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Abstract

Recently, a standard test case suite for 2-D linear transport on the sphere was
proposed to assess important aspects of accuracy in geophysical fluid dynamics
with a “minimal” set of idealized model configurations/runs/diagnostics. Here we
present results from 19 state-of-the-art transport scheme formulations based on5

finite-difference/finite-volume methods as well as emerging (in the context of atmo-
spheric/oceanographic sciences) Galerkin methods. Discretization grids range from
traditional regular latitude-longitude grids to more isotropic domain discretizations such
as icosahedral and cubed-sphere tessellations of the sphere. The schemes are eval-
uated using a wide range of diagnostics in idealized flow environments. Accuracy is10

assessed in single- and two-tracer configurations using conventional error norms as
well as novel diagnostics designed for climate and climate-chemistry applications. In
addition, algorithmic considerations that may be important for computational efficiency
are reported on. The latter is inevitably computing platform dependent,

The ensemble of results from a wide variety of schemes presented here helps shed15

light on the ability of the test case suite diagnostics and flow settings to discriminate
between algorithms and provide insights into accuracy in the context of global atmo-
spheric/ocean modeling. A library of benchmark results is provided to facilitate scheme
intercomparison and model development. Simple software and data-sets are made
available to facilitate the process of model evaluation and scheme intercomparison.20

1 Introduction

Historically, the regular latitude-longitude grid has been the preferred discretization grid
in global atmosphere models primarily due to desirable properties such as grid or-
thogonality and simple data structure. It also trivially lends itself to operations such
as zonal/meridional averaging routinely applied in global data analysis. Primarily trig-25

gered by requirements for efficient domain decomposition and minimal data movement
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between decomposition patches in massive parallel compute environments, there has
been a significant effort to formulate atmospheric models on more isotropic grids.
Other motivations for alternative tessellations of the sphere are the design of models
with mesh refinement capability; possibly with smoothly varying transitions between
coarse and fine resolution. This has triggered a renewed interest in developing fluid5

flow solvers for non-traditional spherical grids. A natural first step in model devel-
opment is to design schemes that solve the continuity equation, also referred to as
transport schemes or advection schemes. Numerous new algorithms have been devel-
oped within the last 10 yr or so. These encompass finite-volume, finite-difference, and
Galerkin based methods.10

Despite the growing amount of research in transport scheme algorithms, the “manda-
tory” idealized testing of such algorithms on the sphere is surprisingly little standard-
ized. In fact, the only standardized test in global transport scheme development is the
solid-body advection test of the widely used shallow-water test case (cf. Williamson
et al., 1992). Specific guidelines for the computation of error norms and plotting (con-15

tour interval and projection) are given in Williamson et al. (1992), however, resolution
and other transport model settings are not specified. In the literature modelers do not
always chose the same resolution and model settings which can make it difficult to
compare schemes. Even contour plotting of solutions varies across publications de-
spite the specific guidelines of Williamson et al. (1992). Said colloquially, “apples to20

apples” comparison is not always straightforward despite the simplicity of the test (i.e.
an analytical solution is known). This, among other things, motivated Lauritzen et al.
(2012, hereafter referred to as LSPT2012) to propose a standard test case suite with
specific guidelines for resolution and other transport model settings. To further facilitate
this process, we provide scripts for contour plots. Model developers are encouraged to25

use those scripts so that contour plots from different modeling groups can easily be
compared.

More challenging global idealized tests have been developed since the efforts
of Williamson et al. (1992) such as the highly deformational (moving) vortices on
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the sphere (Nair and Machenhauer, 2002; Nair and Jablonowski, 2008) and the
“boomerang” flows of Nair and Lauritzen (2010). Despite the high degree of defor-
mation in the (moving) vortices test problem, in particular when simulated beyond the
original specification of simulation length (Kent et al., 2012; Pudykiewicz, 2011), it has
an analytical solution. The “boomerang” flows, on the other hand, do not have easily5

accessible analytical solutions until the end of the specified simulation time. Contrary to
most idealized tracer transport test cases, Nair and Lauritzen (2010) proposed a diver-
gent wind field so that the modeler is forced to consider the coupling between air den-
sity and tracer mass (at least when using finite-volume type schemes), which is a nec-
essary step in developing a transport scheme for realistic atmospheric/oceanographic10

applications.
The idealized transport scheme testing discussed above assesses simulation accu-

racy in a single-tracer setup. For a range of climate and climate-chemistry problems,
it is also considered important that schemes do not disrupt pre-existing functional re-
lations in unphysical ways (e.g. Thuburn and Mclntyre, 1997). For example, long-lived15

trace species in the stratosphere are known to be functionally related (Plumb, 2007),
and the simulation of cloud-aerosol interactions depends on accurate preservation of
relations between tracers (Ovtchinnikov and Easter, 2009). Based on the “boomerang
flow”, Lauritzen and Thuburn (2012) proposed an idealized test to assess how well
schemes maintain a non-linear relation between two tracers. The amount of mixing,20

essentially introduced by truncation errors, was quantified using novel mixing diagnos-
tics.

In an attempt to standardize scheme testing under idealized flow settings as well
as as to reduce the number of tests while still assessing a wide range of aspects of
accuracy considered important for geophysical applications, LSPT2012 proposed a25

“minimal” test case suite with specific guidelines on resolution, time-step, and accu-
racy diagnostics. In LSPT2012 it was assumed that model developers have already
tested their schemes under simpler flow conditions such as solid-body flows. Similarly,
LSPT2012 did not ask modelers to report on more specialized test cases that may
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be useful to study certain, perhaps more specialized, aspects of accuracy. For exam-
ple, by running well-known deformational test cases out further in time (Pudykiewicz,
2011), one can study the downscale cascade from near grid-scale to the sub-grid scale
(Kent et al., 2012). Similar tests, such as many solid-body revolutions of a large con-
stant plateau spanning many cells, can be used for “tuning” shape-preserving filters so5

that the peak tracer abundance does not decay linearly (if applicable) despite the initial
plateau and analytic solution being very well resolved (Appendix A16).

It is the purpose of this paper to provide a library of benchmark results for the
LSPT2012 standard test case suite. The data was provided by the participants of the
2011 workshop on transport schemes held at the National Center for Atmospheric Re-10

search (NCAR) in Boulder, 30–31 March 2011. The large ensemble of schemes that
participated in this intercomparison may help shed light on how the different tests and
diagnostics discriminate between schemes and expose particular types of numerical
errors. A list of schemes that participated in this intercomparison and the accompany-
ing scheme acronyms are given in Table 1.15

In this study grid-spacings are quantified in terms of average resolution at the Equa-
tor irrespective of the discretization grid. Schemes are compared using this definition of
horizontal resolution. If the reader is interested in schemes for mesh-refinement appli-
cations, for example, only a subset of the schemes and grids presented here will have
that capability. In other words, it is up to the reader to extract information for specific20

applications as only uniform resolution or non-mesh-refined grids are considered here.
The paper is organized as follows. In Sect. 2 the schemes are briefly introduced

by discussing discretization categories/methods and grouping the respective schemes
into these categories. In addition to the basic discretization concepts, this includes
discussion of shape-preserving (sp) limiter used (if applicable) and air-tracer mass25

coupling. Specific details on time step, native grid resolutions used to match test case
specifications on resolution, viscosity coefficients (if applicable), etc. are given in the
Appendix for each scheme. The results for the LSPT2012 test case suite are presented
in Sect. 3. It has been a challenge to effectively and concisely present the results
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graphically given the large number of schemes. We have found it most effective to
depict most of the data in histogram format. The complete histogram datasets are
made available as supplemental material for the interested reader. Conclusions and a
brief summary of results are provided in Sect. 4.

2 Transport equation forms and discretization categories5

The continuity equation for a passive and inert scaler φ can be written in various forms
such as flux-form or advective form. The choice of the form of the continuous trans-
port equation from which the discretized scheme is derived obviously depends on the
numerical method. Below we define the different categories of discretizations for the
schemes that participated in this intercomparison. The high-level categories are:10

– flux-form finite-volume,

– (semi-)Lagrangian finite-volume,

– (semi-)Lagrangian grid-point,

– Lagrangian parcel methods

– series-expansion.15

A brief description of the transport schemes that participated in this intercomparison
is given within the category each scheme has been assigned to. Below, the scheme
descriptions are grouped according to scheme category irrespective of discretization
grid. For in-depth details on the algorithms we refer to their respective publications;
specific scheme configurations used in this intercomparison are given in the Appendix.20
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2.1 Flux-form finite-volume

Typically, flux-form Eulerian or flux-form semi-Lagrangian schemes are based on the
form

∂(ρφ)

∂t
+∇ · (ρφV ) = 0, (1)

where ρ is the fluid density, V is the flow velocity vector, and φ is the tracer mixing5

ratio per unit mass. In finite-volume schemes the equation of motion is integrated over
a control volume. Similarly, the equation for air density is given by

∂ρ
∂t

+∇ · (ρV ) = 0. (2)

For Eulerian finite-volume schemes, Eq. (1) is integrated in space over a stationary
(Eulerian) control grid volume/cell Ak and in time over one time step ∆t, and usually10

the divergence theorem is applied. After re-arranging terms the discretized continuity
equation can be written as:(

ρφ∆Ak

)n+1
=
(
ρφ∆Ak

)n
(3)

−
(n+1)∆t∫
n∆t

 ∮
∂Ak

(ρφv ) · n̂dS

dt, (4)

15

where n is the time-level index, ∆Ak the area of an Eulerian grid cell Ak and ∂Ak is
the boundary of Ak for which n̂ is the outward pointing normal vector. The physical
interpretation of the last term on the right-hand side of Eq. (3) is basically the flux
of mass through all cell walls in one time step. This term is also referred to as the
flux-divergence. In one dimension the flux-divergence is the difference between the20

flux of mass through the left and right wall of the control volume. Mass-conservation
4990
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is therefore achieved by evaluating the flux through a cell wall shared by two control
volumes in an identical way. In that case, the amount of mass flowing into a control
volume through a cell wall will be exactly balanced by the outflow through the face
shared by the neighboring control volume. Hence any reasonable approximation to the
flux will trivially lead to conservation of tracer mass.5

There are several approaches to approximating the flux-divergence and they are dis-
cussed in separate sub-sections below in the context of the schemes that participated
in this intercomparison project. Before that, however, we briefly discuss the coupling
between air and tracer mass which is inherent in most finite-volume discretizations
when the analytical solution for ρ is not known.10

Finite-volume schemes based on Eq. (1) use tracer mass ρφ and not mixing ratio φ
as the prognostic variable hence ρ must be solved for as well

(
ρ∆Ak

)n+1
=
(
ρ∆Ak

)n − (n+1)∆t∫
n∆t

 ∮
∂Ak

(ρv ) · n̂dS

dt. (5)

It is considered important that the coupling between air mass and tracer mass is
“free-stream preserving” (also referred to as “consistent tracer transport” in the litera-15

ture). This means that the discretization scheme for Eq. (1) reduces to the discretiza-
tion scheme for Eq. (2) for φ = 1 as it trivially does in continuous space. Note that
free-stream preserving does not necessarily mean that the spatial and temporal dis-
cretization schemes for ρ and ρφ are identical. In fact, it is common practice to solve
the tracer transport equation (1) on longer time steps than the air density equation (2)20

since tracer transport schemes are usually only limited by the advective CFL (Courant–
Friedrichs–Lewy) or Lipschitz criterion (Pudykiewicz et al., 1985; Kuo and Williams,
1990) rather than the more restrictive CFL condition usually imposed on the continuity
equation for air by gravity and/or sound waves. For such an approach the flux of tracer
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mass F through a cell wall is computed as:

F = 〈φ〉
m∑
i=1

F (i/m), (6)

where m is the number of sub-steps in time, F (i/m) is the “background” flux of air mass
through the cell wall in one sub-step t ∈ [

(
n+ i−1

m

)
∆t,

(
n+ i

m

)
∆t], and 〈φ〉 is the av-

erage mixing ratio over the tracer time step, t ∈ [n∆t, (n+1)∆t]. Note that the mixing5

ratio, 〈φ〉, is averaged over several sub-steps in which the air density is updated. For a
graphical illustration of Eq. (6) see Fig. 8.19 in Lauritzen et al. (2011b). The technique
described by (6) is usually referred to as “sub-cycling” although more appropriate ter-
minology may be “super-cycling” of tracer fluxes with respect to air mass flux.

It is worth noting that Eq. (6) with m = 1 constitutes a form of linearization of the flux10

where non-linear coupling between tracer mixing ratio and air-mass is neglected. For
example, assume that tracer mixing ratio φ(x,y) is represented through a higher-order
polynomial of degree K and similarly for air density ρ(x,y), where x and y denote the
longitudinal and latitudinal directions, respectively. Then the flux through the cell wall
involves 〈φ(x,y) ·ρ(x,y)〉 (Dukowicz and Baumgardner, 2000), which would require in-15

tegrating a polynomial of degree K 2. Instead, the flux is approximated by

〈φ(x,y) ·ρ(x,y)〉 ≈ 〈φ(x,y)〉 · 〈ρ(x,y)〉 , (7)

which eliminates the non-linear interaction between non-constant terms in the polyno-
mials of φ and ρ. This simplification reduces the order of the polynomial: instead of
having to integrate a polynomial of degree K 2 only integration of polynomials of degree20

K is needed.
For most applications it is important that the prognosis of mixing ratio φ does not in-

troduce spurious oscillations and/or unphysical values such as negative mixing ratios.
Schemes that guarantee “physical” solutions in this sense are referred to as “shape-
preserving” (sp). The enforcement of shape-preservation in flux-form schemes can be25
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done by adjusting the fluxes. A very popular algorithm is FCT (Flux-Correct Transport
by Zalesak, 1979) where a monotone low-order flux is blended with the non-monotone
higher-order flux to provide a shape-preserving solution. Another approach that can be
used in the context of a flux-form discretization is to ensure that the reconstruction func-
tion, which is usually an integral part part of a finite-volume scheme, is constrained so5

that it does not introduce new extrema or expand the range of the cell-averaged values.
This method is referred to as slope-limiting (e.g. van Leer, 1977). For an overview of
shape-preserving filters used for the schemes in this intercomparison, see Table 2. The
following subsections provide brief descriptions of the models that fall into the flux-form
finite-volume category.10

2.1.1 Taylor series approach

The scheme of Skamarock and Gassmann (2011), here referred to as MPAS as it was
implemented in the “Model for Prediction Across Scales” framework (Skamarock et al.,
2012; Ringler et al., 2011), is a generalization of one-dimensional Taylor series approx-
imations to the flux-operators (Wicker and Skamarock, 2002; Hundsdorfer et al., 1995)15

for a Voronoi tessellation of the sphere. Specifically, these operators are generaliza-
tions of third- and fourth-order operators currently used in atmospheric models em-
ploying regular, orthogonal rectangular meshes as e.g. the Weather and Forecasting
(WRF) model which is documented in Skamarock and Klemp (2008). Two-dimensional
least-squares-fit polynomials are used to evaluate the higher-order spatial derivatives20

needed to cancel the leading-order truncation error terms of the standard second-order
centered formulation. As in Wicker and Skamarock, the third-order formulation is equiv-
alent to the fourth-order formulation plus an additional diffusion term that is proportional
to the Courant number (CN). An optimal value for the coefficient scaling this diffusion
term based on qualitative evaluation of results from other tests is used (see Skamarock25

and Gassmann, 2011).
The time stepping is based on a three-stage Runge–Kutta method. Hence the flux-

operators are evaluated at three intermediate time-levels for a full tracer time step
4993
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update. Shape-preservation is obtained by applying the FCT limiter/filter during the final
Runga–Kutta stage within a given time step. Tracer and air mass coupling is through
super-cycling.

