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Abstract

A Climate Pattern-Scaling Model (CPSM) that simulates global patterns of climate
change, for a prescribed emissions scenario, is described. A CPSM works by quan-
titatively establishing the statistical relationship between a climate variable at a specific
location (e.g. daily maximum surface temperature, Tmax) and one or more predictor time5

series (e.g. global mean surface temperature, Tglobal) – referred to as the “training” of
the CPSM. This training uses a regression model to derive fit-coefficients that describe
the statistical relationship between the predictor time series and the target climate vari-
able time series. Once that relationship has been determined, and given the predictor
time series for any greenhouse gas (GHG) emissions scenario, the change in the cli-10

mate variable of interest can be reconstructed – referred to as the “application” of the
CPSM. The advantage of using a CPSM rather than a typical atmosphere-ocean global
climate model (AOGCM) is that the predictor time series required by the CPSM can
usually be generated quickly using a simple climate model (SCM) for any prescribed
GHG emissions scenario and then applied to generate global fields of the climate vari-15

able of interest. The training can be performed either on historical measurements or
on output from an AOGCM. Using model output from 21st century simulations has the
advantage that the climate change signal is more pronounced than in historical data
and therefore a more robust statistical relationship is obtained. The disadvantage of us-
ing AOGCM output is that the CPSM training might be compromised by any AOGCM20

inadequacies. For the purposes of exploring the various methodological aspects of the
CPSM approach, AOGCM output was used in this study to train the CPSM. These
investigations of the CPSM methodology focus on monthly mean fields of daily tem-
perature extremes (Tmax and Tmin). Key conclusions are: (1) overall, the CPSM trained
on simulations based on the Representative Concentration Pathway (RCP) 8.5 emis-25

sions scenario is able to reproduce AOGCM simulations of Tmax and Tmin based on
predictor time series from an RCP 4.5 emissions scenario; (2) access to hemisphere
average land and ocean temperatures as predictors improves the variance that can
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be explained, particularly over the oceans; (3) regression model fit-coefficients derived
from individual simulations based on the RCP 2.6, 4.5 and 8.5 emissions scenarios
agree well over most regions of the globe (the Arctic is the exception); (4) training the
CPSM on concatenated time series from an ensemble of simulations does not result
in fit-coefficients that explain significantly more of the variance than an approach that5

weights results based on single simulation fits; and (5) the inclusion of a linear time
dependence in the regression model fit-coefficients improves the variance explained,
primarily over the oceans.

1 Introduction

Atmosphere-Ocean General Circulation Models (AOGCMs) are currently the primary10

tool used to project the future climate response to a prescribed scenario of greenhouse
gas (GHG) and aerosol emissions. Since AOGCMs are computationally demanding
and expensive to run, typically only a limited number of long-term simulations, for only
a few GHG emissions scenarios, can be conducted in support of any scientific study.
However, a fully probabilistic assessment of future regional climate change and its po-15

tential impacts requires simulations of climate change that span a wide range of possi-
ble future GHG and aerosol emissions. Simple Climate Models (SCMs), while compu-
tationally less expensive than AOGCMs, provide only annually and globally (or some-
times hemispherically) averaged time series of surface temperature and therefore can-
not represent spatial patterns of changes in surface climate variables (Mitchell, 2003).20

SCMs can, however, simulate changes in global annual mean surface temperature
(Tglobal) for any prescribed GHG and aerosol emissions scenarios and can be tuned to
emulate any specific AOGCM (Frieler et al., 2012; Meinshausen et al., 2009).

To generate fields of climate variables for a range of emissions scenarios, the climate
pattern-scaling method was developed (Mitchell et al., 1999; Mitchell, 2003) and en-25

coded, in what is referred to, in this study, as a climate pattern-scaling model (CPSM).
This method has been used to capture the statistical relationship between time series
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of surface climate variables (such as maximum and minimum temperature Tmax and
Tmin) and predictor time series (typically Tglobal), based either on measurement time
series or on AOGCM output – referred to as the “training” of the CPSM. Those sta-
tistical relationships can then be used to project the spatial pattern of changes in a
climate variable for different emissions scenarios, or for future time periods, that were5

