and increments 547 

(analysis vs. model forecast). This use of data assimilation techniques is facilitated by the 548 

flexibility of the vegetation-growth model of ISBA-A-gs, which is entirely photosynthesis-549 

driven.  550 

In contrast to ISBA-A-gs, ORCHIDEE uses phenological models for leaf onset and leaf offset 551 

and the LAI cannot be easily updated with observations. Instead, Carbon Cycle Data 552 

Assimilation System (CCDAS) can be used to retrieve model parameters (Kaminski et al., 553 

2012 ; Kato et al., 2013). Using this technique, Kuppel et al. (2012) have assimilated eddy-554 

correlation flux measurements in ORCHIDEE at 12 temperate deciduous broadleaf sites. 555 

Before the assimilation, the model systematically overestimates LGP (by up to one month). 556 

The model inversion produces new values of three key parameters of the phenology model 557 

and shorter LGP values are obtained. 558 

 559 

5 Conclusions 560 

For the first time, the variability in time and space of LAI and SSM derived from new 561 

harmonized satellite-derived products (GEOV1 and ESA-CCI soil moisture, respectively) 562 

was analyzed over the Euro-Mediterranean area for a 18-yr period (1991-2008), using 563 

detrended time series. The explicit simulation of SSM by the ISBA-A-gs LSM permitted 564 

evaluating the seasonal and the day-to-day variability of the ESA-CCI SSM. The comparison 565 

generally showed a good agreement between the observed and the simulated SSM, and 566 

highlighted the regions where the ESA-CCI product could be improved by revising the 567 

procedure for blending the active and passive microwave products. ORCHIDEE and ISBA-568 

A-gs were used to assess the seasonal and interannual vegetation phenology derived from 569 

GEOV1. It appeared that the GEOV1 LAI product is not affected much by saturation and was 570 

able to generate a realistic phenology. It was shown that GEOV1 can be used to detect 571 
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shortcomings in the LSMs. In general, the ISBA-A-gs LAI agreed better with GEOV1 than 572 

the ORCHIDEE LAI, for a number of metrics considered in this study: LGP, 10-daily AnoLAI , 573 

ACV. In contrast to ORCHIDEE, the ISBA-A-gs plant phenology is entirely driven by 574 

photosynthesis and no degree-day phenology model is used. The advantage is that all the 575 

atmospheric variables influence LAI through photosynthesis. Also, the regional differences 576 

between ISBA-A-gs and the GEOV1 LAI can be handled through sequential data assimilation 577 

techniques able to integrate satellite-derived products into LSM simulations (Barbu et al., 578 

2014). As shown in the latter study, though the main purpose of data assimilation is to 579 

improve the model simulations, the difference between the simulated and the observed LAI 580 

and SSM can be used as a metric to monitor the quality of the observed time series. On the 581 

other hand, ISBA-A-gs is very sensitive to errors in the atmospheric variables, and bias-582 

corrected atmospheric variables must be used (Szczypta et al., 2011).  583 

Finally, the use of SSM to predict LAI 10 to 30 days ahead was evaluated over cropland 584 

areas. Under certain conditions, the harmonized LAI and SSM observations used in this study 585 

present consistent results over croplands, and SSM anomalies can be used to some extent to 586 

predict LAI anomalies over uniform cropland regions. The combined use of satellite-derived 587 

products and models could help improve the characterisation of agricultural droughts. 588 
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Table 1 - Summary of the characteristics of the ORCHIDEE 1.9.5.1 tag and ISBA-A-gs 954 

SURFEXv6.2 configurations used in this study. 955 

Biogeophysical process 
 

ORCHIDEE ISBA-A-gs 

Photosynthesis  - Farquhar et al. (1980) for C3 
plants, 
- Collatz et al. (1992) for C4 
plants 
 

Goudriaan et al. (1985), modified 
by Jacobs et al. (1996) ; same 
model for both C3 and C4 plants 
but specific parameter values 
 

Main parameter of 
photosynthesis 
 

Maximum carboxylation rate 
(Vc,max) 

Mesophyll conductance (gm) 

Impact of drought on 
photosynthesis parameters 
(response to root-zone soil 
moisture) 
 

Linear response of Vc,max 
(McMurtrie et al., 1990) 

- Log response of gm  
- Linear response of the maximun 
saturation deficit for herbaceous 
vegetation (Calvet, 2000) 
- Linear response of the scaled 
maximum intercellular CO2 
concentration for woody 
vegetation (Calvet et al., 2004) 
- Drought-avoiding response for 
C3 crops, needleleaf forests 
- Drought-tolerant response for 
C4 crops, grasslands, broadleaf 
forests 
 