2.1.2 “Swept-area” approach

An alternative and perhaps more physically intuitive approach to approximating the5

flux-divergence is to trace the area that is “swept” through an Eulerian cell wall in one
time step; hence the name “swept area” approach but also referred to as incremental
remapping method (Dukowicz and Baumgardner, 2000), or semi-Lagrangian flux-form
finite-volume method (Lin and Rood, 1996). These methods are usually based on Euler
forward time differencing (two-time-level schemes). Several schemes in this intercom-10

parison are based on that approach and they differ in area approximation, reconstruc-
tion method, and implementation grid (for a detailed discussion on area approximations
and reconstruction methods see, e.g., Lauritzen et al., 2011b). Unless stated other-
wise the schemes based on “swept-areas” use the super-cycling technique for coupling
tracer and air mass.15

The most rigorous approach in this intercomparison, in terms of area approximation,
is the Simplified Flux-Form CSLAM scheme (SFF-CSLAM, Lauritzen et al., 2011a;
Ullrich et al., 2013). For each cell the flux-areas are approximated by tracing the end
points (vertices) of each cell face upstream. The upstream translation of these points
and the face vertices can be connected with straight lines (e.g. Harris et al., 2010)20

or parabola (in the latter case also the midpoint of the cell faces is traced upstream,
Ullrich et al., 2013) to define the swept area (a.k.a. flux-area). This area will by defi-
nition be swept through the cell wall in one time step and hence can be used to ap-
proximate the mass-fluxes in and out of control volumes by integrating reconstruction
functions of tracer mass over the swept areas. The “Simplified” in the SFF-CSLAM25

scheme acronym refers to the simplification introduced by Hirt et al. (1974), in which
the flux-integral is simplified so that only the sub-grid-scale reconstruction immediately
upstream of the cell edge is used even though the flux-area may overlap more than one
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Eulerian cell. As discussed in Lauritzen et al. (2011a), this simplification may lead to
some cancellation of errors for sufficiently small CNs. The integration of the flux region
in SFF-CSLAM is performed via fourth-order Gaussian quadrature of third and fourth-
order accurate reconstruction polynomial functions (Ullrich et al., 2013) referred to as
SFF-CSLAM3 and SFF-CSLAM4, respectively. Shape-preservation in SFF-CSLAM is5

enforced by reconstruction function limiting (slope-limiting); more specifically the max-
ima and minima are identified within each element and the reconstruction function is
scaled to fit within the minimum and maximum of the neighboring cell-average values
(Barth and Jespersen, 1989). Since simplified flux-area integration is used, reconstruc-
tion functions are effectively extrapolated in the parts of the flux-areas (if any) that are10

not limited to the immediate upstream cell with which the control volume shares a
face. Since slope-limiting is only enforced within each Eulerian cell and not throughout
the flux-area, SFF-CSLAM is not strictly shape-preserving but only approximately so.
SFF-CSLAM could be rendered strictly shape-preserving by using FCT, possibly, at the
expense of increased computation cost.15

A further simplification to SFF-CSLAM is to approximate the swept area with just
one degree of freedom instead of two or three as described above. For example, one
may use just one velocity vector at the center of each edge to trace the flux-area so
that the swept-area is a rhomboid instead of a quadrilateral with straight (Miura, 2007)
or curved edges (Ullrich et al., 2013). This approach is taken in the transport scheme20

implemented in the Icosahedral Nonhydrostatic Model (ICON); ICON is currently being
developed in a joint effort by the Max-Planck Institute for Meteorology (MPI-M) and the
German Weather Service (DWD). The scheme is referred to as ICON-FFSL (Flux-Form
Semi-Lagrangian). The swept area approximation in ICON-FFSL is first-order in space
and second-order in time. The simplified flux-integration, as used in SFF-CSLAM, is25

also applied in ICON-FFSL hence the maximum stable CN is limited; the theoretical
stable CN limitation for linear reconstruction functions is 0.5 (Fig. 3 middle; Lauritzen
et al., 2011a), however, in practice ICON is stable up to CN approximately 0.8. The
reconstruction polynomial is first-order (linear) and the coefficients are estimated using
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a conservative and weighted least squares reconstruction method (Ollivier-Gooch and
van Altena, 2002). Shape-preservation in ICON-FFSL is obtained by using FCT, and
tracer-air mass coupling is through “super-cycling”.

A similar approach has been taken in the scheme of SLFV-SL developed at LMD
(Laboratoire de Météorologie Dynamique, Paris, France) for a hexagonal icosahedral5

grid-based model. It uses simplified swept areas with simplified integration of linear
reconstruction functions as in ICON-FFSL. Contrary to ICON-FFSL, the SLFV schemes
base their reconstruction on averaging six gradients (or five for the pentagons) rather
than a least-squares fit. SLFV-SL uses a slope-limiter for shape-preservation; more
precisely, a multi-dimensional extension of the Van Leer-type slope limiter discussed10

in Dukowicz and Kodis (1987). LMD also presented another scheme, SLFV-ML, which
is similar to SLFV-SL, but instead of forward Euler the Runge-Kutta third-order total
variational diminishing (TVD) time-integration method is used (e.g. Nair et al., 2005).
For details on the SLFV schemes see Appendix A14.

2.1.3 Wave-propagation algorithm15

Related to the “swept area” approaches described above, in the sense that this algo-
rithm has some conceptual similarities, is the wave-propagation algorithm of LeVeque
(2002). The specific version of this algorithm is referred to as CLAW as it is imple-
mented in the general CLAWPACK package (LeVeque, 2006). The wave propagation
algorithm can be viewed as a scheme which propagates information (i.e. waves) first20

in a direction normal to a given cell interface, and then in a direction transverse to
this interface effectively approximating “swept area” fluxes (see, e.g., Fig. 5.22 in Dur-
ran, 2010). CLAW is based on a first order donor cell upwind method (first-order waves)
composed of one-dimensional flux-divergence operators with “correction” terms to take
into account traverse flow of waves and/or higher-order waves. CLAW used here is for-25

mally second-order accurate. A TVD monotonized central-difference limiter (LeVeque,
2002; van Leer, 1977) is used for shape-preservation but other TVD type flux limiters
can also be applied.
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CLAWPACK supports the advective and flux-form of the transport equation. The ver-
sion of CLAW used here is based on the advective form. For non-divergent winds
the average normal velocity at mesh cell edges is obtained by differencing a stream-
function evaluated at mesh cell corners. Consequently, a constant density field in a
non-divergent flow is preserved in the discretized CLAW scheme based on the advec-5

tive form. Clawpack is not strictly a transport code, but is designed to solve more gen-
eral non-linear hyperbolic problems. The problems presented here are ideally suited
for AMRClaw, the spatially adaptive version of ClawPack (http://www.clawpack.org).

2.1.4 Dimensional splitting approach

Instead of approximating swept area fluxes rigorously in two-dimensions, one may take10

an operator split approach, which has been successfully applied for orthogonal (Lin
and Rood, 1996) and quasi-orthogonal grids (Putman and Lin, 2007). The advantage
of such an approach is that only one-dimensional operators are needed. The formal
accuracy, however, is limited to second-order with the splitting. The Lin and Rood
(1996) scheme is used in NCAR’s Community Atmosphere Model Finite-Volume ver-15

sion (CAM-FV, Neale et al., 2010) and implemented on a regular latitude-longitude
grid. The transport scheme in CAM-FV applies successive applications of first-order
advection and PPM (Piecewise-Parabolic Method, Colella and Woodward, 1984) flux-
divergence operators that are carefully combined to minimize splitting errors. To render
CAM-FV, approximately shape-preserving slope- and curvature-limiters are applied in20

the one-dimensional PPM reconstructions. Since the limiters are applied to the PPM-
operators that are one-dimensional, over- and undershoots are only eliminated along
coordinate directions and not in the transverse direction. Hence, CAM-FV is only ap-
proximately shape-preserving. Air-tracer coupling is through “super-cycling”. For a sta-
bility analysis of the Lin and Rood (1996) scheme, see Lauritzen (2007).25

Another dimensionally split transport scheme in Eulerian flux-form that participated in
this intercomparison is an improved version (Prather et al., 2008) of the original second-
order moment (SOM) scheme (Prather, 1986), which is here referred to as UCISOM
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(UC Irvine Second-Order Moments scheme). It applies the same operators/algorithm
in all coordinate directions (via dimensional splitting) and hence is trivially extensible
to three dimensions. In addition to the one prognostic variable (cell-averaged tracer
mass) that all the schemes discussed so far use, the SOM method carries 5 prognostic
variables. The extra forecasted variables are moments of the tracer distribution. The5

UCISOM scheme has been implemented on a regular latitude-longitude grid and on
an equi-angular gnomonic cubed-sphere (referred to as UCISOM and UCISOM-CS,
respectively).

2.2 (Semi-)Lagrangian finite-volume

A (semi-)Lagrangian finite-volume scheme is typically based on the form10

D
Dt

∫
A(t)

ρφ dA = 0, (8)

where D/Dt is the total or material derivative and A(t) is a Lagrangian volume for which,
by definition, there is no flux of mass across its boundaries. Lagrangian and semi-
Lagrangian finite-volume schemes are also referred to as cell-integrated schemes (Nair
and Machenhauer, 2002). In semi-Lagrangian finite-volume schemes the same La-15

grangian areas are only traced/retained for one time step whereas for fully Lagrangian
schemes the cells move with the flow throughout the integration or at least for multi-
ple time steps. Each sub-category of (semi-)Lagrangian finite-volume schemes is dis-
cussed in a separate section below.

Conservation of mass in (semi-)Lagrangian finite-volume schemes is based on the20

physical constraint that the integral of mass over the Lagrangian areas at time-level n
and n+1 must match. This physical constraint is more rigorous than the requirement for
mass-conservation in flux-form schemes, for which any flux leads to mass conservation
as long as identical fluxes with opposite signs are used for each cell face. Contrary to
flux-form schemes, the reconstruction functions must integrate to the cell-averaged25
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value in each Eulerian control volume and the Lagrangian areas must span the entire
domain without cracks or overlap between them. For a fuller discussion see Lauritzen
et al. (2011b) and Erath et al. (2013).

Since (semi-)Lagrangian finite-volume schemes trace Lagrangian volumes rather
than fluxes through cell walls, shape-preservation cannot be ensured using FCT and5

FCT-type limiters. Shape-preservation in semi-Lagrangian finite-volume (not flux-form)
can be accomplished via slope-limiting where the reconstruction function is limited to
avoid spurious under- and overshoots.

2.2.1 Fully two-dimensional semi-Lagrangian finite-volume

The Conservative Semi-LAgrangian Multi-tracer (CSLAM) scheme, that has been im-10

plemented in NCAR’s High-Order Methods Modeling Environment (HOMME; Erath
et al., 2012), is based on upstream tracing of cells and subsequent integration over
overlap areas between the Lagrangian cell and Eulerian grid cells. Specifically, the ver-
tices of the Eulerian grid control volumes/cells are traced upstream and connected with
straight lines to define the upstream Lagrangian area. Note that it is essential for mass-15

conservation that the upstream areas collectively span the entire domain and that the
reconstruction function integrates to the cell-averaged value within each Eulerian grid
cell (Erath et al., 2013). Mass-conservation in flux-form schemes are not subject to
these constraints.

The CSLAM scheme may also be cast in flux-form (Harris et al., 2010) to produce20

schemes that are identical even when the slope-limiter for shape-preservation is ap-
plied. Note that casting the scheme in flux-form allows for flux-limiters such as FCT
that can obviously not be used in the Lagrangian form (e.g. Lauritzen et al., 2011b).
Since CSLAM integrates over fewer overlap areas than its flux-form version, it is more
efficient in its Lagrangian form. The CSLAM version used in this comparison was im-25

plemented on an equiangular gnomonic cubed-sphere grid. CSLAM uses fully two-
dimensional polynomial-based reconstruction functions of degree two for air density
ρ(x,y) and tracer mixing ratio φ(x,y). Shape-preservation is obtained with fully two-
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dimensional slope-limiting (Barth and Jespersen, 1989). Integration over overlap areas
on the cubed-sphere is performed via line-integrals in gnomonic cubed-sphere coor-
dinates. In Lauritzen et al. (2010) line-integrals along coordinate lines were computed
using exact line-integral formulas (Ullrich et al., 2009). However, it was later found that
these may become ill-conditioned at high resolution: switching to Gaussian quadra-5

ture makes the algorithm robust but at the cost of mass-conservation unless mass-
consistency is enforced locally using the consistency enforcement algorithm by Erath
et al. (2013) which does not affect the locality and efficiency of the CSLAM algorithm.
The coupling between ρφ and φ is by using the following reconstruction function for
tracer mass in each Eulerian control volume10

ρφ(x,y)+φ
(
ρ(x,y)−ρ

)
, (9)

(Appendix B of Nair and Lauritzen, 2010) where (·) refers to the cell-averaged value.
Note that for φ(x,y) = 1 expression (9) reduces to the reconstruction function for ρ and
hence Eq. (9) is free-stream preserving. Also, the higher-order terms in the product
ρ(x,y) ·φ(x,y) have been eliminated so that the reconstruction function for tracer mass15

is of degree two. One could also simply use a reconstruction function based on tracer
mass ρφ instead of reconstructing ρ and φ separately. However, shape-preservation
should only be applied to φ as φ is conserved following parcel trajectories and not
tracer mass ρφ. Hence the separation of ρ and φ in the reconstruction step is prefer-
able.20

2.2.2 Flow-dependent dimensional splitting

Instead of approximating the upstream area with a fully two-dimensional approach, it
may be approximated using a dimensionally split approach. This is similar to splitting
for Eulerian fluxes, however, the dimensional splitting is not along coordinate axes but
along Lagrangian translations of coordinate axes. Hence we refer to this approach as25

flow-dependent dimensional splitting. The upstream area is then effectively approxi-
mated using line segments that are parallel to the coordinate axes (see, e.g., Fig. 2
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in Lauritzen et al., 2006) so that the two-dimensional remapping problem is cast into
one-dimensional “sweeps” (one sweep along a coordinate axis and one sweep along
the upstream translation of the other coordinate axis); such schemes are referred to
as cascade schemes and were originally introduced by Purser and Leslie (1991) for
non-conservative semi-Lagrangian interpolation. Later, conservative versions of the5

cascade method were proposed, e.g., the Conservative Cascade Scheme (CCS; Nair
et al., 2002). In each cascade sweep PPM-based operators (similarly to CAM-FV) are
used.

A scheme based on CCS and implemented on the reduced latitude-longitude grid (for
details on the reduced latitude-longitude grid used here see Fadeev, 2013) participated10

in this intercomparison and is referred to as CCSRG (Tolstykh and Shashkin, 2012).
The version of CCSRG used here does not have a limiter implemented. Tracer-mass
coupling is based on reconstructing tracer mass, ρφ, and not on the reconstruction of
mixing ratio and density separately.

2.2.3 Lagrangian finite-volume15

A scheme for which the Lagrangian areas are retained for longer than one time step
is the Trajectory-Tracking Scheme (Dong and Wang, 2012) based on tracking inter-
faces (TTS-I, Dong and Wang, 2013). The advantage of tracing interfaces is that large
gradients or even discontinuities are preserved. The initial grid in TTS-I is based on
polygons generated by using a spherical centroidal Voronoi tessellation (Du et al.,20

1999; Ringler et al., 2008; Ju et al., 2011), where the density function that controls
the distribution of polygons is set to unity. The polygons are then traced throughout
the integration. Due to the large deformation of the background flow, the edges of the
polygons will inevitably cross. To avoid this ill-conditioned problem, a novel Curvature-
Guard Algorithm (CGA) has been developed that splits and merges edges according to25

deformation criteria. The details are explained in Dong and Wang (2013). For the com-
putation of diagnostics the fields are mapped to a regular latitude-longitude grid (which
is also done for coupling with physical parameterizations). This mapping is first-order,
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mass-conservative and shape-preserving. Note that the prognostic fields are always
retained in Lagrangian space so the mapping is only for computing diagnostics (and
tendencies from the physical parameterizations). Coupling between tracer mass and
air mass is trivial since the scheme retains Lagrangian volumes for tracer mass and air
mass throughout the integration.5

2.2.4 Hybrid Eulerian-Lagrangian

An alternative approach is to retain both a fully Lagrangian and Eulerian represen-
tation of all prognostic variables as done in the hybrid Eulerian Lagrangian (HEL)
scheme (Kaas et al., 2013). In HEL the Lagrangian solution, based on tracing La-
grangian parcels (effectively solving Dφ/dt = 0), is used to nudge the Eulerian so-10

lution toward the Lagrangian solution that exactly preserves tracer correlations and
tracks gradients very accurately. In the Lagrangian solution mixing between neighbor-
ing parcels is done using directionally biased diffusion based on the local deformation
rate of the flow. The mixing is introduced to prevent long term development of unre-
solvable deformation into parcel filaments, which one may also describe as aliasing in15

Lagrangian space. The Eulerian solution is simply a first-order forecast; in this case,
a first-order version of CSLAM is used. Hence HEL is categorized under finite-volume
semi-Lagrangian schemes and the Lagrangian parcel part of the algorithm is viewed
as a shape-preserving limiter in the context of this intercomparison. Lagrangian parcel
values are used to nudge the shape-preserving low-order Eulerian solution using an20

algorithm that ensures mass-conservation and shape-preservation.
For comparison the scheme has also been run in an aliased, and therefore unphys-

ical, setup without the directional diffusion (abbreviated HEL-ND; No Diffusion); thus,
the Lagrangian parcels retain their initial values throughout the simulation. If using ex-
act trajectories, HEL-ND has no errors at the end of the simulation since the parcels25

will have returned to their initial position without altering their initial value. In the test
cases presented here, the trajectories are not exact and the error-norms are therefore
non-zero. Note that this is not the case for HEL since the mixing/diffusion is irreversible.
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The scheme uses the same coupling between fluid density and tracer mass as the
CSLAM scheme, although the nudging of Eulerian cell averages is done separately for
density and mass, but constrained by monotonicity in tracer mixing ratio. The HEL
scheme is general in the sense that any shape-preserving and mass-conservative
scheme can be used for the Eulerian forecast. The HEL scheme has also been tested5

successfully in a dynamic shallow water model with strongly varying surface topogra-
phy (Kaas et al., 2013).

2.3 (Semi-)Lagrangian grid-point

Some schemes, such as traditional grid-point semi-Lagrangian schemes, are based on
the advective form of the continuity equation for mixing ratio φ,10

Dφ
Dt

= 0. (10)

The FARSIGHT scheme (White and Dongarra, 2011) is based on (10) and dis-
cretized on an equiangular gnomonic cubed-sphere grid. It is an upstream semi-
Lagrangian scheme that computes departure points for each grid point using back-
ward trajectories based on numerical derivatives of the wind field at the later time. The15

scheme then sets φ at each grid point to the interpolated value (third-order for FAR-
SIGHT) at its departure point. The scheme allows for long time steps as long as the tra-
jectory algorithm converges (Lipschitz criterion). FARSIGHT performs best at Courant
numbers of 10–20 and has large errors at low Courant numbers (White and Dongarra,
2011). Schemes based on Eq. (10) are usually not inherently mass-conservative and20

it is common practice to apply global mass fixers which “ad hoc” restore global mass-
conservation. FARSIGHT uses a global mass-fixer that also locally constrains the mix-
ing value to remain within a predefined interval. Hence the scheme is not necessarily
locally shape-preserving. The parallel implementation uses dynamic communication to
allow arbitrarily fine domain decomposition regardless of time step. However, it does25

incur the expense of a global synchronization at each time step and the mass fixer uses
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global reductions. For this class of schemes free-stream preservation is trivial since a
constant φ will remain constant throughout the simulation and ρ does not appear in
the transport equation (10).