not covered by the data set used for the training – referred to as the “application” of
the CPSM. Once the data required for the training are available, the pattern-scaling
approach is computationally inexpensive and therefore provides a mechanism for rep-
resenting a more complete range of uncertainties associated with climate projections
that arise from equally probable emissions scenarios and from uncertainties in our10

knowledge of key parameters in the climate system. The pattern-scaling method is
based on the assumption that the local response of a given climate variable, such as
daily maximum and minimum surface temperatures (Tmax and Tmin), and to a lesser
extent precipitation, can be statistically related to the change in a more easily modelled
climate variable such as Tglobal (Giorgi et al., 2005; Frieler et al., 2012), irrespective15

of the forcing that caused the change in Tglobal. Non-linearities can arise, for example,
as a result of local climate change depending on the rate of global mean temperature
change in addition to the magnitude of the change (Mitchell, 2003). Giorgi et al. (2005)
showed that the non-linear fraction of the climate change signal tends to decrease with
increasing magnitude of the signal, suggesting that the linear response assumption will20

be increasingly robust as the climate change signal becomes more pronounced.
Different methods have previously been developed to determine the statistical rela-

tionship between the climate variable of interest and its predictors (e.g. Huntingford et
al., 2000; Mitchell, 2003; Ruosteenoja et al., 2007). Linear least squares regression
models, in general, produce more robust statistical results than an approach that uses25

two time slice simulations separated in time (Mitchell, 2003; Ruosteenoja et al., 2007).
In this study, a CPSM is used to explore some of the methodological aspects of the

pattern-scaling approach that have not been, to our knowledge, investigated in detail in
the existing literature. The motivation is to define more clearly where the assumptions
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underlying the CPSM approach are valid, possible reasons for breakdowns in those
assumptions, and potential strategies to improve the CPSM approach to mitigate the
effects of methodological weaknesses. Following the best practice approaches outlined
in Mitchell et al. (1999), Huntingford et al. (2000), and Mitchell (2003), the climate pat-
tern response is obtained by using a linear least squares regression model to relate the5

anomaly in a surface climate variable (the predictand) to the anomaly in the predictor.
By using anomalies in both the predictor and the predictand with respect to the same
baseline period, more statistically robust results are obtained than in the case where
absolute values are modelled. CPSM generated patterns of change can be added to
an observations-based climatology over the baseline period to obtain absolute values10

of the climate variable of interest. Throughout this paper, unless otherwise specified,
all anomalies are with respect to the 1961–1990 mean as this is the baseline period
recommended by the World Meteorological Organization (WMO) Commission on Cli-
matology and is used as the climatological baseline in climate impact studies (Parry et
al., 2007).15

In this study T ′
global, where the prime denotes that it is an anomaly, is usually used as

the predictor. In addition to using T ′
global as a predictor, and unlike previous studies, the

CPSM presented here is also able to use hemispheric ocean and land mean tempera-
ture anomalies as predictors since some SCMs, such as MAGICC (Meinshausen et al.,
2011), are also able to produce these as output. One of the methodological aspects20

of the CPSM explored in this study (see Sect. 4) is the advantage gained in having
five predictor time series (T ′

global, the hemispheric ocean and land temperatures) over
having only one predictor time series (T ′

global).
The surface climate variables used to explore selected features of the CPSM are the

monthly means of daily maximum and minimum temperature (Tmax and Tmin). While the25

regression model applied in the CPSM training could use observational data as input,
the climate signal to date has been weaker than the signal expected over the 21st cen-
tury. Therefore, the CPSM has been trained on output from the Met Office Hadley
Centre Earth System Model (HadGEM2-ES) performed under the Coupled Model In-
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tercomparison Project phase 5 (CMIP5) in support of the Intergovernmental Panel on
Climate Change (IPCC) 5th assessment report (see Appendix A). The results pre-
sented in this paper are therefore contingent on only a single AOGCM being used and
only for simulations to 2100.