Soil moisture profile 
 

No explicit representation of 
SSM ; two-layer soil model ; 
the depth of the layers evolves 
through time in response to 
"top-to-bottom" filling due to 
precipitation and drying due to 
evapotranspiration (Ducoudré 
et al., 1993) 
 

Explicit representation of SSM 
(0-1 cm top soil layer) ; three-
layer force-restore model (Boone 
et al., 1999 ; Deardoff, 1977, 
1978) 

Phenology 
 

- LAImax is prescribed 
- LAImin is prognostic 
- Growing degree days 
(Leaf onset model was trained 
using satellite NDVI data 
(Botta et al., 2000)) 

- LAImax is prognostic  
- LAImin is prescribed 
- Photosynthesis-driven plant 
growth and mortality 
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 957 

 958 

Figure 1: The Euro-Mediterranean area (11°W - 62°E, 25°N - 75°N) considered in this study 959 

and the three subregions: Mediterranean basin, northern Europe, and Russia-Scandinavia. 960 
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 962 

 963 

Figure 2: Dominant vegetation type (either grasslands, crops, or forests) over the 8142 land 964 

grid-cells (0.5° × 0.5°) considered in this study, derived from the 1 km ECOCLIMAP-II data 965 

base. 966 
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 969 

 970 

Figure 3: Comparison between the detrended ESA-CCI SSM and the detrended SSM 971 

simulated by ISBA-A-gs over the 1991-2008 period: Pearson correlation coefficient for (left) 972 

absolute values, (right) scaled anomalies (Eq. (1)). White areas over land correspond to r 973 

values lower (higher) than 0.1 (-0.1). 974 
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 976 

Figure 4: Same as Fig. 3, except for the 2003-2008 period and (top) ESA-CCI vs. ISBA-A-977 

gs, (bottom) AMSR-E vs. ISBA-A-gs.  978 
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 980 

 981 

 982 

Figure 5: Detrended SSM ESA-CCI vs. AMSR-E, (left panel) absolute and (right panel) 983 

anomaly squared correlation coefficients (r²) with the detrended ISBA-A-gs SSM, over the 984 

2003-2008 period. Note that r² values are plotted for grid cells corresponding to positive r 985 

values, only. 986 
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 988 
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 989 

Figure 6: Mean simulated leaf onset values derived from the (top) GEOV1 LAI satellite-990 

derived product and (middle) ISBA-A-gs LAI, and (bottom) ORCHIDEE LAI. The period 991 

used to produced the mean vegetation annual cycle is 1991-2008 for the three data sets. 992 
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 993 

 994 

Figure 7: Same as Fig. 6, except for LGP values.  995 

996 
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 997 

Figure 8: Mean differences in simulated (left) leaf onset values and (right) LGP, of (top) 998 

ISBA-A-gs, and (bottom) ORCHIDEE, over the 1991-2008 period. 999 
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 1002 

 1003 

Figure 9: Mean monthly values of the ISBA-A-gs and ORCHIDEE LAI simulations, and 1004 

GEOV1 LAI observations over the 1991-2008 period, for the three sub-regions of Fig. 1 1005 

(from left to right: Mediterranean basin, northern Europe, and Russia-Scandinavia). 1006 

 1007 

 1008 

 1009 



 50

 1010 

 1011 

Figure 10: Pearson correlation coefficient (r) between the scaled LAI 10-daily anomalies 1012 

derived from detrended simulations (left, ISBA-A-gs ; right, ORCHIDEE) and detrended 1013 

GEOV1 satellite observations, over the 1991-2008 period, at grid cells presenting significant 1014 

positive correlations (p-value < 0.01). 1015 

1016 
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 1016 

Figure 11: Annual Coefficient of Variation (ACV) of LAI over the 1991-2008 period (left, 1017 

GEOV1 ; middle, ISBA-A-gs ; right, ORCHIDEE). 1018 
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 1022 

 1023 

Figure 12: Scaled LAI monthly anomalies from May to October 2003. From top to bottom: 1024 

GEOV1 satellite observations, detrended ISBA-A-gs and ORCHIDEE simulations. Units are 1025 

dimensionless and correspond to standard deviations.  1026 
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 1027 

 1028 

Figure 13: Predictability of LAI 10-daily differences from SSM over croplands from May to 1029 

July, based on detrended (top) ISBA-A-gs simulations and (bottom) satellite-derived products 1030 

(GEOV1 LAI and ESA-CCI SSM). The colour dots correspond to four time lags providing 1031 

the highest squared coefficient correlation (r²) for the predicted LAI anomaly over the 1991-1032 

2008 period. The results are given for the second 10-day period of each month at grid cells 1033 

presenting significant LAI anomaly estimates (p-value < 0.01).  1034 