The spectral bicubic interpolation scheme (SBC, Enomoto, 2008) is a traditional
semi-Lagrangian grid-point scheme (10) based on spectral transforms on a latitude-5

longitude Gaussian grid (Ritchie, 1987). The zonal, meridional, and cross derivatives
are calculated using the spectral transform method and are then fed into the bicu-
bic interpolation formula providing a fully two-dimensional interpolant (no directionally
splitting that is commonly applied in traditional semi-Lagrangian schemes). The num-
ber of zonal grid points is about twice the truncation wave number (linear Gaussian10

grid) rather than about three times (quadratic Gaussian grid) since the nonlinear terms
are hidden in the interpolation (Côté and Staniforth, 1988). The linear Gaussian grid
(thus larger truncation wave number) gives better accuracy for the same number of grid
points, especially at low resolutions.

Trajectories are computed using the traditional method based on bilinear interpola-15

tion along great circles (Staniforth and Côté, 1991). A two-time-level scheme (Temper-
ton and Staniforth, 1987) is implemented for efficiency. It is confirmed that the two-
time-level scheme gives exactly the same results as the three-time-level scheme used
by Enomoto (2008). The time extrapolation is not used since the wind fields are known
analytically at any time t. Time integration is conducted in spectral space with the un-20

limited scheme. In physical space, it is conducted with the shape-preserving scheme.
This scheme does not formally conserve mass and is not inherently shape-

preserving although the interpolation itself is very accurate; overshoots and under-
shoots are much smaller compared to traditional quasi-cubic interpolation (Ritchie
et al., 1995). A simple global mass fix scheme based on a variational formulation by25

Sun and Sun (2004) is used. Shape-preservation is enforced by a quasi-monotone
scheme by Nair et al. (1999). The quasi-monotone scheme is an improved version of
Sun et al. (1996) that applies the Bermejo and Staniforth (1992) filter.
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2.4 Lagrangian parcel methods

Instead of periodically (every time step for FARSIGHT and SBC) remapping between
a Lagrangian and Eulerian mesh, one may also trace the Lagrangian parcels through-
out the integration (e.g. Chorin and Marsden, 2000; Cottet and Koumoutsakos, 2000)
similar to the Lagrangian finite-volume method described above (TTS-I). This method5

is referred to as the Lagrangian particle method and its implementation in this inter-
comparison will be referred to as LPM (Bosler, 2013). Apart from different remapping
to Eulerian grids, LPM is similar to HEL without diffusion, i.e. HEL-ND. Obviously, any
set of parcels can be traced. LPM traces quadrilaterals of a cubed-sphere mesh or
the triangles of an icosahedral triangular mesh by both tracing the centers and ver-10

tices of the control volumes. The parcel trajectories are computed using a fourth-order
Runga–Kutta method.

2.5 Series-expansion methods

Transport scheme algorithms in which the solution is projected onto a set of basis
functions through a minimization procedure are broadly referred to as series-expansion15

methods as e.g. explained in Durran (2010). The spectral transforms used in the SBC
scheme are also based on series expansions (global), however, since the expansions
are only used to provide gradients for the Lagrange interpolant the SBC scheme is
not categorized as a series-expansion scheme. In this intercomparison one scheme
(with several variants) under this category participated and is referred to as HOMME20

(High-Order Methods Modeling Environment). HOMME is a dynamical core framework
that currently accommodates spectral element (Thomas and Loft, 2005; Dennis et al.,
2005), discontinuous Galerkin methods (Nair, 2005; Nair et al., 2009), and finite-volume
methods (Erath et al., 2012) on conforming quadrilateral grids on a sphere. A gnomonic
cubed-sphere grid defines the elements and each element is populated with Gauss-25

Lobatto-Legendre nodes for integral evaluations used in the transport operators.
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The HOMME version used here is a continuous Galerkin finite element method which
relies on globally continuous polynomial basis functions of order p (here with p = 3 and
p = 6). Although HOMME has the capability to solve the transport equation in advective
form, it is solved in flux-form (one equation for ρφ and one for ρ) for exact conservation.
A compatible discretization method is used that guarantees mass-conservation (Taylor5

and Fournier, 2010). Time stepping in HOMME is via an explicit three-stage strong
stability preserving Runge-Kutta method. For shape-preservation φ = (ρφ)

ρ is recovered
after each Euler time step in the Runge-Kutta method. The quasi-monotone limiter
(shape-preserving filter) for φ is based on an optimization problem with equality and
inequality constraints (Taylor et al., 2009; Guba et al., 2013).10

There is a significant dependency of the simulation quality on the choice of the
fourth-order hyperviscosity coefficient for low-resolution simulations with HOMME. For
specific choices used in HOMME see Appendix A8.

HOMME has been incorporated as a dynamical core option in NCAR’s Community
Atmosphere Model (CAM, Evans et al., 2013). The configuration using the HOMME15

spectral element dynamical core in CAM is referred to as CAM-SE (Dennis et al., 2012).
The test case suite was also run with CAM-SE (equivalent to HOMME-p3) but using the
fourth-order hyperviscosity coefficients for climate simulation in CAM (see Appendix A2
for details).

3 Results20

In this section the results for the transport schemes that participated in this compari-
son are presented and discussed. Horizontal resolutions are specified in terms of av-
erage grid spacing at the Equator. The test case suite works with three resolutions
∆λ : 1.5◦, 0.75◦, and ∆λm (the latter is scheme dependent and defined in Sect. 3.2)
where λ denotes the longitude. The identical grid spacing is also selected for the latitu-25

dinal direction. The native grid parameters corresponding to these three average grid
spacings at the Equator can be found in the Appendix for the respective schemes. In
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addition, we make extensive use of CNs, which are also specified in terms of ∆λ; so
local CNs may differ from the “global” CN for schemes implemented on non-isotropic
grids. Again the reader is referred to the scheme specific Appendix to find time steps
∆t corresponding to specific CN’s at any of the three resolutions. Data used to make
histograms are available as supplemental material. The test case specification consists5

of two analytical flow fields (one non-divergent and one divergent) designed to deform
initially well-resolved initial conditions into thin filaments half way through the simulation
(t = T/2, where T is the period). Thereafter the deformational part of the flow reverses
so that the tracer distributions return to their initial condition at t = T . The deformational
flow is superimposed on a constant zonal flow to further challenge the schemes and to10

guarantee that errors do not cancel when the deformational flow reverses. The initial
conditions are based on distributions ranging from infinitely smooth surfaces to dis-
continuous slotted-cylinders. The distributions are placed into the western and eastern
hemisphere, respectively, so that model developers can investigate the symmetry of
the computed solutions. A series of diagnostics are used to assess various aspects of15

accuracy. For specific details on the test suite setup we refer to LSPT2012.
Not all models provided a complete dataset and/or ran the suite exactly complying

with the test case specifications. When data are missing or non-existent in histograms,
the value is set to −1. In scatter plots it will be clearly marked “NO DATA” if the data
are missing. If modelers have diverted slightly from the exact test case descriptions,20

it will be noted in the text. We have chosen not to exclude models that did not submit
a complete dataset as the data they did submit do, in our opinion, provide meaningful
insights. It should be noted that schemes that are inherently shape-preserving (HEL,
LPM, TTS), or in other words, for schemes for which there does not exist an unlimited
version, the unlimited data are marked as “NO DATA” or “−1”.25

The tests are grouped into six categories assessing:

1. numerical order of convergence using smooth Gaussian hills initial conditions,

2. “minimal” resolution using cosine bell initial conditions,
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3. ability of the transport scheme to preserve filaments using cosine bells,

4. ability of the transport scheme to transport “rough” distributions using slotted cylin-
der initial conditions,

5. ability of the transport scheme to preserve pre-existing functional relations be-
tween tracers,5

6. ability of the transport scheme to deal with divergent flows (Nair and Lauritzen,
2010).

These topics are discussed in separate sections below.

3.1 Numerical convergence rates: Gaussian hills

The goal of this test is to estimate numerical convergence rates for the normalized error10

norms `i , which are referred to as Kun
i for the unlimited scheme and (if applicable) Ksp

i
for the shape-preserving version of the scheme, where i = 2,∞. Gaussian hills and
the non-divergent flow field are used for the initial conditions. Normalized error norms
are computed after one period (T ) when the analytical solution is readily available. The
initial condition is infinitely smooth (C∞) so that the smoothness of the initial condition15

is not a limiting factor for numerical convergence rates. With C1 initial conditions, for ex-
ample, one can not necessarily expect to achieve numeral convergence rates matching
the formal order of accuracy for higher-order schemes (see, e.g., Harris et al., 2010).
The meridional component of the velocity field v is not infinitely smooth at the poles,
however, since all fields are constant at the poles (and in the vicinity of the poles) and20

since all metrics are based on mixing ratio φ and not tracer mass, this lack of smooth-
ness in the derivative of v has not been found to influence the results. Hence this setup
was designed to assess “optimal” convergence rates given the smoothness of the initial
condition and v .
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The numerical convergence rates are computed using a least-squares linear regres-
sion on the form

log(`i ) =Ai −Ki log(∆λ), i = 2,∞, (11)

where Ki are constants for the resolution range approximately 3◦ to 0.3◦ (a Gnuplot
script was made available as supplemental material in LSPT2012 to perform the least-5

squares regression). Note that the resolution range has deliberately been chosen to
include a range [∆̃λ,3◦], where ∆̃λ > 0.1◦. With the 3◦ grid spacing the mixing ratio dis-
tributions may be marginally resolved. The main interest is not asymptotic convergence
rates, which should be close to the theoretical convergence rate, but rather the effect
of marginally resolved features in the convergence rate computations.10

Convergence plots for `i , i = 2,∞, for the unlimited and shape-preserving versions
of the schemes are given in Figs. 1 and 2. The schemes have been grouped according
to implementation grid. An accompanying histogram (Fig. 3, middle) depicts the con-
vergence rate for `i , i = 2,∞. The ordering of the data in the histogram will become
clear as we discuss “minimal” resolution in the next section. For the convergence study15

the CN is held fixed. The labels on the convergence plots and histograms include the
CN appended to the scheme acronym.

The histogram graphically depicts the range of convergence rates represented by
the ensemble of models. They span from first-order convergence rates to sixth-order
for the unlimited schemes. Hence, the ensemble of models that participated in this20

intercomparison span a significant range of formal accuracies. Several observations
are made regarding “optimal” convergence rates and will be discussed in separate
sections below.

3.1.1 Reaching asymptotic convergence

Together with the absolute errors that will be commented on in the discussion of25

“minimal” resolution, perhaps the most striking observation to be made regarding
the convergence plots (Figs. 1 and 2) is that models transition from sub-optimal
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convergence to asymptotic convergence rates at different resolutions. Some mod-
els converge at full order for `2 already at the lower end of the resolution range for
which we assess numerical convergence (e.g., CAM-FV, CCSRG, CSLAM, HEL, HEL-
ND, FARSIGHT-CN10.4, SBC, SFF-CSLAM3, UCISOM, UCISOM-CS) whereas other
scheme reach “optimal” convergence rates at finer resolutions (e.g., CLAW, CAM-SE,5

FARSIGHT-CN1.0, HOMME, SFF-CSLAM4, SLFV-ML/SL, MPAS, ICON). Common for
the schemes that converge asymptotically throughout the resolution range is that they
converge at rates equal or less than two, K2 ≤ 2, except for the third-order CSLAM,
SFF-CSLAM3, and CCSRG schemes that converge asymptotically already at approxi-
mately 3◦ resolution. Other higher-order schemes that are formally third-order (MPAS),10

fourth-order (HOMME-p3, SFF-CSLAM4), and seventh-order (HOMME-p6) don’t con-
verge at the asymptotic rate at the lower end of the resolution range. The effect of
hyperviscosity coefficient on convergence rates for spectral-element advection can be
observed by comparing CAM-SE and HOMME-p3 (Fig. 1). Another fact is contributing
to the discrepancy is the fact that in CAM-SE the transport test is implemented using15

the offline_dyn option for which the winds are held fixed throughout the tracer time
step whereas in HOMME the winds are updated at every Runga–Kutta step.

3.1.2 Shape-preserving filters and convergence rates

When examining the histograms for “optimal” convergence rates for `2 and `∞ (Fig. 3
middle and lower, respectively), it is immediately apparent (with the exception of CLAW,20

FARSIGHT, SBC), and not surprising, that shape-preserving filters reduce conver-
gence rates. The most striking reductions in K2 are for the higher-order schemes such
as HOMME-p6, HOMME-p3, and SFF-CSLAM4 for which the convergence rates are
reduced by four, two and two, respectively. The formally third-order schemes CSLAM,
MPAS, SFF-CSLAM3 see reduction of convergence rates of about 0.5. Schemes that25

are approximately second-order accurate are less affected (in an absolute sense) by
shape-preserving filters. The observations made for K2 also hold in a qualitative sense
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for K∞. We also note that a posteriori shape-preservation filters/fixers do not affect
convergence rates (FARSIGHT and SBC).

3.1.3 Time step and convergence

LSPT2012 encouraged modelers to provide data for different CNs (the CN here refers
to the maximum zonal CN; see Eq. 24 in LSPT2012), especially for schemes allowing5

for long time steps (CN>1) such as (semi-)Lagrangian schemes. CSLAM, for example,
was run with CN= 1.0 and CN= 5.5. It is observed that as the time step is reduced with
CSLAM, the absolute errors increase since an increased number of remappings implies
increased spatial errors until the distribution can be represented by the polynomial
reconstruction functions (Fig. 1, row 1 and 2). Since the CSLAM scheme was run with10

semi-analytic trajectories, temporal errors (due to trajectory computations) are minimal.
The asymptotic convergence rates for CSLAM are not affected by time step in this
setup. Similar observations are made for the CCSRG.

The SBC scheme is also a semi-Lagrangian scheme and, contrary to the CSLAM
setup, inexact trajectories were used. At lower resolutions the spatial errors dominate15

so the absolute errors increase with a decreased time step (similar to CSLAM). How-
ever, at high resolution the temporal errors start to dominate the standard errors norms;
with CN= 1 SBC solutions become more accurate than the CN= 5.5 solutions when
the resolution is finer than approximately ∆λ = 0.375◦. In other words, the temporal
errors start to dominate as the distributions are very well represented by the basis20

functions used in SBC at high resolution.
The Eulerian scheme used in the ICON model was run at CN= 0.2 and CN= 0.6

(Fig. 2, row 3 and 4). Contrary to the semi-Lagrangian schemes, the solutions achieved
with longer time steps have larger errors throughout the resolution range. Since ICON-
FFSL is based on a low-order spatial reconstruction function it is unlikely that the error25

is dominated by time-truncation errors throughout the resolution range. Rather it ap-
pears more likely that the larger CN errors are due to the simplified flux-approximation
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for which errors increase with larger CNs due to more of the flux-area integrations being
based on extrapolation of reconstruction functions.

For CAM-FV it is observed that the large CN solution (CN= 1.2) has smaller abso-
lute errors than the CN= 0.2 simulations (Fig. 2, row 1 and 2). Although the splitting
errors in the dimensionally split CAM-FV scheme increase with CN, these errors do not5

dominate for this test case setup. Semi-analytic “trajectories” were used (analytic wind
evaluations at n+1/2 were used in the simulations) so, as for CSLAM, the temporal
errors due to “trajectories” can be expected to be small. In conclusion, the absolute er-
rors for the two-time-level CAM-FV solutions are dominated by spatial errors (number
of flux evaluations increases with decreased CN).10

3.2 “Minimal” resolution ∆λm: cosine bells

Rather than assessing convergence rates this test focuses on absolute errors. In other
words, we ask at what resolution modelers need to run their model to achieve a cer-
tain solution quality. The solution quality is quantified in terms of the `2 error norm for
solutions using the same non-divergent flow field as above but with less smooth (C1)15

initial conditions. A less smooth initial condition is chosen to challenge the schemes
with a more realistic (in terms of smoothness) initial condition compared to the infinitely
smooth Gaussian hills. This is similar to the setup used in Williamson et al. (1992)
where both the advection test and shallow water topography (test 5) use C1 functions
for mass distribution and surface height, respectively.20

Basically, the modelers repeated the numerical convergence test (Sect. 3.1) with
cosine bell initial conditions. The “minimum” resolution is defined as the resolution
(specified in terms of average grid-spacing at the Equator) for which the normalized
`2 error norm is approximately 0.033. This threshold was chosen based on CSLAM
experiments for which the filaments were resolved in the sense that asymptotic con-25

vergence is reached; for CSLAM-CN5.5 asymptotic convergence with cosine bell initial
conditions is reached at approximated ∆λ = 1.5◦ for which `2 ≈ 0.033. The minimum
resolution is estimated from a convergence plot (see Fig. 4 in LSPT2012) and should
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be computed without and (if applicable) with shape-preserving filters. The “minimal”
resolution used in the remainder of the test case suite should be ∆λm for the unlimited
scheme.