The training of the CPSM is described in detail in Sect. 2 which includes the construc-5

tion of the regression model, how autocorrelation in the regression model residuals is
accounted for to obtain a robust estimate of the regression model fit-coefficient uncer-
tainties, a demonstration of the CPSM training, how seasonality in the fit-coefficients is
captured, and examples of global maps of fit-coefficients. The application of the CPSM
is described in Sect. 3. The first of the methodological issues explored in this paper –10

the value obtained by including additional predictors (basis functions) in the regression
model – is documented in Sect. 4. This section includes a discussion of the need to
orthogonalise the multiple basis functions, presents an example of the use of a multi-
ple basis function CPSM, and an assessment of the value of including additional basis
functions. The underlying assumption in the CPSM approach of linearity across sce-15

narios in the response of the predictor to the predictand(s) is explored in Sect. 5. The
training of the CPSM can be performed on more than one simulation, either concate-
nated (the super-ensemble approach) or in parallel with appropriate weighting of the
different outcomes. The methodological aspects of the choices involved in the use of
multiple simulations for CPSM training are detailed in Sect. 6. The possibility of time20

dependence in the fit-coefficients is examined in Sect. 7. A discussion of the results
and the conclusions drawn appear in the final section of the paper.

2 Training of the CPSM

2.1 Model construct

The most simple construct for the regression model underlying the CPSM is:25

F ′
i ,j (y ,m) = αi ,j (m)×T ′

global(y )+Ri ,j (y ,m) (1)
4838
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where F ′ is the anomaly field of the climate variable of interest (either T ′
max or T ′

min
in this study) in year (y ) and month (m) and where the subscripts i and j refer to
longitude and latitude indices, T ′

global is the annual global mean temperature anomaly
and Ri ,j (y ,m) is the residual time series. Uncertainties on the fit-coefficients are derived
from the diagonal elements of the covariance matrix as described further in Bodeker et5

al. (1998).

2.2 Accounting for autocorrelation in the residuals

Ri ,j (y ,m) in Eq. (1) is the residual, i.e. that part of the signal not explained by αi ,j (m)×
T ′

global(y ). Due to the timescales associated with the climate system, temporal corre-
lation between these residuals is expected, i.e. if the n-th residual is positive there10

is a greater chance of the n+1-th residual being positive rather than negative. This
autocorrelation (Tiao et al., 1990; Weatherhead et al., 1998; Reinsel et al., 2005) im-
plies that the data to which the regression model is being fitted are not completely
independent and as a result there are effectively fewer independent values than the
number of months of data available. This effectively increases the uncertainty on the15

fit-coefficients. If this autocorrelation is not correctly accounted for in the regression
model, the uncertainty on the fit-coefficients will be underestimated (Tiao et al., 1990).
Here, a first order autocorrelation model is used, where the n-th residual is correlated
against the (n−1)-th residual to determine the coefficient of autocorrelation. The de-
rived coefficient is then incorporated into a revised estimate of the uncertainty on the20

data to which the model is fitted, as described in Tiao et al. (1990). This autocorrelation
also varies with season and this seasonality is captured in the regression model.

2.3 Demonstration of CPSM training

To demonstrate the use of this very simple regression model, time series of T ′
min at

Alexandra, New Zealand, (45.2◦ S, 169.4◦ E) extracted from a HadGEM2-ES simulation25
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under Representative Concentration Pathway (RCP) 4.5 emissions (see Appendix A),
and T ′

global from the same model and emissions scenario, are shown in Fig. 1.
Unforced variability within a model simulation (e.g. arising from El Niño events) can

cause the T ′
min and T ′

global time series to be correlated in a way that is unique to this
particular simulation, e.g. a HadGEM2-ES simulation based on RCP 4.5 emissions.5

With different initial conditions, however, this particular simulation might produce an
equally valid T ′

global time series but with weaker correlation than the time series shown in
Fig. 1. In the example presented in Fig. 1 the short-term correlation between the orange
and cyan traces appears to be small but the correlation can be greatly exacerbated if
additional predictors are included in the CPSM (see Sect. 4). When it comes to the10

application of the CPSM, the T ′
global time series will come from an independent source,

most likely output from a SCM that captures only long-term, forced climate variability,
and therefore it is essential that none of the correlation between T ′

min and T ′
global arises

from unforced, short-term variability. The focus of this study is to apply the CPSM
to simulate the underlying forced climate variability. To this end, the T ′

min and T ′
global15

time series are filtered (smoothed) to reduce unforced variability; T ′
min time series are

smoothed individually across each calendar month to avoid smoothing away the annual
cycle. The time series smoothed with a Savitzky-Golay filter (Savitzky and Golay, 1964;
Press et al., 1989), which was found to work well for this application, are also shown in
Fig. 1.20

The regression of January mean T ′
min at Alexandra, New Zealand (45.2◦ S, 169.4◦ E),

against T ′
global is shown in Fig. 2 where the smoothed time series shown in Fig. 1 have

been used.
Regression model fits (solid lines in Fig. 2) are shown for two time periods viz.

(1) 1961–2012 to indicate how a fit might look were it based on observations alone,25

and (2) 1961–2100 to indicate the result obtained using a much longer time series. A
fit using only 1961–2012 data has the benefit that it could be based on observations
and therefore not subject to model inadequacies. However, gap-free monthly mean
data would not be available for all locations for this period. Access to a longer time se-
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ries, spanning a greater range in T ′
min and T ′

global, produces fit-coefficients with smaller
uncertainties (see fit-coefficient values in Fig. 2) but are, of course, subject to any in-
adequacies of the AOGCM that was used to generate the time series. It becomes a
judgment call on the part of the user whether to use a (shorter) observational record or
a (longer) model record to calculate the regression model coefficient(s) that constitute5

the training of the CPSM. Hereafter, output from HadGEM2-ES simulations are used to
train the CPSM (more detailed information on the HadGEM2-ES model and simulations
used in this study is given in Appendix A).

2.4 Fitting for seasonality

The T ′
global time series are obtained at annual resolution, as denoted by the (y ) depen-10

dence in Eq. (1), and yet are required to produce monthly mean fields of the predictand,
e.g. T ′

min. The seasonality is captured by the regression model fit-coefficients which de-
pend on season as denoted by the (m) dependence in Eq. (1). One approach is to fit
Eq. (1) separately for each month. However, this ignores the fact that the dependence
of F ′ on T ′

global in any given month is likely to be similar to the dependence in the neigh-15

bouring months. To account for the seasonality in the fit-coefficients, and to reduce
the number of fit-coefficients and thus avoid the likelihood of over-fitting, a more sta-
tistically robust approach is to expand the regression model fit-coefficient in a Fourier
series, i.e.:

α(m) = α0 +
M∑

k=1

[α2k−1 sin(2π× k ×m/12)+α2k cos(2π× k ×m/12)] (2)20

where m is the month of the year and M is the number of Fourier pairs in which the
fit-coefficients are expanded (Randel and Cobb, 1994; Bodeker et al., 1998; Reinsel et
al., 2005). The value of M can be set depending on the seasonal structure expected in
the fit-coefficients. For the analysis presented below, M was set to three for all Fourier
expansions. In addition to reducing the number of fit-coefficients by a factor of 7/1225
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compared to the approach of fitting the regression model separately in each month, the
method used here also reduces the statistical uncertainty on the derived fit-coefficients
(we now refer to the fit-coefficients as plural since the application of Eq. (2) results in
more than one coefficient that relates F ′ to T ′

global).

2.5 Global maps5

Global spatial patterns of α for both T ′
max and T ′

min together with their 1σ uncertain-
ties are shown in Fig. 3. The fit-coefficients were obtained from the fit of T ′

global to
T ′

max and T ′
min time series, respectively, where all time series were extracted from the

HadGEM2-ES RCP 4.5 simulation. The derived α coefficients are displayed for four
selected months of the year.10

The α fit-coefficient captures the ’magnification’ of regional temperature change com-
pared to the global mean surface temperature change i.e. a value of α=4 for T ′

max
indicates that a 1 ◦C increase in T ′

global corresponds to a 4 ◦C increase in T ′
max at that lo-

cation. The largest α coefficients occur at high latitudes over the Northern Hemisphere
in January and October, i.e. it is over the Arctic in winter when feedback processes15

in the climate system are most efficient in amplifying the effects of increases in GHG
emissions. This indicates that the CPSM faithfully emulates the Arctic amplification ob-
served in HadGEM2-ES, i.e. that temperature variability and trends in the Arctic tend
to be larger than trends and variability for the globe in response to a change in global
climate forcing (Moritz et al., 2002). Arctic amplification is most pronounced in au-20

tumn and winter (Serreze and Barry, 2011) which is consistent with the results shown
here, i.e. greater α and therefore greater sensitivity in T ′

max and T ′
min to T ′

global. South-
ern Hemisphere α coefficients also maximize at high latitudes, particularly around the
Antarctic Peninsula, but do not show values as high as over the Arctic. The larger val-
ues of α in April over the Weddell Sea may be related to long-term changes in sea-ice.25

The results presented in Fig. 3 indicate that the climate feedbacks that amplify the
global signal in the Arctic (e.g. changes in the ice-albedo feedback) are stronger than
those active in the Antarctic. Overall, as expected due to the differences in the heat
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capacity of ocean and land, the α coefficients are larger over land than over the ocean
showing that land masses are expected to show greater changes in T ′

max and T ′
min with

changes in T ′
global than the oceans.