The “minimal” resolution for the different schemes are depicted graphically in the his-
togram in Fig. 3 (top row). First of all, the ∆λm range is from approximate 1/10◦ to over5

2◦ resolution. This is a remarkable difference in resolution to achieve the same “qual-
ity” solution. In Fig. 3 the same ordering is used for the histograms making it easier
to visually compare “optimal” convergence rates with “minimal” resolutions. The his-
tograms for Ki do not constitute a monotonically increasing quantity going from left to
right in the histogram plots. In other words, high-order convergence rates do not nec-10

essarily result in coarser “minimal” resolutions or vice versa; in fact there seems to be
no clear correlation between Ki and ∆λm in the resolution range considered here. This
is perhaps even more apparent in the “scatter-like” plot in Fig. 4. In fact, some of the
schemes that are among the best performing schemes regarding ∆λm (e.g., UCISOM,
LPM) perform poorly in terms of convergence rate. Had the test been run in a (high15

resolution) asymptotic convergent regime, Ki and ∆λm would most likely be inversely
related, however, as mentioned the test is designed to challenge schemes near the
resolution limit rather than focusing on resolutions for which the spatial distributions of
tracers are well-resolved.

Shape-preserving filters (with the exception of CLAW, FARSIGHT and SBC) reduced20

“optimal” convergence rates. The effect of shape-preserving filters on the “minimal”
resolution seems to go both ways (Fig. 3, top). That is, some schemes increase ac-
curacy (∆λm increases) when the shape-preserving filter is used (most notably with
MPAS, ICON, SBC, CLAW) whereas other schemes experience a decrease (HOMME-
p3, HOMME-p6, CSLAM). It is noted that ICON/MPAS and CLAW use FCT and TVD-25

type flux-limiters whereas CSLAM uses a slope-limiter. Results that contrast unlimited
and shape-preserving “minimal” resolutions are not available for CAM-FV, CCSRG,
UCISOM, and UCISOM-CS since only shape-preserving data are available for those
models.

5013

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4983–5076, 2013

Results from
standard test case

suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In general it is also noted that the “minimal” resolution for schemes defined on Icosa-
hedral/Voronoi grids have finer ∆λm than schemes defined on cubed-sphere and reg-
ular latitude-longitude grids. That said, since the measure of resolution is the aver-
age resolution at the Equator, the regular latitude-longitude grids have more degrees
of freedom than cubed-sphere and icosahedral grid-based models. In this discussion5

we have not considered how amenable spherical grids and schemes are to mesh-
refinement applications.

3.3 “Filament” preservation diagnostic `f: cosine bells

All tests above were based on traditional error norms computed at time t = T when
the flow, in the absence of any numerical errors, has advected the distributions back10

to their initial position and shape. As discussed in Lauritzen and Thuburn (2012), the
first half of the simulation, where relatively well-resolved features collapse in scale (at
t = T/2 the initial condition cosine bells have been deformed into thin filaments), is
typical for atmospheric flow. The second half of the simulation (t ∈]T/2,T ) does not
resemble typical observed flow patterns, but it is very convenient for obtaining an an-15

alytical solution under complex flow conditions. Partly motivated by that, a series of
diagnostics were developed for which an analytical solution is not needed and one can
thereby assess accuracy at any point in time. For example, before the “unphysical” flow
reversal at (t = T/2), one could expect the schemes to be most challenged at least for
semi-Lagrangian and Eulerian schemes.20

One such diagnostic is the filament diagnostic that is designed to diagnose how
well the thin filaments that develop at t = T/2 are preserved. It takes advantage of
the fact that in continuous space the area spanned by tracer values larger than some
threshold value is conserved for a non-divergent flow field. The filament diagnostic, `f
(for a mathematical definition of `f see LSPT2012), is designed to quantify how well25

filaments are preserved in terms of how well a scheme preserved the total area for
which φ is larger than a threshold value τ.
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The cosine bell initial conditions are chosen for this test as they are quasi-smooth
(but not infinitely smooth) and has mixing ratio values that span the entire range from
the background value of 0.1 to the peak value, φ = 1.0. Slotted-cylinder initial con-
ditions, for example, only have two values and simulations using that initial conditions
would therefore not give information on how well the scheme maintains continuous and5

varying gradients.
The perfect scheme will have `f close to 100 for all values of τ. We say “close” to 100

and not exactly equal to 100 since for Eulerian/semi-Lagrangian schemes that use a
fixed grid one would need to truncate the exact Lagrangian solution (for which `f = 100
for all t) to the fixed Eulerian grid for the computation of `f; however, that truncation10

error is likely orders of magnitude below the numerical truncation errors (numerical
diffusion and dispersion errors) introduced by the scheme itself. For fully Lagrangian
schemes based on parcels this test forces modelers to define areas associated with
the Lagrangian parcels. Cell-integrated Lagrangian schemes that track cells throughout
the integration can test how well the scheme preserves areas.15

As explained in LSPT2012, a highly diffusive scheme tends to increase `f for lower
threshold values τ (except τ = 0.1 for which `f decreases) and decrease `f for higher
values of τ (see Fig. 6a in LSPT2012). In other words, when the base of the cosine
bells is diffused, more area is covered by lower values of φ and less area is covered
with higher (near peak) values of φ.20

The filament diagnostics gives insight into how gradients are distorted in terms of the
ability to preserve the area of the domain in which the mixing ratio is larger than the
threshold value τ. If the `f(τ)-curve is smooth and monotonically decreasing as a func-
tion of τ, the schemes diffusive characteristics are smooth and continuous. Schemes
that tend to steepen gradients will spuriously force `f(τ) > 100 for relatively large τ val-25

ues. Schemes that make use of “add-hoc” fixers (that also alter gradients) may produce
an oscillatory `f(τ) curve.

Figure 5 shows the filament preservation diagnostic `f (at t = T/2) using the co-
sine bell initial condition for the unlimited and (if applicable) limited/filtered schemes
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at resolutions 1.5◦ and 0.75◦. Results for `f at the “minimal” resolution ∆λm are not
shown although requested in LSPT2012. As for the convergence plots data has been
arranged according to discretization grid. We also show a “minimal-τ” filament preser-
vation diagnostics as histograms in Fig. 6, that is, the y axis on the histogram is the τ
value for which `f is 80; this τ-value is referred to as τm and computed by solving5

`f(τ = τm) = 80, (12)

which here is computed by fitting a polynomial through the `f data points near the
crossing of `f(τ) and `f = 80. Note that the solution to Eq. (12) is not multivalued for the
data considered here. For example, if τm = 0.6, then 80 % of the area associated with
mixing ratios larger than 0.6 is preserved. In other words, the larger τm is the better the10

scheme preserves the “peaks” of the cosine bells.
The histogram in Fig. 6 is mainly shown to visually investigate if there is a relationship

between “minimal resolution” and τm. Had there been a simple linear relationship, the
values of τm would decrease/increase from the left to right in the histogram. As for
the numerical convergence rates (Fig. 4), there is no simple relationship indicating that15

`f measures other aspects of accuracy than ∆λm. That said, there is a tendency of
increased τm from left to right with some outliers. For example, UCISOM-CN1.0/5.5
performs exceptionally well compared to the schemes with similar “minimal resolution”.
Similarly, but in a opposite sense, HEL-CN1.0 performs worse than its “neighbors” in
the histogram.20

Perhaps more interesting in the context of `f is to focus on the shape of `f as a func-
tion of τ. First of all, the more diffusive schemes tend to collapse toward a straight line
with negative slope for τ approximately in [0.2 : 0.8] whereas the less diffusive schemes
tend toward a straight line with no or small negative slope. The smoothness of the `f
curve may indicate non-physical “ad hoc” fixers or anti-diffusive aspects of a scheme.25

For example, the FARSIGHT scheme uses an “ad hoc” fixer for mass-conservation and
shape-preservation and the `f curves, in particular for FARSIGHT-CN10.4, are oscilla-
tory and non-monotone. The SFF-CSLAM4 and CAM-FV0.2 schemes have a rather
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wide range of τ-values (approximately τ ∈ [0.6 : 0.8]) for which `f exceeds 100.0 which
is likely due to steepening of gradients. In conclusion, there are indications that this
metric is most useful for testing schemes employing “ad hoc” fixers or schemes with
anti-diffusive terms or other mechanisms that may steepen gradients. Note that this
metric will not capture if the location of the filaments is incorrect (phase errors).5

3.4 Transport of “rough” distribution: slotted-cylinder

To assess how schemes perform with a rough (discontinuous) initial condition, we show
contour plots of solutions at t = T/2 for slotted-cylinder initial conditions and the same
non-divergent flow as used in all tests above. The slotted-cylinder has been used exten-
sively in the solid-body advection test case to demonstrate that shape-preserving lim-10

iters effectively eliminate spurious grid-scale oscillations. Contrary to traditional speci-
fications of the slotted-cylinder initial condition, we have chosen to overlay it by a back-
ground value of φ = 0.1 instead of a zero background value. Again, this is motivated
by typical conditions found in the atmosphere where structures in tracer distributions
frequently overlay some smooth background distribution. In that case, positivity pre-15

serving limiters will not eliminate undershoots near the discontinuity.
Contour plots for mixing ratio at t = T/2 based on slotted cylinder initial conditions

are shown in Figs. 7, 8, 9, and 10 (again, data are grouped according to the discretiza-
tion grid). In the LSPT2012 test case specification modelers were asked to report on
conventional error norms (at t = T ) in addition to showing contour plots (at t = T/2).20

Here we have chosen not to depict/list the conventional error norms as we did not
find any qualitative insights that were not visible in the contour plots (the error norms
are available in the supplemental material for the interested reader). So in the interest
of reducing the number of Figures/Tables, errors `2, `∞ as well as the minimum and
maximum norms are not shown.25

All contour plots use the same coloring scale and contour interval making it straight
forward to visually compare schemes. It is immediately apparent, most notably in the
areas away from the slotted cylinders where the field should be constant, whether a
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scheme is not strictly shape-preserving (light blue contour filling). Almost all unlimited
schemes show “ripples” in this area. Similarly, overshoots over the slotted-cylinders
are immediately visible (dark red contour filling). The wavelength of the spurious oscil-
lations is related to the formal order of the schemes. For example, the oscillations for
HOMME-p6 have a much shorter wave-length than those observed for ICON.5

This test, however, was specifically designed to assess whether shape-preserving
filters truly eliminates undershoots and overshoots while still preserving extrema.
Finite-volume scheme based on rigorous flux-computations and/or FCT limiters com-
pletely eliminate undershoots/overshoots (CSLAM, ICON, MPAS). For schemes based
on simplified fluxes and not using FCT limiters, small undershoots are visible (SFF-10

CSLAM3/4, CAM-FV1.2). The UCISOM scheme has a strictly shape-preserving limit-
ing option. However, to avoid “excessive” diffusion, the limiter has been relaxed which
explains the undershoots with that scheme. If a scheme shows ripples with a strictly
shape-preserving filter, then it may be due to inconsistent coupling between the air
mass and tracer mass fields when the mixing ratio is extracted. For example, a scheme15

that is not “free-stream” preserving will suffer from this deficiency.
The ability of the scheme to preserve the “plateau” of the slotted cylinders seems to

be closely related to “minimal” resolution in a qualitative sense except of the UCISOM
and HEL schemes that perform better than would be expected from their ∆λm ranking.
Not surprisingly the more diffusive schemes that have a smaller ∆λm also diffuse the20

slotted-cylinders. The pure Lagrangian schemes obviously maintain the discontinuities
in the slotted-cylinder better than the Eulerian/semi-Lagrangian schemes.

3.5 Preservation of pre-existing functional relation: cosine bells and correlated
cosine bells

All known tests for linear transport on a sphere consider aspects of accuracy in a25

single-tracer setup. As discussed in detail in Lauritzen and Thuburn (2012) the accu-
racy with which schemes maintain relations between tracers is of significant interest
in chemistry-climate and climate modeling. To assess how well interrelated tracers are
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simulated in an idealized setup, we use the same flow field as before. Two cosine
bell distributions, with mixing ratio χ and accompanying “correlated” mixing ratio ξ, are
advected separately. The latter is related to the former initial condition through a non-
linear (polynomial) relation (black curve on the scatter plots; Figs. 11, 12, 13, and 14).
For any Eulerian or semi-Lagrangian scheme known to the authors, scatter points will5

deviate from the pre-existing functional curve as the simulation progresses. A purely
Lagrangian scheme with no explicitly added mixing (for example, contour surgery)
where parcels are traced throughout the simulation, any relation between tracers is
maintained and hence the scatter points are stationary in the correlation plots.

The way in which scatter points deviate from the polynomial curve has consequences10

for the physical realizability of the mixing introduced by the scheme. When mixing oc-
curs in the atmosphere, scatter point (for example, located in two different air masses)
will move toward each other along straight lines in the scatter plot. These lines are
called mixing lines. The area spanned by all possible mixing lines is referred to as
the “convex hull” and is the bow-shaped area on the scatter plots. If the scatter point15

moves into any area that is not the convex hull, the mixing that the scheme intro-
duces is unphysical unmixing. Following Lauritzen and Thuburn (2012) this unmixing is
categorized into two types (for graphical illustration see Fig. C1 in LSPT2012): range-
preserving unmixing that is unmixing within the range of the range of the initial condi-
tion. Note that on the scatter plots, Figs. 11, 12, 13, and 14, only the upper part of the20

range-preserving unmixing area is marked with solid black lines; the triangular area
below the convex hull also belong to the range-preserving unmixing area and “over-
shooting” that is the remaining area on the scatter plot. When scatter points shift into
the convex hull, the mixing is categorized as “real” mixing.

Associated with each area are mixing diagnostics that quantify the mixing in terms of25

normalized distances from the pre-existing functional curve (Fig. B1 in LSPT2012): `r
for “real mixing”, `u for range-preserving unmixing, and `o for overshooting (for defini-
tions of `i , i = “r”, “u”, “o” see Lauritzen and Thuburn, 2012). Following LSPT2012 the
`i is computed half way through the simulation, t = T/2, when the initial distributions
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are most deformed. As for the filament diagnostic `f the mixing diagnostics `i do not
require any knowledge of the analytical solution. In fact, and contrary to the filament
diagnostic, which relied on the wind field being non-divergent, the mixing diagnostics
can be applied in any flow setting and is hence more generally applicable. For a three-
dimensional extension of this test case see Kent et al. (2013).5

The values for the mixing diagnostics for each scheme are shown in the lower left
corner of each schemes scatter plot. The mixing data are also shown in histogram
format in Fig. 15, where `i has been normalized with CSLAM values to provide a ref-
erence. Before discussing the quantification of the mixing, it is insightful to qualitatively
analyze the scatter data.10

3.5.1 Scatter shape

Scatter points located near the lower-right corner of the convex hull (χ ,ξ) = (1.0,0.1)
are the mixing ratio values making up the extrema of the cosine bells and corre-
lated cosine bells. The opposite extreme of the convex hull (upper left corner (χ ,ξ) =
(0.1,0.892)) contains the majority of the data points as that is where the background15

value is located on the scatter plot. Obviously, diffusive schemes will damp the extrema
which, in terms of the scatter plot, cause scatter points to shift toward the background
scatter point value (0.1,0.892) and away from the lower-right corner of the convex hull.
This is particularly apparent in almost all low resolution (∆λ ≈ 1.5◦) scatter plots for the
shape-preserving version of the schemes in Figs. 11–14 (second column).20

Considering finite-volume schemes at ∆λ ≈ 1.5◦, it is observed that the scatter points
make up a bow shape (except CSLAM-CN5.5). In addition to all being finite-volume
based schemes, shape-preservation is enforced either through FCT or by constraining
the reconstruction function. When the resolution is increased to 0.75◦ (fourth column
in Figs. 11 and 14), most of these schemes no longer have a bow-shaped scatter but25

the lower boundary is curved so that the scatter points “track”/follow the pre-existing
functional curve much more closely with the majority of the scatter points inside the
convex-hull. Some schemes (FARSIGHT-CN1.0 at 0.75◦, ICON-CN0.6 at 0.75◦, MPAS-

5020

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4983–5076, 2013

Results from
standard test case

suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

CN0.8 at 0.75◦, SBC-1.0 at 1.5◦) tend to lift the tail of the scatter data indicating that
some steepening of the gradients is taking place.

If a scheme is not shape-preserving, scatter points may shift outside the convex
hull either into the range-preserving unmixing or overshooting area. Probably the most
detrimental type of unmixing is overhooting unmixing or equivalently range-expanding5

unmixing, which in this experimental setup is manifested by scatter points shifting be-
yond the upper-left corner of the convex hull into the overshooting area. If a scheme
is shape-preserving, no scatter points will be shifted into the overshooting unmixing
area. In other words, the scheme is guaranteed not to expand the range of the initial
condition mixing ratios. Note that non-zero background values have been chosen for χ10

so that a positivity-preserving limiter (positive definite) will not prevent undershooting.
That said, a scheme may still exhibit non shape-preserving behavior inside the range of
the initial conditions that will not be accounted for in `o but rather in `u. As expected, all
unlimited versions of the schemes show overshooting mixing of varying amounts. For
all the finite-volume schemes, the scatter points in the overshooting mixing category15

seem to gather around the extension of the straight line making up the lower boundary
of the convex hull; almost as an extension of the convex hull shape towards the upper
left corner of the scatter plot. The FARSIGHT and CLAW schemes result in a much
different shape that differs from an “extension” of the convex hull shape.

As alluded to above, it is immediately visible in the scatter plots if the “shape-20

preserving” versions of the schemes are strictly shape-preserving. For example,
CAM-FV has slight overshooting mixing even though the dimensionally split appli-
cation of one-dimensional operators are strictly shape-preserving. The overshoot-
ing/undershooting occurs since shape-preservation is not guaranteed in the direction
traverse to the coordinate directions.25

As can be proven mathematically, only schemes that are monotone according to the
definition by Harten et al. (1987) will guarantee that no range-preserving unmixing oc-
curs (Thuburn and Mclntyre, 1997). Unfortunately only first-order schemes are mono-
tone according to this definition (Godunov, 1959). In all schemes where the diffusive
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error is not dominating we indeed see that the shape-preserving schemes produce
range-preserving unmixing.