Note that some regions in Fig. 3 exhibit negative α coefficients, typically over the
sub-polar oceans. Negative α values indicate a temperature trend opposite in sign to5

that of T ′
global. This could occur, for example, if changes in the ocean heat transport in a

particular model simulation cause some regions of the ocean to warm at the expense
of other regions which cool.

2.6 Area averaging

In much the same way that regression model fit-coefficients in neighbouring months10

are related (suggesting the use of Fourier expansions to capture the seasonal coher-
ence), fit-coefficients in neighboring grid cells are also expected to be closely related.
Throughout this paper Eq. (1) is applied in isolation in each grid cell of the AOGCM and
therefore does not inherently capture the geospatial correlation of the fit-coefficients.
This may result in structure in the fit-coefficients that is a function of the specific emis-15

sions scenario(s) on which the CPSM is trained and therefore not representative of
the structure of the response of the climate system in general. Previous analyses (e.g.
Frieler et al., 2012) have used area averaging of the fields prior to training the CPSM to
avoid fine-scale structure in the fit-coefficients. However, this results in sharp discon-
tinuities between regions when the CPSM is used in application mode. An alternative20

approach is to further expand the model fit-coefficients (e.g. the αk in Eq. 2) in spher-
ical harmonics where again the order of the meridional and zonal expansions can be
selected to capture the broad-scale features of the fit-coefficient fields but to smooth
over the fine-scale features. The spherical harmonic expansion recognizes the geospa-
tial correlation in the fit-coefficients between neighbouring grid cells. This also requires25

only a single fit of the regression model to the data. In this study, such an approach
has not been followed since it is our goal to explore the issues that may arise when
applying the regression model in the traditional way i.e. separately in each grid cell.
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3 Application of the CPSM

Once the regression model fit-coefficients have been derived, the CPSM can be used
in application mode. In application mode, T ′

global based on any emissions scenario can
be used in Eq. (1) to generate F ′. Usually, T ′

global would be obtained from a source other
than an AOGCM (otherwise the AOGCM simulation itself may just as well be used to5

produce the F ′ fields), such as a SCM. However, when used in this way, it is necessary
to first ensure that any T ′

global time series from the AOGCM used to train the CPSM,
and T ′

global time series from the SCM for the same emissions scenarios, are identically
correlated. Because the SCM and AOGCM may have different climate sensitivities,
scaling of the SCM data may be required. This introduces some uncertainty. To avoid10

the additional complexity and uncertainty introduced by such scaling of T ′
global from a

SCM, in this paper that explores the methodological aspects of climate pattern-scaling,
T ′

global time series are extracted from simulations generated by the same AOGCM as
used in the training, but from different emissions scenarios, were used in application
mode.15

The use of the CPSM in application mode is demonstrated in Fig. 4. Regression
model fit-coefficients derived by regressing T ′

min against T ′
global using HadGEM2-ES

output from an RCP 4.5 simulation were used to simulate T ′
min time series using pre-

dictor time series, T ′
global, obtained from HadGEM2-ES simulations based on RCP 2.6

(dark blue line in Fig. 4) and RCP 8.5 (dark red line in Fig. 4) emissions. The confi-20

dence levels required on the monthly mean T ′
min time series, used to derive weights

within the regression model, were provided as the standard deviations on the differ-
ences between the smoothed and unsmoothed time series for each calendar month. In
this way, months exhibiting greater natural variability are given less weight than those
with smaller variability. The extent of the agreement between these CPSM derived25

time series and the original HadGEM2-ES time series (underlying light blue and light
red lines in Fig. 4) is indicative of the applicability of the CPSM. The CPSM tracks the
original HadGEM2-ES output for the RCP 2.6 and RCP 8.5 simulations well, but tends
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to underestimate the magnitude of the RCP 8.5 signal and overestimate the magnitude
of the RCP 2.6 signal, suggesting possible non-linearities in the system. Previous stud-
ies have found that errors arising from pattern-scaling are much greater when scaling
from low to high emissions scenarios than when scaling from high to low scenarios
(Huntingford et al., 2000; Mitchell, 2003).5