Quantification of mixing

The quantification of mixing, `i , i = “r”, “u”, “o”, is depicted in Fig. 15 using a histogram.
The purpose of this Figure is to show how `i varies among schemes at the resolu-5

tions 1.5◦ and 0.75◦ as well as to observe how shape-preserving filters affect `i for
each individual scheme. The histogram is ordered according to “minimal” resolution
∆λm (see Sect. 3.2) from high value of ∆λm (left) to low value of ∆λm (right). The

numerical value of `i is normalized with `i for CSLAM with CN5.5 (` (un)
i (CSLAM)) at

resolution ∆λ ≈ 1.5. The reason for a graphical representation of “normalized” data,10

`i/`
(un)
i (CSLAM), rather than `i is to give the reader a reference for the amount of

mixing. The mixing diagnostic is relatively new and numerical values of `i may be less
meaningful to the reader than normalized data. The actual values of `i for a partic-
ular scheme can be found in the scatter plots (Figs. 11, 12, 13, and 14). Schemes
with no data are listed with `i = −1. Note that the spread among the schemes for15

`i/`
(un)
i (CSLAM) spans a large range (for example, at 1.5◦ the total mixing is more

than 20 times the CSLAM reference mixing).
To concisely show the large amount of data, the histograms are stacked so that the

total height of each rectangle is total normalized mixing,

`r

` (un)
r (CSLAM)

+
`u

` (un)
u (CSLAM)

+
`o

` (un)
o (CSLAM)

, (13)20

and the colors show the breakdown into the different categories of mixing. For example,
the histogram for CSLAM-CN5.5 (unlimited) is of exactly height three and each colored
section is height one.

The specific choice of CSLAM for the normalization is motivated by the “minimal” res-
olution, that is, at ∆λ ≈ 1.5◦ the filaments are marginally resolved for CSLAM-CN5.5.25
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The CSLAM scheme performs, in general, a little above average compared to the other
schemes in this collection and it is therefore more suitable for reference purposes
than, for example, the “best” or “worst” performing schemes. In addition it is based
on a traditional finite-volume approach and hence is a suitable benchmark for schemes
based on emerging numerical methods and untraditional designs that wish to compare5

with “traditional” transport formulations. Nevertheless it is noted that similar “traditional”
schemes could also have been used for this purpose.

Mixing diagnostics at fixed resolution and “minimal” resolution

An apparent first question about the histograms in Fig. 15 (upper and middle) is
whether the amount of “real” mixing for the unlimited schemes is decreasing with in-10

creased “minimal” resolution (∆λm), which is used for the ordering of the mixing data. In
general that is the case; there is a general trend for a monotonic decrease in `r going
from left to right in the two histograms shown in Fig. 15. While the relation between
“minimal” resolution and `r is, in general, as expected (the higher ∆λm the smaller `r),
it is perhaps more interesting to focus on the schemes that do not follow this trend and15

potentially provide insights that ∆λm does not. Perhaps the biggest outlier in this en-
semble is UCISOM-CN5.5, which has at least one order of magnitude less real mixing
and unmixing compared to schemes with similar “minimal” resolution. Another “outlier”
is the unlimited HOMME-p6-CN0.13, which has higher levels of `r and `u than schemes
with similar “minimal” resolutions which is due to spurious grid-scale oscillations. HEL,20

like UCISOM, is an outlier and it clearly shows that HEL was specifically designed to
minimize numerical mixing as the mixing diagnostics are much smaller than for scheme
with similar “minimal” resolutions.

In the last row of Fig. 15 the normalized mixing diagnostics at the “minimal” resolution
for the respective schemes is shown. Had ∆λm been a proxy for mixing, all histograms25

would have had the same height. Here the outliers described above are very apparent.
This shows that the amount of numerical mixing varies significantly even though the `2
error norms are the same. This behavior was well described by Thuburn and Mclntyre
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(1997): “shaping two tracer fields the same way does not imply shaping them the right
way”. In other words, the mixing diagnostics emphasize a different aspect of accuracy
than normalized error norms (in this case specified with ∆λm).

Effect of shape-preserving filter on mixing

For all schemes `o is zero or close to zero when the shape-preserving filter is applied5

(as expected). With the exception of SBC-CN5.2 (at ∆λ = ∆λm) all schemes see a re-
duction in `u when using a shape-preserving limiter. Shape-preserving limiters usually
degrade conventional error norms compared to the unlimited scheme. On the contrary,
the “unmixing” diagnostic, which accounts for spurious unmixing, improves.

The effect of shape-preserving filters on “real” mixing varies among the schemes.10

Some schemes see a reduction in `r and some see an increase in “real” mixing com-
pared to the unlimited versions of the schemes.

3.6 Divergent flow experiment

Here we repeat the experiment described in Sect. 3.2 but replace the non-divergent
wind field (used in all prior tests) with the divergent wind field defined in LSPT2012. All15

other settings are the same: time step, cosine bell initial conditions, etc. The purpose
of this test case is to have modelers demonstrate that their scheme is well-behaved
also for divergent flow fields. For some classes of schemes, such as finite-volume
schemes, the coupling between air mass and tracer mass must be considered in di-
vergent flow settings (see, e.g., Sect. 2.1 in Nair and Lauritzen, 2010). Hence this test20

case forces the modeler to consider such coupling that may otherwise not be consid-
ered when the flow is non-divergent. That said, even for the non-divergent flow field,
the non-preservation of a constant mixing ratio could be a result of inconsistent cou-
pling between air and tracer mass (at least for finite-volume type schemes). In addition
to assessing the consistency of the coupling, that accuracy of the coupling between air25

and tracer mass is assessed.
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Normalized error norms (`2, `∞, φmin, φmax) at ∆λ ≈ 1.5 resolutions are shown in
the histogram in Fig. 16. The minimum (φmin) and maximum norms (φmax) are defined
in LSPT2012. Although LSPT2012 also requested these error norms at ∆λ ≈ 0.75 and
∆λ ≈ λm we did not find intriguing insights by analyzing these data and for brevity the
histograms for this data are omitted (the data are available in the supplemental ma-5

terial). Except for CAM-FV and FARSIGHT, the divergent data are ordered similarly
to ∆λm in terms of magnitude (Fig. 3, top). Note that schemes based on FCT limiting
in general improve accuracy when shape-preservation is enforced whereas schemes
based on reconstruction limiting degrade the errors norms.

3.7 Algorithmic considerations10

General properties of the algorithms are given in Table 3. First of all, the width of the
computation halo used to update cell/grid-point value is listed. For example, if only the
immediate neighboring cell-average or grid-point values are used the width of the halo
is one. This width should give an indication of message sizes in parallel compute en-
vironments. The number of communications needed per time step is indicated through15

the number of stages used in the scheme. The minimum number of communications
needed to complete a simulation can, in general, be deduced from the stable time step
limitations of the scheme. Here that is specified in terms of maximum Courant number.
For schemes that are not Courant number limited but rather limited by the shear of
the flow we list “Lipschitz” which refers to the criterion for stability for many trajectory20

algorithms in (semi-)Lagrangian schemes. To indicate possible multi-tracer efficiency,
it is also listed what parts of the algorithm can be reused for each additional tracer. Of
course for a given number of tracers the efficiency is dependent on all parameters in
this table and not just the amount of information that can be reused.
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4 Summary and conclusions

Results from a wide range of schemes that have exercised a recently proposed test
case suite (Lauritzen et al., 2012) are presented and analyzed. It is the purpose of
this paper to provide a catalog of results for an ensemble of state-of-the-art transport
schemes for global atmosphere/ocean modeling as well as to investigate what aspects5

of accuracy different diagnostics assess and their usefulness. This could provide guid-
ance for future transport scheme developers and facilitate their development process.
Below is a list of the different tests and a short summary of what aspects of accuracy
the test/diagnostics shed light on.

4.1 Numerical order of convergence (Gaussian hills initial condition)10

For infinitely smooth initial conditions convergence data are examined in the resolu-
tion range [3◦, 0.3◦]. This range was deliberately chosen so that the fields may only be
marginally resolved at the low resolution end of this resolution range. It was observed
how different scheme converge throughout the resolution range at their formal conver-
gence rate and how other schemes reach asymptotic convergence rates at higher reso-15

lutions. The effect of shape-preserving filters on convergence rates was also examined.
The convergence rates and effect of shape-preserving filters varied significantly among
the schemes that participated in this intercomparison. The greatest reductions in con-
vergence rates were seen for formally high-order schemes for which rates dropped by
several orders to about second-order.20

4.2 “Minimal” resolution (cosine bell initial condition)

To assess absolute errors and to challenge the schemes with a slightly less smooth ini-
tial condition (C1), modelers were asked which resolution was needed to provide solu-
tions at a certain level of accuracy (defined in terms of a root mean square error norm).
This resolution was referred to as “minimal resolution” (∆λm). The range of ∆λ varied25
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from approximately 0.1◦ to more than 2◦. The schemes have been ordered according to
increasing ∆λm when other accuracy diagnostics were depicted as histograms. Doing
that with convergence rates showed no clear relationship between ∆λm and numeri-
cal convergence rates. In fact some of the lowest order schemes performed best with
respect to ∆λm.5

4.3 Ability of the transport scheme to preserve filaments

The filament diagnostic `f(τ) was introduced to quantify how well thin filaments are
preserved. This diagnostic requires the flow to be non-divergent since it relies on the
fact that for a non-divergent flow field the area of the sphere for which the mixing ratio
distribution is above a threshold value τ is invariant. Measure `f quantifies how much of10

the initial condition area, for which the mixing ratio φ is larger than τ, is preserved. By
plotting `f as a function of τ one can examine how gradients are diffused or steepened
and how uniform that damping of gradients is. This test was found particularly useful to
identify how some filters and limiters tend to non-monotonically perturb gradients (e.g.,
“ad hoc” and “a posteriori” filters/limiters).15

4.4 Ability of the transport scheme to transport “rough” distributions

Discontinuous initial conditions were used to expose shape-preserving limiters as most
unlimited schemes produce significant unphysical oscillations (under- and overshoots).
Contour plots were shown for all schemes to easily and visually compare schemes.
Note that the same contour interval and coloring is used for all schemes! This test20

exposes any non-shape-preservation in filters intended to enforce shape-preservation
and how the infinite gradients become finite. It is also directly visible how diffusive the
scheme is.
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4.5 Ability of the transport scheme to preserve pre-existing functional relations
between tracers

This test is used to assess how schemes perturb a pre-existing non-linear functional
relation between tracers and quantifies the mixing that the scheme introduces. The mix-
ing is classified into different categories to quantify the amount of physical realizable5

mixing and spurious unmixing. The shapes of the scatter plots were examined, and
large differences between the schemes have been discovered. Also shape-preserving
limiters affect the scatter shape in different ways. It was observed that minimal res-
olution ∆λm is not necessarily a good proxy for how well a scheme maintains pre-
existing functional relations between tracers. From the results it is quite clear that the10

mixing diagnostics measures a different aspect of accuracy compared to conventional
error norms. In particular, they may be used assess if a shape-preserving filter makes
the solution more physically realizable (overshooting unmixing should be exactly zero,
range-preserving unmixing should decrease) and how much real mixing the filter intro-
duces.15

4.6 Ability of transport scheme to deal with divergent flows

To force the modeler to consider density of air and tracer mass coupling (at least for
finite-volume type schemes) a divergent flow field is considered.

Appendix A

Exact experimental settings20

A1 CAM-FV

CAM-FV uses the regular latitude-longitude grid and as such the number of zonal grid
points is 360/∆λ. For the 1.5◦ grid resolution time steps of T/2400 and T/480 are used
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for the CN≈ 0.2 and CN≈ 1.2 simulations, respectively. For the 0.75◦ grid resolution
the time steps T/7200 and T/960 are used for the CN≈ 0.2 and CN≈ 1.2 simulations,
respectively.

There are no explicit diffusion parameters in the CAM-FV transport scheme. How-
ever, there is implicit diffusion from the PPM algorithm used with the Lin-Rood scheme5

(Lin and Rood, 1996). CAM-FV also makes use of a filling algorithm to ensure positivity.

A2 CAM-SE

The resolution in CAM-SE is specified through the number of elements (NE) in each
coordinate direction on one cubed-sphere panel and the number of quadrature points
(NP) in each coordinate direction of an element. The average resolution (in degrees)10

near the Equator is

∆λ =
90◦

NE(NP−1)
. (A1)

In CAM-SE NP is set to 4.
The hyperviscosity coefficients are 3.8×1016 m4 s−1, 3.8×1015 m4 s−1, 3.8×

1014 m4 s−1, and 1.8×1013 m4 s−1 for resolutions NE = 10 (∆λm = 3◦), NE= 20 (∆λm ≈15

1.5◦), NE= 40 (∆λm ≈ 0.75◦), and NE= 100 (∆λm = 0.3◦), respectively. The hypervis-
cosity coefficients are computed so that at NE= 30 the coefficient is 1.0×1015 m4 s−1

and scales with resolution as

ν(∆λ) =
(
∆λ
1◦

)η

1015 m4 s−1, (A2)

where η ≈ 3.2 was chosen to match CAM-SE default settings which is similar to values20

used in the literature (e.g. Takahashi et al., 2006). At resolutions ∆λ = 3.0◦,1.5◦,0.75◦

and 0.30◦ the time step is ∆t = 900 s, 450 s, 225 s and 90 s, respectively.
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The idealized test cases are implemented in CAM-SE using the offline_dyn op-
tion. In that configuration the winds are constant throughout the Runga–Kutta time
stepping and not updated at every stage (as is done in HOMME).

A3 CCSRG

CCSRG is implemented on a latitude-longitude reduced grid. The presented CCSRG5

results are obtained on the grids with 20 % reduction (20 % less points than on a regu-
lar latitude-longitude grid with the same resolution at the Equator). The grids are con-
structed with the algorithm of Fadeev (2013). The grid reduction starts from approx-
imately 45◦ N/S (see Tolstykh and Shashkin, 2012, for grid statistics and pictures).
Semi-analytical trajectories (Nair and Lauritzen, 2010) are used. For the 1.5◦ and 0.75◦

10

resolutions a non-dimensional time step of T/110 and T/220, respectively, is used for
the CN ≈ 5.7 simulations. The time steps T/600 and T/1200, respectively, are used for
CN ≈ 1.0 runs.

A4 CLAW

The sphere grid used for the computations is described in Calhoun et al. (2008) and15

is based on a novel mapping which transforms a single logically rectangular uniform
Cartesian grid to the sphere. Our grid is similar to the cubed-sphere grid in that it is
made up of N ×N grid patches stretched to fit the sphere. Whereas the cubed-sphere
uses six square patches, our grid consists of two square patches, one for each hemi-
sphere, as shown in Fig. A1. For all tests, we used 2N ×N grids with resolutions in the20

range N = (30,60,120,240,480,960), corresponding to angles
λ = 90/N = (3.0◦,1.5◦,0.75◦,0.375◦,0.1875◦,0.09375◦). For the tests involving a mini-
mum effective angle, we used N = 640 (λeff = 0.28125) for the shape preserving case
and N = 960 (λeff = 0.1875) for the unfiltered case. To generate the sphere grid, we map
the computational domain [−3,1]× [−1,1] using a simple mapping T (ξ,η) described in25
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Calhoun et al. (2008). The resulting finite volume mesh cells are nearly uniform in size.
The computational mesh width for a given resolution are ∆x = ∆y = 2/N.

Clawpack uses a variable time stepping scheme and chooses time steps based on
a maximum wave speed, cell area and a desired CN number. After each time step, a
maximum CN number αmax is computed as5

αmax = ∆t∆x max
i ,j

(
|ui j |, |vi j |

)
Ai j

(A3)

where Ai j is the area of mesh cell i j , ∆t is the time step just taken, ui j , vi j are speeds
at the x and y faces of mesh cell i j , and ∆x is the (constant) computational mesh
width. Under the assumption that the wave speeds do not change dramatically from
one time step to the next, we can satisfy a desired CFL condition ᾱ in the next time10

step by choosing a new ∆t as

∆tnew =
ᾱ

αmax
∆t. (A4)

For the results presented here, we set ᾱ = 0.95. Clawpack does not make use of any
explicit diffusion parameters or artificial viscosity.

The Fortran code and Python scripts for running the benchmark examples, and15

Matlab scripts for visualization can all be downloaded from the author’s webpage
(http://math.boisestate.edu/~calhoun/www_personal/research/NCAR_workshop/).

A5 CSLAM

CSLAM is implemented on an equi-angular cubed-sphere grid. The average resolution
at the Equator is given by20

∆λ =
90◦

Nc
, (A5)

5031

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://math.boisestate.edu/~calhoun/www_personal/research/NCAR_workshop/


GMDD
6, 4983–5076, 2013

Results from
standard test case

suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where Nc ×Nc is the number of control volumes on each face/panel of the cube. Semi-
analytical trajectories are used (Nair and Lauritzen, 2010). The diagnostics do not
change significantly when using non-analytic trajectories (C. Erath, personal commu-
nication, 2013). For the 1.5◦ and 0.75◦ resolutions a non-dimensionless time step of
T/120 and T/240 was used for the CN≈ 5.5 simulations, respectively. For CN≈ 1.05

runs the time steps were T/600 and T/1200, respectively. The shape-preserving filter
is the fully two-dimensional limiter by Barth and Jespersen (1989) that scales the fully
two-dimensional reconstruction polynomial of degree two so that its extrema are within
the range of the surrounding cell averaged values.

A6 FARSIGHT10

See White and Dongarra (2011) for scheme details.