The seasonality of the fit-coefficient (lower-right inset in Fig. 4) indicates that T ′
min

at this particular location, in late summer (Jan-Mar) increases almost as rapidly as the
global mean temperature, but at only around half this rate in late winter. The upper-left
inset in Fig. 4 demonstrates that this seasonality is consistent with what is seen in the
smoothed raw HadGEM2-ES output.10

To further compare the simulation of RCP 4.5 T ′
max and T ′

min fields generated by
the CPSM with HadGEM2-ES simulations, global maps of the decadal mean (2090
to 2099) for January and for July are displayed in Fig. 5. Decadal means are shown
to suppress the higher inter-annual variability across individual months displayed by
HadGEM2-ES compared to output from the CPSM. The global pattern of T ′

max and15

T ′
min derived from the CPSM output generally agrees well with the HadGEM2-ES sim-

ulation, although there are some regions (e.g. the Arctic Ocean) and periods (e.g.
January) where the signal, i.e. the change in T ′

max and T ′
min with respect to the base-

line period 1961–1990, is more pronounced in HadGEM2-ES. This might be the result
of simulation-specific decadal-scale unforced variability in the HadGEM2-ES RCP 4.520

simulation which causes regional changes in T ′
max or T ′

min to be greater than what is ex-
pected from the T ′

global time series and the α fit-coefficients obtained from the RCP 8.5
simulation. Another reason for the unusual behaviour in this region may be that while
two simulations may produce similar T ′

global evolution, that evolution may result from
different balances between long-term and short-term climate forcing agents, e.g. one25

simulation has high CO2 emissions which are significantly offset by high sulfate emis-
sions while the second scenario has both lower CO2 and sulfate emissions such that
the T ′

global evolution in the two simulations is the same. A location outside of the region
of sulfate aerosol-induced cooling would then be under the influence of different CO2
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but with the same T ′
global across the two simulations. The effects of such differences in

short-lived radiative forcing agents has not been quantitatively assessed in this study
but are recognized as a potential factor that may affect the linearity of the regression
model fit-coefficients across scenarios.

The overall close agreement between the CPSM and HadGEM2-ES fields provides5

evidence that the CPSM trained on RCP 8.5 simulations is able to provide a robust
simulation of T ′

max and T ′
min time series globally for the RCP 4.5 emissions scenario.

There are a number of methodological aspects of the CPSM approach which extend
or improve upon the simple pedagogical example given above. These methodological
aspects are explored in greater detail in Sects. 4 to 7 below.10

4 Additional basis functions

4.1 Regression model structure with multiple basis functions

Some SCMs, such as MAGICC, in addition to generating time series of annual mean
global mean surface temperature, are also able to generate annual mean hemispheric
land (TSH land and TNH land) and ocean (TSH ocean and TNH ocean) temperature time series15

– hereafter collectively referred to as T ′
x . These time series, when used as additional

predictors, may provide a degree of explanatory power above what would be available
when only T ′

global is used as the predictor. The construction of the regression model
underlying the CPSM would then be of the form:

F ′
i ,j (y ,m) = αi ,j (m)×T ′

global(y )+βi ,j (m)×T ′
NH land(y )+γi ,j (m)×T ′

NH ocean(y ) (3)20

+δi ,j (m)×T ′
SH land

(y )+εi ,j (m)×T ′
SH ocean

(y )+Ri ,j (y ,m)

As before, all predictor and predictand time series are smoothed with a Savitzky-Golay
filter.
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4.2 Orthogonalising multiple basis functions

The T ′
x time series in Eq. (3) are not independent from each other and, not surprisingly,

are highly correlated. This lack of orthogonality in the basis functions of the regression
model often results in the variance being assigned rather arbitrarily by the linear least
squares algorithm amongst the five basis functions. As a result, fit-coefficients can be-5

come very large, and sometimes negative, since the positive signal from one basis
function can offset the negative signal from another to track a small change in the pre-
dictand. In addition to precluding a physical interpretation of the fit-coefficients, this lack
of orthogonality can result in unstable behaviour of the CPSM if the T ′

x time series are
obtained from an SCM which may have a slightly different distribution of heat content10

between ocean and land than in the AOGCM on which the CPSM was trained. The
non-orthogonality of the basis functions also precludes a direct comparison of regres-
sion model fit-coefficients obtained from training on AOGCM simulations from different
emissions scenarios.