A7 HEL(-ND)

HEL and HEL-ND use the same settings as for CSLAM. The filter parameters are the
same in HEL and HEL-ND: both are run without filters in the underlying first-order
version of CSLAM. The number of Lagrangian parcels are equal to the number of15

grid cells, and the parcels “survive” for the total duration of the simulation. They are
initialized at the grid cell centers with the same area and value as the corresponding
Eulerian grid cell.

A8 HOMME

HOMME and CAM-SE use the same numerical model with only difference in the choice20

of order p = NP −1 of polynomial basis functions, hyperviscosity coefficient ν, and hy-
perviscosity scaling η. The resolution is obtained via Eq. (A1). For HOMME simulations,
we choose p = 3 because of its common use (see CAM-SE default parameters) and
p = 6 to demonstrate performance for the higher-order scheme. If one uses NE as in
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Eq. (A1) for the p = 3 setting, then NE /2 for p = 6 corresponds to the equal equatorial
resolutions in both cases.

The fully collocated formulation of the spectral element method used in HOMME and
CAM-SE has a grid-scale computational mode which must be controlled with some
type of stabilization (Ainsworth and Wajid, 2009). Here for stabilization we use well-5

tested hyperviscosity (Dennis et al., 2012). In practice, hyperviscosity coefficient ν is
tuned for one resolution ∆λ0. Then for other resolutions the hyperviscosity coefficient
is calculated similarly to Eq. (A2). Note that ν is not tuned for every single simulation
in this study. In more detail, after p is defined, we specify scaling η and whether the
shape-preserving limiter is used. For the reasons explained below (Sect. A8.1), if the10

limiter is off, we set η = p+1. Limited simulations are configured with η = 3.0 for p = 3
and η = 4.0 for p = 6. Next, the best ν0 is chosen for one simulation with resolution
∆λ0. For this, we use standard errors, mixing diagnostics, and filaments preservation
diagnostics. Finally, for any given resolution ∆λ,

ν(∆λ) = ν0

(
∆λ
∆λ0

)η

.15

Contrary to the CAM-SE setup, the winds are updated in time at each stage of the
Runga–Kutta time stepping.

A8.1 More on hyperviscosity scaling

In case of tracer advection, different amounts of artificial dissipation affect performance20

of the scheme in various ways. For example, with η = p+1, the theoretical spatial
convergence order is p+1. If η < p+1, convergence rates are expected to be of order η.
Bigger amounts of hyperviscosity raise standard errors but improve preservation of pre-
existing functional relations and filaments preservation diagnostics to a certain degree.
It is natural to choose η = p+1 to recover the higher order method and demonstrate its25

properties; to explore the scheme in applications, smaller values of η should be used.
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In addition, the use of the shape-preserving limiter leads to smaller orders of spatial
convergence (Guba et al., 2013). Therefore, for the unlimited simulations we set η =
p+1 to maintain characteristics of the higher-order method. For the limited simulations,
we take η = 3.0 for p = 3 and η = 4.0 for p = 6. We call the former “convergence regime”
and the latter “mixing regime”. Chosen parameters are summarized in Table A1.5

A9 ICON-FFSL

The ICON grid is derived from a spherical icosahedron which is made up of 20 equi-
lateral spherical triangles. This base grid is further refined in a multi-step procedure,
until the desired resolution is reached. In a first step, the root division step, the edges
of each base triangle are divided into n equal sections (termed Rn). Connecting the10

new edge points by great circle arcs yields n2 spherical triangles within the original
triangle. This step is followed by k bisection steps (termed Bk), where each triangle is
consecutively subdivided into 4 smaller triangles. This results in a so called RnBk grid.
The intermediate grids and the final grid are further optimized using spring dynamics
(Tomita et al., 2001), with the spring coefficient set to β = 0.9. For a given resolution15

RnBk, the total number of cells can be computed from

nc = 20n2 4k

The average resolution at the equator was computed as follows:

∆λave = 360◦ ∆x
2πre

,20

where ∆x is the average distance between neighboring cell centers and re is the earth
radius. In Table A2 the applied grids are listed together with their effective resolutions
and applied time steps. The wind vector used to define the swept flux-areas is com-
puted by evaluating the analytical wind vector at the center of the cell side at time25

n+1/2.
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A10 LPM

The Lagrangian particle method relies on the flow map, x(α ,t), giving the trajectory of
fluid particles, where α is a Lagrangian parameter, t is time, and x is position (Chorin
and Marsden, 2000; Cottet and Koumoutsakos, 2000). The flow map satisfies

D
Dt

x(α ,t) = u(x(α ,t),t), x(α ,0) = α , (A6)5

where u is the given fluid velocity, and the scalar is advected along particle trajectories,

D
Dt

φ(x(α ,t),t) = 0. (A7)

The sphere is represented as a union of disjoint panels, S = ∪N
i=1Pi . We present

results in which the panels are either the quadrilaterals of a cubed-sphere mesh, or the10

triangles of an icosahedral triangular mesh. The mesh corresponds to a discretization
of the Lagrangian parameter. The scheme tracks two sets of particles, at the centers
and vertices of the panels, indexed by j = 1, . . . ,M +N, where N is the number of
panels and M is the number of vertices. Each particle has a Lagrangian parameter
value, α j , position, xj (t), and scalar value φj . We employ Cartesian coordinates for15

the Lagrangian parameter and position. The particles are advected in the flow,

d
dt

xj (t) = u(xj (t),t), (A8)

using 4th order Runge–Kutta, with initial condition xj (0) = α j . The total scalar is com-

puted by I(φ) ≈
∑N

i=1φiAi , where φi is the scalar value at the center of panel Pi and Ai
is its area. To maintain accuracy, a remeshing scheme is applied at regular intervals.20

At a remeshing step, say t = trm, new particle data are defined, (x̂j , α̂ j ,φ̂j ), where x̂j is
a grid point on either the cubed-sphere or icosahedral mesh, α̂ j is the corresponding
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Lagrangian parameter satisfying x̂j = x(α̂ j ,trm), and φ̂j =φ(α̂ j ,0) is the scalar value.
To determine α̂ j , the panel of the distorted mesh containing x̂j is located and α̂ j is
computed from the data in that panel by linear interpolation. Results reported here
remesh every twenty time steps. The scheme is under development and further details
will be reported in Bosler (2013).5

Note that the remeshing scheme interpolates the Lagrangian parameter rather than
the scalar. Hence LPM avoids introducing overshoots and undershoots in the scalar,
and there is no artificial mixing (the error norms φmax and φmin are zero throughout all
test cases, and the mixing errors for test case 5 are also zero).

Note also that mesh size is not well-defined since the particles are moving, so10

instead we report the average angular variation ∆α in the Lagrangian parameter.
Discretizations with N = 5120,20 480,81 920,98 304 correspond to ∆α = 4.33◦, 2.16◦,
1.08◦,0.65◦. The time step ∆t = 0.0125 was used for all computations; this value en-
sures that the time discretization error is smaller than the spatial discretization error.
Using the test case CN definition with ∆α , we have CN= 0.54, 1.08, 2.16, 3.59.15

A11 MPAS

MPAS (Skamarock et al., 2012) uses the transport scheme described in Skamarock
and Gassmann (2011) implemented on spherical centroidal Voronoi meshes (Ringler
et al., 2011). The meshes used in these tests are generated by subdividing icosahedral
meshes, that is, the Voronoi meshes are composed of hexagons plus 12 pentagons.20

The scheme uses a 3rd-order Runge-Kutta time integration scheme and a finite-volume
flux divergence calculation using Eq. (11) in Skamarock and Gassmann (2011) with
the upwinding parameter β = 0.25. It uses the FCT shape-reserving limiter described
in Zalesak (1979); no additional explicit diffusion is used in these tests. The Voronoi
meshes described as 1.5◦, 0.75◦ and 0.67◦ refer to the average cell-center spacing25

relative to an arc length at the equator, and these meshes use 21506, 86018 and
107522 cells, respectively, to tile the sphere. The tests are performed using CN ∼

5036

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4983/2013/gmdd-6-4983-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4983–5076, 2013

Results from
standard test case

suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0.8, which corresponds to 768, 1536 and 1800 time steps to complete the test-case
integrations on the 1.5◦, 0.75◦ and 0.67◦ meshes; for reference this corresponds to time
steps of 1350 s, 675 s and 576 s on the earth-radius sphere. For the divergent flow test
case second-order centered fluxes are used for density.

A12 SBC5

The SBC scheme is implemented on a regular latitude-longitude grid where the number
of zonal grid point is nx = 360/∆λ and the corresponding truncation wave number is

ntrunc = nx/2−1. (A9)

Thus, the linear grid is used (rather than the quadratic grid where ntrunc= nx/3−1).
For the 1.5◦ simulations the truncation wave number is TL119 and dimensionless10

time step size is 5/120 and 5/600 for CN= 5.2 and CN= 1.0, respectively. Similarly,
for 0.75◦ the truncation wave number is TL239 and ∆t is 5/240 (CN= 5.2) and 5/1200
(CN= 1.0). The minimal resolutions, ∆λm = 2.25◦ (for CN= 5.2) and ∆λm = 2.25◦ (CN=
1.0), the truncation wave number is TL79 and TL159, respectively, with ∆t = 5/80 and
∆t = 5/800.15

A13 SFF-CSLAM

SFF-CSLAM uses an equiangular gnomonic cubed-sphere projection. The scheme is
available for either a third-order or fourth-order reconstruction, in both cases using a
finite-volume stencil of width 5. The 1.5◦ and 0.75◦ grids correspond to 60×60 and 120×
120 elements per cubed-sphere panel. The equivalent resolution runs at 1.05◦ (fourth-20

order reconstruction) and 0.92◦ (third-order reconstruction) correspond to 86×86 and
98×98 elements per cubed-sphere panel. The time steps at 1.5◦ and 0.75◦ (at CN 0.8)
are T/720 and T/1440, respectively. As with CSLAM, the Barth and Jespersen (1989)
filter was used for positivity preservation. No additional diffusive terms were added.
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A14 SLFV-SL/ML

A14.1 Spherical grid generation

The schemes SLFV-SL and SLFV-ML are implemented on a spherical icosahedral-
hexagonal grid (Sadourny et al., 1968). We start with a spherical icosahedron, consist-
ing of 20 equilateral spherical triangles. To achieve the desired resolution the edges5

of these 20 spherical triangles are divided into N equal parts. Connecting these new
points with great circle arcs results in 20N 2 spherical triangles. To construct the dual
grid of the spherical triangular grid, we connect the centroids of the triangles with great
circle arcs. The resulting dual grid consists of spherical hexagons except 12 pentagons
corresponding to the 12 starting points of the spherical icosahedron. The total number10

of grid cells for resolution N is NR = 10N 2 +2. For the resulting dual grid, the cen-
troids of grid cells do not coincide with the vertices of the spherical triangular grid.
Indeed the cell-averaged value of a function is a second-order accurate approximation
of its pointwise value taken at the cell centroid. This motivates one to employ some grid
adjustment or grid optimization to design higher order finite volume schemes. Instead15

of using any sophisticated optimization (for instance spring dynamics or Lloyd’s algo-
rithm), we use centroids of the grid cells as our computational points and adjust the
triangular mesh accordingly. In fact, this grid correction is equivalent to a single step
Llyord’s optimization.

For a unit sphere, the length of a basic spherical triangle is ω = 1.1071. The arc20

length at a resolution N is calculated as ω
N . The average grid spacing at the equator

∆λ is calculated as:

∆λ =
2π
5N

.

We presented results of all the test cases for fixed maximum Courant number (CN=25

0.8). Table A3 lists the icosahedral resolution N , average grid spacing at the equator
∆λ and time step of the simulation ∆t.
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The wind vector used to approximate the flux-area is computed by evaluating the
analytical wind field at the mid point of the cell side at time t = n×∆t. For shape-
preservation SLFV-SL and SLFV-ML employ a multi-dimensional extension of Van
Leer-type slope limiter discussed in Dukowicz and Kodis (1987).

A14.2 SLFV scheme description5

Since there is currently no publication documenting the SLFV schemes, a brief de-
scription is given here. The schemes are based on the flux-form continuity equation (1)
integrated over a control volume Ω

A(Ω)
∂ρφ
∂t

= −
∮
Γ

ρφV dΓ. (A10)

Here ρφ is the average of ρφ over a control volume Ω , Γ is the boundary of the10

control volume and A(Ω) is the area of the control volume.

SLFV-SL

In Eq. (A10), decomposing the boundary Γ into Nk edges and integrating Eq. (A10)
with respect to time, one gets

A(Ω) (ρφ
t+1

k −ρφ
t
k) = −

Nk∑
i=1

〈ρφV〉i · n̂i ∆t dΓ (A11)15

' −
Nk∑
i=1

〈ρ〉i 〈φ〉i V
n+ 1

2

k,i · n̂i ∆t dΓ. (A12)

Here 〈ρφ〉i is the value of ρφ averaged in time from t to t+∆t and over the i th edge

composing Γ. V
n+ 1

2

k,i is the velocity field at time tn +
∆t
2 evaluated at the midpoint rk,i of
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the i -th edge of cell k. Approximation Eq. (A12) is second-order accurate in time and
in space. Finally, 〈φ〉 is approximated in a semi-Lagrangian fashion

〈φ〉 =φ
(
t, rk,i −V

n+ 1
2

k,i

∆t
2

)
. (A13)

This approximation is second-order accurate in space and time (Miura, 2007). A

similar formula is used for 〈ρ〉. In practice we use Vn
k,i instead of V

n+ 1
2

k,i which introduces5

some temporal error for a time-varying velocity field.

SLFV-ML

In Eq. (A10), decomposing the boundary Γ into Nk edges, we get a semi-discrete
equation:

A(Ω)
∂ρφ
∂t

= −
Nk∑
i=1

ρiφiVi · n̂i ∆t dΓ. (A14)10

Here ρi , φi and Vi are the values of ρ, φ and velocity vector V over i th edge of Γ at
time t. We evaluate these edge quantities at the midpoint of the corresponding edge to
get a second-order spatial approximation at time t.

The semi-discrete Eq. (A14) is then marched forward in time using the Runge–Kutta
third-order total variational diminishing time integration scheme. This choice of time15

integration helps to damp the unphysical oscillation due to time discretization.

A14.3 Linear reconstruction

To evaluate the right-hand side of Eq. (A13) and Eq. (A14) we define a linear recon-
struction of ρ and φ in each control volume:

ρk(r ) = ρ+∇kρ · (r − rk) , (A15)20

φk(r ) = φ+∇kφ · (r − rk) , (A16)
5040
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respectively, where rk is the centroid of the kth control volume. Indeed the area average
of a quantity coincides with the value of that quantity at the centroid of the control
volume, with second-order accuracy in space. As a consequence

φ ' ρφ

ρ

with the same accuracy.5

To compute the discrete gradient ∇kφ of any scalar field φ for a cell k, we work in
the plane tangent to the cell centroid rk . Vectors in the tangent plane are decomposed
on a local basis (ex, ey ) pointing West and North. We project the centroids of the
neighboring cells rk, i to the tangent plane from the point diagonally opposite to rk . The
projected centroids define 5 or 6 triangles

(
rk , P (rk, i ), P (rk, i+1)

)
, for each of which we10

compute a gradient ∇k,iφ defined by its components ∇x
k,iφ and ∇y

k,iφ in local x and y
directions which we obtain by solving:

∇x
k,iφd i

x +∇y
k,iφd i

y = φi −φ0, (A17)

∇x
k,iφd i+1

x +∇y
k,iφd i+1

y = φi+1 −φ0, (A18)

where d
i = P (rk, i )− rk is the position vector of the projected neighboring centroid rk, i15

relative to rk and φi (resp. φ0) is the value of the scalar field φ at rk, i (resp. rk).
The gradient ∇k,iφ are then averaged to get ∇kφ. We have verified that this yields a
first-order approximation of the gradient on non-optimized grids.

A14.4 Slope limiting

In general this gradient construction will not lead to a positivity-preserving scheme. For20

this we use a multidimensional extension of Van Leer-type slope limiter (Dukowicz and
Kodis, 1987). In Eqs. (A15)–(A16) we replace the gradient ∇φ by a modified gradient
∇̃kφ = αk∇kφ. The limiting coefficient αk is determined for each cell k such as to
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enforce local monotonicity. Dukowicz and Kodis (1987) show that a possible choice of
αk is

αk = min(1,αmin
k ,αmax

k ) (A19)

where

αmax
k = max

{
φ̄max

k − φ̄k

φkmax
k − φ̄k

}
, (A20)5

and

αmin
k = min

{
φ̄min

k − φ̄k

φkmin
k − φ̄k

}
. (A21)

Here φ̄max
k ,φ̄min

k are the maximum and minimum values of φ̄ in the neighboring cells,

and φkmax
k ,φkmax

k are the maximum and minimum values of φ in cell k according to
the non-slope-limited linear reconstruction Eq. (A16).10

For each edge entering the sum on the right-hand side of Eq. (A12) (resp. Eq. A14),

the reconstruction used to evaluate φ
(
t, rk,i −V

n+ 1
2

k,i
∆t
2

)
(resp. φi ) is the one based on

the control volume situated upwind to the edge. We present results obtained with a CN
equal to 0.8 but the scheme seems working up to maximum CFL equal to 1.0.

A15 TTS-I15

The TTS-I scheme operates on a fully Lagrangian mesh. The initial grid is a centroidal
Voronoi tessellation of the sphere and its resolution is given in terms of number of
polygons. The Voronoi grid is then deformed by the flow and modified by a curvature-
guard algorithm (CGA) that splits and merges edges according to deformation criteria.
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The specific configuration of the CGA is given in Table 1 in Dong and Wang (2013).
For display and computation of diagnostics (and coupling with physical parameteri-
zations in full model setup) a regular latitude-longitude grid is used. For the experi-
ments two resolution configurations are chosen for the two meshes. For ∆λ ≈ 1.5◦ and
∆λ ≈ 0.75◦ the number of polygons on the initial Voronoi grid is 10 000 and 20 000, re-5

spectively. The associated regular latitude-longitude grid spacings are 1.5◦ and 0.75◦. A
non-dimensionless time step of T/300 and T/600 was used for the coarser and higher
resolutions, respectively. Trajectories are computed using fourth-order Runga–Kutta
integration.

A16 UCISOM(-CS)10

UCISOM uses a regular latitude-longitude grid, and UCISOM-CS uses a gnomonic
cubed sphere with resolution defined as in Eq. (A5). The CN≈5.5 simulations use
non-dimensional time steps ∆t = 5/T where T = 120 and T = 240 for 1.5◦ and 0.75◦

resolutions, respectively; for CN≈1.0, the time steps are T = 624 and T = 1248; and
for CN≈0.8, the time steps are T = 780 and T = 1560. The mass flux across grid edges15

is integrated exactly in latitude or longitude from the equations for the regular latitude-
longitude grid, and with 9-point Romberg integration for the cubed-sphere grid (pre-
serves mass convergence in each grid cell to single-precision accuracy or better). The
flux over each time step is integrated analytically from the equations. UCISOM uses a
single forward time step for any CN value, and is thus only first-order accurate in time20

(i.e., forward Euler). The rate of convergence with increasing resolution (Figs. 1–2) is
actually the convergence with time step, as the errors at differing spatial resolution run
at the same time step (i.e., differing CN) are similar.

UCISOM can be run with a range of shape-preserving options (limiters L), and these
range from no action (L = 0, allows for transport of negative tracer in some circum-25

stances), positive definite (L = 1, tracer moments adjusted before transport to ensure
no negative tracer anywhere within the cell along the transported direction), mono-
tonic within a cell (L = 2, before transport, the moments in the transported dimension
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are adjusted to have a positive-definite, monotonic distribution), and the most rigorous
shape preserving (L = 3, the moments in the daughter cell are adjusted after transport
to ensure that the tracer distribution throughout the cell is limited by the minimum and
maximum tracer values using the moments in the parent cell(s)). All calculations shown
here used L = 2.5

While limiter L = 3 can eliminate ripples on both sides of sharp gradients, it leads
to a linear decline of the peak tracer abundance, even when the tracer has a large
constant plateau that is resolved by many cells, as in the slotted cylinder. A simple
test of UCISOM is done with a constant plateau of tracer value (110 tracer units in
12×12 cells) embedded in a background (10 units on a cylinder of circumference10

32 cells) and moving diagonally round the cylinder. After several rotations, the tracer
distribution stabilizes (along with the ripples and `2-error) at a preferred shape and
then evolves very slowly. Overshoot ripples in the tracer plateau are +12 % for L = 0
or L = 1, 5 % for L = 2, and < 0.2% for L = 3. (Treatment of cross term moments, xy ,
produces some ripples.) Undershoot ripples in the background near the plateau are15

−8 %, −2.5 % and < 0.2 %, respectively. Only with L = 3 the entire 12×12 block decays
uniformly, −1 % per revolution for CN≈ 1. The cases in this paper are equivalent to
many revolutions in this test case, and results for UCISOM look like some of the worst
cases in Fig. 5, with peak tracer < 0.8. After results were completed for this study, a
variant of L = 3 was tested, whereby the minimum-maximum criteria for the daughter20

cell is relaxed: the tracer is allowed to overshoot the parent min-max by a percentage.
For large allowances (i.e., 3 %) the L = 3 case begins to look like L = 2 with +4 %
and −1 % ripples, no decay of the plateau values, and no increase in `2 error over
successive rotations. For small overshoot allowance (0.2 %), however, we regain some
of the desired properties (i.e., the ripples are smaller, +2.5 % and −1 %) but the plateau25

tracer does not decay. In general the `2 errors are similar for L = 0,1,2, but increase
for L = 3 except for CN< 0.2.
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Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/6/4983/2013/
gmdd-6-4983-2013-supplement.zip.
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Table 1. A list of acronyms (first column), full names (second column), documentation (third
column), implementation grid (fourth column), and formal order of accuracy (fifth column) for
schemes in this paper.

scheme full scheme name documentation implementation grid formal
acronym order

CAM-FV Community Atmosphere Model – Lin and Rood (1996) Regular latitude-longitude 2
Finite-Volume Lin (2004)

CAM-SE Community Atmosphere Model – Dennis et al. (2012) Gnomonic cubed-sphere 4
Spectral Elements Neale et al. (2010); Guba et al. (2013) (quadrature grid)

CCSRG Conservative cascade scheme for Nair et al. (2002) Reduced latitude-longitude 3
the reduced grid Tolstykh and Shashkin (2012)

CLAW Wave propagation algorithm LeVeque (2002) two-patch sphere grid 2
on mapped grids

CSLAM Conservative Semi-LAgrangian Lauritzen et al. (2010) Gnomonic cubed-sphere 3
Multi-tracer scheme Erath et al. (2013)

FARSIGHT Departure-point interpolation White and Dongarra (2011) Gnomonic cubed-sphere 2
scheme with a global mass fixer

HEL Hybrid Eulerian Lagrangian Kaas et al. (2013) Gnomonic cubed-sphere 3
HEL-ND HEL – Non-Diffusive Kaas et al. (2013) Gnomonic cubed-sphere 3
HOMME High-Order Methods Dennis et al. (2012) Gnomonic cubed-sphere 4 & 7

Modeling Environment Guba et al. (2013) (quadrature grid)
ICON-FFSL ICOsahedral Non-hydrostatic model – Miura (2007) Icosahedral-triangular 2

Flux-Form semi-Lagrangian scheme
LPM Lagrangian Particle Method Bosler (2013) Icosahedral-triangular 2
MPAS Model for Prediction Across Scales Skamarock and Gassmann (2011) Icosahedral-hexagonal 3
SBC Spectral Bicubic interpolation scheme Enomoto (2008) Gaussian latitude-longitude 2
SFF-CSLAM Simplified Flux-Form CSLAM scheme Ullrich et al. (2013) Gnomonic cubed-sphere 3&4
SLFV-SL Semi-Lagrangian type Slope Limited Miura (2007) Icosahedral hexagonal 2
SLFV-ML Slope Limited Finite Volume scheme N/A (see Appendix A14) Icosahedral hexagonal 2

with method of lines
TTS-I Trajectory–Tracking Scheme – Interfaces Dong and Wang (2013) Spherical centroidal 1

Voronoi tessellation
UCISOM UC Irvine Second-Order Moments scheme Prather (1986) Regular latitude-longitude 2
UCISOM-CS UC Irvine Second-Order Moments scheme – Gnomonic cubed-sphere 2
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Table 2. A list of shape-preserving filter information: scheme acronym (first column), scheme
category (second column), filter category (third column), is the scheme strictly shape-
preserving in terms of not expanding the range of the initial data (forth column), and what
is the reason for non shape-preservation (if applicable, fifth column).

scheme “category” shape-preserving strictly shape- reason for “non-strict”
acronym filter category preserving shape-preservation

CAM-FV flux-form finite-volume dimensionally split no 1-D limiter
CAM-SE spectral element Quasi-monotone limiter yes -

(series-expansion) based on minimization;
hyperviscosity

CCSRG semi-Lagrangian finite-volume – – –
CLAW wave-propagation wave-limiter no 1-D wave limiter
CSLAM semi-Lagrangian finite-volume Slope-limited yes –

Rigorous flux
FARSIGHT grid-point semi-Lagrangian Fixer yes –
HEL semi-Lagrangian finite-volume Lagrangian fixer yes –
HEL-ND semi-Lagrangian finite-volume Lagrangian fixer yes –
HOMME spectral element Quasi-monotone limiter yes –

(series-expansion) based on minimization;
hyperviscosity

ICON-FFSL flux-form finite-volume FCT yes –
LPM fully Lagrangian Lagrangian yes –
MPAS flux-form finite-volume FCT yes –
SBC semi-Lagrangian grid-point fixer yes –
SFF-CSLAM flux-form finite-volume Slope-limited no “extrapolation” in

simplified flux simplified flux
SLFV-SL flux-form finite-volume Slope-limited no “extrapolation” in

simplified flux simplified flux
SLFV-ML flux-form finite-volume Slope-limited no “extrapolation” in

simplified flux simplified flux
TTS-I Lagrangian finite-volume none needed yes –
UCISOM flux-form finite-volume Moment limiting no shape-preserving constraints

relaxed
UCISOM-CS flux-form finite-volume Moment limiting no shape-preserving constraints

relaxed
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Table 3. Data potentially relevant for computational efficiency. Columns are: scheme acronym,
width of halo or computational stencil to update tracer value, number of stages for multi-step
time stepping algorithms (right-hand side evaluations), CN time step restriction (“Lipschitz” is
a flow-dependent time step limitation), and what information can be reused for each additional
tracer.

scheme width of halo # stages max. CN reuse

CAM-FV 3 1 Lipschitz trajectories
CAM-SE 1 3 0.26 none
CCSRG 2 1 Lipschitz weights
CLAW 2 1 1.0 none
CSLAM 3 1 Lipschitz weights
FARSIGHT 2 1 Lipschitz weights
HEL 3 1 Lipschitz weights
HEL-ND 3 1 Lipschitz weights
HOMME-p3 1 3 0.26 none
HOMME-p6 1 3 0.13 none
ICON-FFSL 2 1 0.8 weights
LPM 1 4 Lipschitz trajectories
MPAS (sp) 2 3 1.0 (1.7) none
SBC (sp) 1(9) 1 Lipschitz trajectories
SFF-CSLAM3 3 1 1 weights
SFF-CSLAM4 4 1 1 weights
SLFV-SL 2 2 1 coefficients for gradients
SLFV-ML 2 2 1 coefficients for gradients
TTS-I 1 1 Lipschitz trajectories, weights
UCISOM 3 1 Lipschitz none
UCISOM-CS 3 1 Lipschitz none
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Table A1. HOMME hyperviscosity parameters.

Reason p Limiter Resolution Hyperviscosity ν scaled ∆t
coefficient ν [m4 s−1] as [s]

Convergence 3 No limiter 1.5◦ 6.6×1014 4th order 432
Convergence 3 No limiter 0.75◦ 4×1013 4th order 216

Mixing 3 Optim. limiter 1.5◦ 3.2×1015 3th order 432
Mixing 3 Optim. limiter 0.75◦ 4×1014 3th order 216

Convergence 6 No limiter 1.5◦ 1×1014 7th order 216
Convergence 6 No limiter 0.75◦ 7.8×1011 7th order 108

Mixing 6 Optim. limiter 1.5◦ 1.3×1014 4th order 216
Mixing 6 Optim. limiter 0.75◦ 8×1012 4th order 108

For Eff. Res.

Convergence 3 No limiter 0.9◦ 8.9×1013 4th order 259.2
Mixing 3 Optim. limiter 0.8◦ 4.7×1014 3th order 230.4

Convergence 6 No limiter 1.7◦ 2.1×1014 7th order 240
Mixing 6 Optim. limiter 1.2◦ 4.6×1013 4th order 172.8
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Table A2. Target resolution in degrees (column 1), grid identifier (column 2), average resolution
∆λave (column 3), total number of cells nc (column 4), and the time step applied to achieve a
Courant number of CN≈ 0.4 (column 5).

target resolution [◦] applied grid ∆λave [◦] nc ∆t for CN≈ 0.4 [s]

1.5 R13B1 1.54 13 520 720
0.75 R13B2 0.77 54 080 360
∆λm R3B5 0.416 184 320 192
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Table A3. Icosahedral resolution N , average grid spacing at the equator ∆λave and time step
∆t used for schemes SLFV-SL and SLFV-ML.

N Approximate ∆λave NR Time step (∆t)

24 3.0◦ 5762 0.01285
48 1.5◦ 23 042 0.00642
96 0.75◦ 92 162 0.00321

192 0.375◦ 368 642 0.00161
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Fig. 1. Convergence plots for `2 (first and third rows) and `∞ (second and fourth rows) for the unlimited (first column) and shape-preserving
(second column) versions of schemes based on cubed-sphere and two-patch grids. Optimal convergence rates are based on linear least-square
regressions to this data. Thin grey lines on each plot show slopes of second- and third-order convergence (top and bottom, respectively).
Initial conditions are the infinitely smooth Gaussian hills and the normalized error norms are computed at time t=T .

supplemental material in LSPT2012 to perform the least-
squares regression). Note that the resolution range has de-
liberately been chosen to include a range [∆̃λ,3◦], where
∆̃λ> 0.1◦. With the 3◦ grid spacing the mixing ratio dis-
tributions may be marginally resolved. The main interest

is not asymptotic convergence rates, which should be close
to the theoretical convergence rate, but rather the effect of
marginally resolved features in the convergence rate compu-
tations.

Convergence plots for `i, i= 2,∞, for the unlimited and

Fig. 1. Convergence plots for `2 (first and third rows) and `∞ (second and fourth rows) for the
unlimited (first column) and shape-preserving (second column) versions of schemes based on
cubed-sphere and two-patch grids. Optimal convergence rates are based on linear least-square
regressions to this data. Thin grey lines on each plot show slopes of second- and third-order
convergence (top and bottom, respectively). Initial conditions are the infinitely smooth Gaussian
hills and the normalized error norms are computed at time t = T .
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Fig. 2. Same as Figure 1 but for schemes defined on a regular latitude-longitude grid (rows 1 and 2) and Icosahedral/Voronoi meshes (rows
3 and 4). Note that the LPM scheme was run with fixed time step and not with fixed Courant number; therefore no CN value is appended to
the LPM label. For easier comparison the y-axis are identical on all optimal convergence Figures.

shape-preserving versions of the schemes are given in Fig-
ures 1 and 2. The schemes have been grouped according to
implementation grid. An accompanying histogram (Figure
3, middle) depicts the convergence rate for `i, i= 2,∞. The
ordering of the data in the histogram will become clear as
we discuss ‘minimal’ resolution in the next section. For the

convergence study the CN is held fixed. The labels on the
convergence plots and histograms include the CN appended
to the scheme acronym.

The histogram graphically depicts the range of conver-
gence rates represented by the ensemble of models. They
span from first-order convergence rates to sixth-order for the

Fig. 2. Same as Fig. 1 but for schemes defined on a regular latitude-longitude grid (rows 1 and
2) and Icosahedral/Voronoi meshes (rows 3 and 4). Note that the LPM scheme was run with
fixed time step and not with fixed Courant number; therefore no CN value is appended to the
LPM label. For easier comparison the y axis are identical on all optimal convergence Figures.
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Fig. 3. Histogram of minimal resolution ∆λm (upper), Ki, i= 2,∞ which are the ‘optimal’ convergence rates for `2 (middle) and `∞
(lower), for the unlimited (‘un’, red) and shape-preserving (‘sp’, green) versions of the schemes. The histogram is ordered monotonically
according to ∆λm for the unlimited schemes so that ∆λ decreases from left to right. For schemes for which unlimited results are not
available, ∆λm for the shape-preserving scheme is used for the purpose of ordering (schemes concerned are: CAM-FV, HEL, HEL-ND,
UCISOM, UCISOM-CS) and a placeholder value of -1 is used in all histograms. Note that the LPM scheme was run with fixed time-step
and not with fixed Courant number; therefore no CN value is appended to the LPM label.

Fig. 3. Histogram of minimal resolution ∆λm (upper), Ki , i = 2,∞ which are the “optimal” con-
vergence rates for `2 (middle) and `∞ (lower), for the unlimited (“un”, red) and shape-preserving
(“sp”, green) versions of the schemes. The histogram is ordered monotonically according to
∆λm for the unlimited schemes so that ∆λ decreases from left to right. For schemes for which
unlimited results are not available, ∆λm for the shape-preserving scheme is used for the pur-
pose of ordering (schemes concerned are: CAM-FV, HEL, HEL-ND, UCISOM, UCISOM-CS)
and a placeholder value of −1 is used in all histograms. Note that the LPM scheme was run
with fixed time-step and not with fixed Courant number; therefore no CN value is appended to
the LPM label.
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minimal resolution versus convergence rate
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shape-preserving

Fig. 4. ‘Scatter-like’ plot of the data shown as histograms in Figure
3 upper and middle rows. Each scheme is represented by a point on
the plot with (x,y) coordinates (∆λm,K2). For clarity each point
is not labeled with scheme acronym. The purpose of this Figure is
to show that there is not necessary a correlation between ‘optimal’
convergence rate and ‘minimal’ resolution.

cylinder initial conditions, for example, only have two values
and simulations using that initial conditions would therefore
not give information on how well the scheme maintains con-
tinuous and varying gradients.

The perfect scheme will have `f close to 100 for all values
of τ . We say ‘close’ to 100 and not exactly equal to 100 since
for Eulerian/semi-Lagrangian schemes that use a fixed grid
one would need to truncate the exact Lagrangian solution (for
which `f = 100 for all t) to the fixed Eulerian grid for the
computation of `f ; however, that truncation error is likely
orders of magnitude below the numerical truncation errors
(numerical diffusion and dispersion errors) introduced by the
scheme itself. For fully Lagrangian schemes based on parcels
this test forces modelers to define areas associated with the
Lagrangian parcels. Cell-integrated Lagrangian schemes that
track cells throughout the integration can test how well the
scheme preserves areas.