To circumvent these problems, the T ′
x time series are orthogonalized using a Gram-15

Schmidt orthogonalization algorithm (Press et al., 1989) before they are used as basis
functions in the regression model. This ensures that each additional basis function only
describes the variance not already explained by the existing basis functions, and that
coefficients obtained from fits to different emissions scenarios are directly comparable.

4.3 Demonstration of the use of multiple basis functions20

The five basis function time series, extracted from a HadGEM2-ES RCP 4.5 simula-
tion, were smoothed and orthogonalized and are shown together with their associated
regression model fit-coefficients in Fig. 6. The fit-coefficients were derived globally at
every grid-point by applying the regression model to changes in T ′

max, where the T ′
max

time series were also extracted from the HadGEM2-ES RCP 4.5 simulation.25

The apparent decadal variability seen in the four (excluding T ′
global) time series dis-

played in Fig. 6 should not be confused with unforced decadal scale variability in the
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climate system but rather seen as subtle decadal-scale departures from the monotoni-
cally increasing T ′

global time series which may well be forced changes. Figure 6a shows
that for the primary predictor (T ′

global), the associated regression model fit-coefficient
(α in Eqs. 1,3) is everywhere statistically significantly different from zero, maximizing
in the Arctic and with lowest values over the oceans consistent with what was shown5

in Fig. 3. When the shape of a F ′
i ,j time series is simply a linear scaling of T ′

global,
all higher order fit-coefficients are zero (the zero line in all Fig. 6 panels is indicated
with a thin black line). Care must be taken when attributing cause and effect in Fig. 6.
For example, in this simulation, additional predictive power appears to be gained from
the T ′

NH ocean time series over the Arctic Ocean but also, interestingly, over the South-10

ern Ocean where a longitudinal dipole in response to the orthogonalized T ′
NH ocean is

apparent. Does this suggest that the Northern Hemisphere ocean is a driver of vari-
ability in T ′

max off the Antarctic coast? This is unlikely. Rather the variability in T ′
max off

the Antarctic coast, over and above what would be expected from changes in T ′
global,

is correlated with changes in the orthogonalized T ′
NH ocean time series. Had the basis15

functions been orthogonalized in a different order, it is likely that different conclusions
would be drawn.

While additional basis functions may provide additional predictive power (see below),
the need to orthogonalize these basis functions obfuscates a physical interpretation of
what sources of variability they represent. The exact morphology of the fit-coefficients20

shown in Fig. 6 is also likely to be simulation dependent and dependent on the de-
gree of smoothing applied to the T ′

x time series. Analyses with access to an ensemble
of simulations made under the same boundary conditions might provide more robust
results.

4.4 Assessing the value of using multiple basis functions25

Two different versions of the CPSM were trained on T ′
max and T ′

min time series obtained
from the HadGEM2-ES simulations. In the first version only T ′

global was used as a pre-
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dictor whereas in the second all five T ′
x were used as predictors. To derive a globally

applicable measure of the differences between the two model constructs, the sum of
the squares of the residuals (SSR), i.e. the differences between the HadGEM2-ES
time series and the time series produced from the regression model, were calculated
for each model construct. For each AOGCM grid cell, the SSR value, calculated from5

the CPSM with five basis functions (SSR5) was divided by the SSR value calculated
from the model with a single basis function (SSR1). This was done for each of the three
RCP scenarios for which simulations were available. The calculated SSR ratios for ev-
ery grid point were assigned to be located either over land or ocean and the results for
T ′

max and T ′
min, for all RCP scenarios, are shown in the histograms in Fig. 7.10

By using the hemispheric annual mean temperatures over land and ocean as pre-
dictors in addition to the global annual mean surface temperature, the SSR over land is
typically reduced by 25 to 35 %, for both T ′

max and T ′
min. Over the oceans, however, the

SSR is typically reduced by about 50 to 60 % when using additional information about
hemispheric ocean and land temperatures as predictors. The results suggest that while15

adding more basis functions to the regression model makes a physical interpretation
of the assignment of variability across the different basis functions difficult to interpret,
it does result in a CPSM that is better able to track subtle changes in T ′

max and T ′
min

that are not simple linear scalings of T ′
global. Whether that additional skill is physically

meaningful or just a statistical artefact requires further investigation. For the remainder20

of this paper the single basis function version of the CPSM (which is the more tradi-
tional version of the CPSM) is used to explore the remaining methodological issues
addressed in this paper.