As explained in LSPT2012, a highly diffusive scheme
tends to increase `f for lower threshold values τ (except
τ = 0.1 for which `f decreases) and decrease `f for higher
values of τ (see Figure 6a in LSPT2012). In other words,
when the base of the cosine bells is diffused, more area is
covered by lower values of φ and less area is covered with
higher (near peak) values of φ.

The filament diagnostics gives insight into how gradients
are distorted in terms of the ability to preserve the area of the
domain in which the mixing ratio is larger than the thresh-
old value τ . If the `f (τ)-curve is smooth and monotonically
decreasing as a function of τ , the schemes diffusive charac-
teristics are smooth and continuous. Schemes that tend to
steepen gradients will spuriously force `f (τ)> 100 for rel-

atively large τ values. Schemes that make use of ‘add-hoc’
fixers (that also alter gradients) may produce an oscillatory
`f (τ) curve.

Figure 5 shows the filament preservation diagnostic `f (at
t=T/2) using the cosine bell initial condition for the unlim-
ited and (if applicable) limited/filtered schemes at resolutions
1.5◦ and 0.75◦. Results for `f at the ‘minimal resolution
∆λm are not shown although requested in LSPT2012. As
for the convergence plots data has been arranged according
to discretization grid. We also show a ‘minimal-τ ’ filament
preservation diagnostics as histograms in Figure 6, that is,
the y-axis on the histogram is the τ value for which `f is 80;
this τ -value is referred to as τm and computed by solving

`f (τ = τm) = 80, (11)

which here is computed by fitting a polynomial through the
`f data points near the crossing of `f (τ) and `f = 80. Note
that the solution to (11) is not multivalued for the data con-
sidered here. For example, if τm = 0.6, then 80% of the area
associated with mixing ratios larger than 0.6 is preserved. In
other words, the larger τm is the better the scheme preserves
the ‘peaks’ of the cosine bells.

The histogram in Figure 6 is mainly shown to visually in-
vestigate if there is a relationship between ‘minimal resolu-
tion’ and τm. Had there been a simple linear relationship, the
values of τm would decrease/increase from the left to right in
the histogram. As for the numerical convergence rates (Fig-
ure 4), there is no simple relationship indicating that `f mea-
sures other aspects of accuracy than ∆λm. That said, there
is a tendency of increased τm from left to right with some
outliers. For example, UCISOM-CN1.0/5.5 performs excep-
tionally well compared to the schemes with similar ‘minimal
resolution’. Similarly, but in a opposite sense, HEL-CN1.0
performs worse than its ‘neighbors’ in the histogram.

Perhaps more interesting in the context of `f is to fo-
cus on the shape of `f as a function of τ . First of all, the
more diffusive schemes tend to collapse toward a straight
line with negative slope for τ approximately in [0.2 : 0.8]
whereas the less diffusive schemes tend toward a straight
line with no or small negative slope. The smoothness of
the `f curve may indicate non-physical ‘ad hoc’ fixers or
anti-diffusive aspects of a scheme. For example, the FAR-
SIGHT scheme uses an ‘ad hoc’ fixer for mass-conservation
and shape-preservation and the `f curves, in particular for
FARSIGHT-CN10.4, are oscillatory and non-monotone. The
SFF-CSLAM4 and CAM-FV0.2 schemes have a rather wide
range of τ -values (approximately τ ∈ [0.6 : 0.8]) for which
`f exceeds 100.0 which is likely due to steepening of gradi-
ents. In conclusion, there are indications that this metric is
most useful for testing schemes employing ‘ad hoc’ fixers or
schemes with anti-diffusive terms or other mechanisms that
may steepen gradients. Note that this metric will not capture
if the location of the filaments is incorrect (phase errors).

Fig. 4. “Scatter-like” plot of the data shown as histograms in Fig. 3 upper and middle rows.
Each scheme is represented by a point on the plot with (x,y) coordinates (∆λm,K2). For clarity
each point is not labeled with scheme acronym. The purpose of this Figure is to show that there
is not necessary a correlation between “optimal” convergence rate and “minimal” resolution.
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Fig. 5. Filament preservation diagnostic `f (τ) at 1.5◦ (first column) and 0.75◦ (second column) resolution, respectively, for the unlimited
(thick lines) and shape-preserving (thin lines) versions of the schemes. Note that TTS-I, LPM, HEL, and HEL-ND are inherently shape-
preserving and therefore only have ‘unlimited’ data displayed. The LPM scheme was not run with fixed CN. The CN for 1.5◦ and 0.75◦ is
1.08 and 2.0, respectively.

Fig. 5. Filament preservation diagnostic `f(τ) at 1.5◦ (first column) and 0.75◦ (second column)
resolution, respectively, for the unlimited (thick lines) and shape-preserving (thin lines) versions
of the schemes. Note that TTS-I, LPM, HEL, and HEL-ND are inherently shape-preserving and
therefore only have “unlimited” data displayed. The LPM scheme was not run with fixed CN.
The CN for 1.5◦ and 0.75◦ is 1.08 and 2.0, respectively.
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Fig. 6. A histogram of threshold value τ for which the filament preservation diagnostic `f (τ) is approximately 80.0 at resolution 1.5◦ for
the unlimited (red) and shape-preserving (green) versions of the schemes. Above each column the value of τ is written (if τ =−1 there is
no data for that scheme configuration).

3.4 Transport of ‘rough’ distribution: slotted-cylinder

To assess how schemes perform with a rough (discontinu-
ous) initial condition, we show contour plots of solutions at
t= T/2 for slotted-cylinder initial conditions and the same
non-divergent flow as used in all tests above. The slotted-
cylinder has been used extensively in the solid-body ad-
vection test case to demonstrate that shape-preserving lim-
iters effectively eliminate spurious grid-scale oscillations.
Contrary to traditional specifications of the slotted-cylinder
initial condition, we have chosen to overlay it by a back-
ground value of φ= 0.1 instead of a zero background value.
Again, this is motivated by typical conditions found in the at-
mosphere where structures in tracer distributions frequently
overlay some smooth background distribution. In that case,
positivity preserving limiters will not eliminate undershoots
near the discontinuity.

Contour plots for mixing ratio at t=T/2 based on slotted
cylinder initial conditions are shown in Figures 7, 8, 9, and 10
(again, data are grouped according to the discretization grid).
In the LSPT2012 test case specification modelers were asked
to report on conventional error norms (at t= T ) in addition
to showing contour plots (at t=T/2). Here we have chosen
not to depict/list the conventional error norms as we did not
find any qualitative insights that were not visible in the con-
tour plots (the error norms are available in the supplemental
material for the interested reader). So in the interest of re-
ducing the number of Figures/Tables, errors `2, `∞ as well
as the minimum and maximum norms are not shown.

All contour plots use the same coloring scale and con-
tour interval making it straight forward to visually compare
schemes. It is immediately apparent, most notably in the ar-
eas away from the slotted cylinders where the field should be
constant, whether a scheme is not strictly shape-preserving

(light blue contour filling). Almost all unlimited schemes
show ‘ripples’ in this area. Similarly, overshoots over the
slotted-cylinders are immediately visible (dark red contour
filling). The wavelength of the spurious oscillations is related
to the formal order of the schemes. For example, the oscilla-
tions for HOMME-p6 have a much shorter wave-length than
those observed for ICON.

This test, however, was specifically designed to assess
whether shape-preserving filters truly eliminates undershoots
and overshoots while still preserving extrema. Finite-
volume scheme based on rigorous flux-computations and/or
FCT limiters completely eliminate undershoots/overshoots
(CSLAM, ICON, MPAS). For schemes based on simpli-
fied fluxes and not using FCT limiters, small undershoots
are visible (SFF-CSLAM3/4, CAM-FV1.2). The UCISOM
scheme has a strictly shape-preserving limiting option. How-
ever, to avoid ‘excessive’ diffusion, the limiter has been re-
laxed which explains the undershoots with that scheme. If
a scheme shows ripples with a strictly shape-preserving fil-
ter, then it may be due to inconsistent coupling between the
air mass and tracer mass fields when the mixing ratio is ex-
tracted. For example, a scheme that is not ‘free-stream’ pre-
serving will suffer from this deficiency.

The ability of the scheme to preserve the ‘plateau’ of the
slotted cylinders seems to be closely related to ‘minimal’ res-
olution in a qualitative sense except of the UCISOM and
HEL schemes that perform better than would be expected
from their ∆λm ranking. Not surprisingly the more diffusive
schemes that have a smaller ∆λm also diffuse the slotted-
cylinders. The pure Lagrangian schemes obviously main-
tain the discontinuities in the slotted-cylinder better than the
Eulerian/semi-Lagrangian schemes.

Fig. 6. A histogram of threshold value τ for which the filament preservation diagnostic `f(τ)
is approximately 80.0 at resolution 1.5◦ for the unlimited (red) and shape-preserving (green)
versions of the schemes. Above each column the value of τ is written (if τ = −1 there is no data
for that scheme configuration).
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Fig. 7. Contour plot of φ at t = T/2 using “rough” initial condition at approximately 1.5◦ (columns
1 and 2) and 0.75◦ (columns 3 and 4) resolution without (columns 1 and 3) and with (columns
2 and 4) shape-preserving filter for a subset of transport schemes implemented on a cubed-
sphere grid. The scheme acronym is shown in the lower left corner of each plot.
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Fig. 8. Same as Fig. 7 for the remaining scheme defined on a cubed-sphere grid and two-patch
grid (CLAW). For plots showing “CONSTANT FIELD – VALUE IS 0.1” no data are available.
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Fig. 9. Same as Figs. 7 and 8 but for regular latitude-longitude grid based models.
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Fig. 10. Same as Figs. 7, 8, and 9 but for Icosahedral grid based models. [LPM resolution for
1.5 and 0.75 is 2.16 and 1.8].
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Fig. 11. Scatter plots (for subset of cubed-sphere models) at t = T/2 for the cosine bell and
correlated cosine bell initial conditions for χ and ξ, respectively. First and third columns are for
the unlimited schemes and second and fourth columns are for the shape-preserving schemes.
The first two columns are for simulations at ∆λ ≈ 1.5◦ and the last two columns are for ∆λ ≈
0.75◦. The scheme acronym is shown in the lower left corner of each scatter plot with the
maximum Courant number (CN) appended. Above the scheme acronym the mixing diagnostics
(“real” mixing `r, range-preserving unmixing `u, overshooting `o) are given.
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Fig. 12. Same as Fig. 11 for the remaining cubed-sphere models.
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Fig. 13. Same as Fig. 11 for models defined on a regular latitude-longitude grid.
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Fig. 14. Same as Fig. 11 for models defined on an Icosahedral/Voronoi mesh.
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Mixing diagnostics at resolution ∆λm

Fig. 15. A histogram of mixing diagnostics (stacked) at resolutions ∆λ≈ 1.5◦ (upper), ∆λ≈ 0.75◦ (middle), and ∆λ≈∆λm (lower). The
ordering is according to minimal resolution ∆λm for the respective unlimited schemes (see Figure 3 first row). Above each scheme acronym
there are two columns of data. The left column is for the unlimited scheme and the right column contains data for the shape-preserving
version of the scheme (if applicable). The height of each colored column (green `r , yellow `u, red `o) is the ratio between `i, i∈ [‘r′,‘u′,‘o′]
for the scheme in question normalized by the `i for CSLAM (CN5.5) at ∆λ= 1.5◦. Note that the y-axis scale are different. The stacked
histograms for SLFV-ML and CLAW exceed the plotting range. If no data are available the mixing data are negative (although `i-data was
not submitted for FARSIGHT there are some mixing diagnostics given in White and Dongarra, 2011). The numerical values for `i are listed
on the scatter plots in Figures 11, 12, 13 and 14.

Fig. 15. A histogram of mixing diagnostics (stacked) at resolutions ∆λ ≈ 1.5◦ (upper), ∆λ ≈
0.75◦ (middle), and ∆λ ≈∆λm (lower). The ordering is according to minimal resolution ∆λm for
the respective unlimited schemes (see Fig. 3 first row). Above each scheme acronym there are
two columns of data. The left column is for the unlimited scheme and the right column contains
data for the shape-preserving version of the scheme (if applicable). The height of each colored
column (green `r, yellow `u, red `o) is the ratio between `i , i ∈ [“r”, “u”, “o”] for the scheme in
question normalized by the `i for CSLAM (CN5.5) at ∆λ = 1.5◦. Note that the y axis scale are
different. The stacked histograms for SLFV-ML and CLAW exceed the plotting range. If no data
are available the mixing data are negative (although `i -data was not submitted for FARSIGHT
there are some mixing diagnostics given in White and Dongarra, 2011). The numerical values
for `i are listed on the scatter plots in Figs. 11, 12, 13 and 14.
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Fig. 16. Histogram of normalized error norms (`2, `∞, φmin, φmax in first, second, third, and fourth row, respectively) for the divergent
flow field test case for the unlimited (‘un’) and shape-preserving (‘sp’) versions of the schemes, respectively, at ∆λ≈ 1.5. The ordering is
according to minimal resolution ∆λm (see Figure 3 first row). The value ‘-1’ indicates that no data are available. The appended CN’s are
for the non-divergent flow field (for consistency with the other histograms); this test was run with the same time step as for the non-divergent
flow tests, however, the maximum velocities are smaller than for the non-divergent flow and hence the actual CN’s are smaller.
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Fig. 16. Histogram of normalized error norms (`2, `∞, φmin, φmax in first, second, third, and
fourth row, respectively) for the divergent flow field test case for the unlimited (“un”) and shape-
preserving (“sp”) versions of the schemes, respectively, at ∆λ ≈ 1.5. The ordering is according
to minimal resolution ∆λm (see Fig. 3 first row). The value “−1” indicates that no data are
available. The appended CN’s are for the non-divergent flow field (for consistency with the
other histograms); this test was run with the same time step as for the non-divergent flow tests,
however, the maximum velocities are smaller than for the non-divergent flow and hence the
actual CN’s are smaller.
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Fig. A1. The two-patch sphere grid used by the CLAW scheme.

A5 CSLAM

CSLAM is implemented on an equi-angular cubed-sphere
grid. The average resolution at the Equator is given by

∆λ=
90◦

Nc
, (A5)

where Nc×Nc is the number of control volumes on each
face/panel of the cube. Semi-analytical trajectories are used
(Nair and Lauritzen, 2010). The diagnostics do not change
significantly when using non-analytic trajectories (C. Erath;
personal communication). For the 1.5◦ and 0.75◦ resolutions
a non-dimensionless time step of T/120 and T/240 was used
for the CN ≈ 5.5 simulations, respectively. For CN ≈ 1.0
runs the time steps were T/600 and T/1200, respectively.
The shape-preserving filter is the fully two-dimensional lim-
iter by Barth and Jespersen (1989) that scales the fully two-
dimensional reconstruction polynomial of degree two so that
its extrema are within the range of the surrounding cell aver-
aged values.

A6 FARSIGHT

See White and Dongarra (2011) for scheme details.

A7 HEL(-ND)

HEL and HEL-ND use the same settings as for CSLAM. The
filter parameters are the same in HEL and HEL-ND: both
are run without filters in the underlying first-order version of
CSLAM. The number of Lagrangian parcels are equal to the
number of grid cells, and the parcels ‘survive’ for the total
duration of the simulation. They are initialized at the grid cell
centers with the same area and value as the corresponding
Eulerian grid cell.

A8 HOMME

HOMME and CAM-SE use the same numerical model with
only difference in the choice of order p=NP −1 of poly-
nomial basis functions, hyperviscosity coefficient ν, and hy-

perviscosity scaling η. The resolution is obtained via (A1).
For HOMME simulations, we choose p= 3 because of its
common use (see CAM-SE default parameters) and p= 6 to
demonstrate performance for the higher-order scheme. If one
uses NE as in (A1) for the p= 3 setting, thenNE/2 for p= 6
corresponds to the equal equatorial resolutions in both cases.

The fully collocated formulation of the spectral element
method used in HOMME and CAM-SE has a grid-scale com-
putational mode which must be controlled with some type
of stabilization (Ainsworth and Wajid, 2009). Here for sta-
bilization we use well-tested hyperviscosity (Dennis et al.,
2012). In practice, hyperviscosity coefficient ν is tuned for
one resolution ∆λ0. Then for other resolutions the hypervis-
cosity coefficient is calculated similarly to (A2). Note that ν
is not tuned for every single simulation in this study. In more
detail, after p is defined, we specify scaling η and whether the
shape-preserving limiter is used. For the reasons explained
below (section A8.1), if the limiter is off, we set η= p+1.
Limited simulations are configured with η = 3.0 for p= 3
and η = 4.0 for p= 6. Next, the best ν0 is chosen for one
simulation with resolution ∆λ0. For this, we use standard
errors, mixing diagnostics, and filaments preservation diag-
nostics. Finally, for any given resolution ∆λ,

ν(∆λ) = ν0

(
∆λ

∆λ0

)η
.

Contrary to the CAM-SE setup, the winds are updated in
time at each stage of the Runga-Kutta time stepping.

A8.1 More on hyperviscosity scaling

In case of tracer advection, different amounts of artificial dis-
sipation affect performance of the scheme in various ways.
For example, with η = p+ 1, the theoretical spatial conver-
gence order is p+1. If η < p+1, convergence rates are ex-
pected to be of order η. Bigger amounts of hyperviscosity
raise standard errors but improve preservation of pre-existing
functional relations and filaments preservation diagnostics to
a certain degree. It is natural to choose η = p+ 1 to re-
cover the higher order method and demonstrate its proper-

Fig. A1. The two-patch sphere grid used by the CLAW scheme.
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