5 Linearity

The key assumption of the pattern-scaling approach is that the relationship between25

the predictors and the predictands is linear, i.e. the regression model fit-coefficients
should, ideally, be robust properties of the climate system and should not depend on
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GHG emissions scenarios or vary with time. To test these assumptions, regression
model fit-coefficients were derived using all three RCP simulations available from the
HadGEM2-ES model where only T ′

global was used as the predictor time series. The
seasonal cycles of these α fit-coefficients, together with their 1σ uncertainties, for four
selected sites for T ′

max and for four selected sites for T ′
min (one site in common), are5

shown in Fig. 8.
The two Arctic sites show α peaking in October or November during the onset of

sea-ice formation suggesting that long-term changes in sea-ice in this season may be
driving the large sensitivity of T ′

max and T ′
min to T ′

global. Interior sites in Greenland and
Siberia show α peaking around the beginning and end of winter suggesting that long-10

term changes in snow cover and hence surface albedo at these times may be driving
the high values in α. At the beginning and end of the winter, the magnitudes of α at
both sites over the Arctic Ocean are greater than the magnitudes over the two interior
sites. This amplified seasonal change in α over the Arctic Ocean indicates that the
long-term changes in sea-ice extent and concentration have a stronger impact on the15

sensitivity of T ′
max and T ′

min to T ′
global than surface albedo changes over land at high

latitudes. The Southern Hemisphere mid-latitude site selected (Alexandra) shows α
peaking in summer (December to February; see also Fig. 4) for both T ′

max and T ′
min with

the seasonal cycle in α being slightly more pronounced for T ′
max. At the high southern

latitude site over Antarctic sea-ice (Weddell Sea), α peaks in July/August which might20

be related to changes in sea-ice extent. Over the Antarctic continental site, both the
seasonal amplitude and absolute magnitude of α are smaller than over the Weddell
Sea. This suggests that long-term changes in sea-ice albedo also drive the changes in
T ′

max and T ′
min in the Antarctic, though to a lesser extent than in the Arctic.

To estimate the extent to which the α fit-coefficients differ amongst the three different25

emissions scenarios, the trend in α across the three RCP scenarios was determined
for every grid-point and month, respectively. Global maps of the trend in α (in units of
radiative forcing (Wm−2) associated with each of the RCPs) for the predictand T ′

max
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for four selected months are shown in Fig. 9. If α does not change across different
RCP simulations, all values in Fig. 9 would be zero.

In most regions of the world, particularly over the Northern Hemisphere land and
the Arctic in January and October, the trend in α is statistically significantly different
from zero at the 2σ level (unstippled regions in Fig. 9). These results indicate that5

the coefficients are dependent on the emissions scenario, and non-linearities between
the predictor and predictand exists. Those non-linearities are most pronounced at high
northern latitudes in January and October. In October, in the Arctic, the α coefficients
decrease with increasing GHG concentrations (reflected in the negative trend in α in
Fig. 9). This suggests that there are processes at work which damp the response of10

T ′
max to changes in T ′

global with increasing radiative forcing. In January, on the other
hand, α increases with increasing GHG concentrations, amplifying the response of
T ′

max to changes in T ′
global. The strength of this amplification in mid-winter is somewhat

weaker than the damping in autumn. Over the oceans and most regions of the Antarc-
tic, the small trend in α is not statistically significantly different from zero at the 2σ level,15

indicating that the coefficients are independent of the emissions scenario from which
they were derived. Whatever processes are causing the non-linear behaviour between
the predictor and predictand, they do not influence the behaviour of T ′

max over the ocean
and most parts of the Antarctic. An investigation of the causes of these non-linearities,
and the seasonality of the amplifying/damping processes in the response patterns, is20

beyond the scope of this paper.

6 The use of multiple simulations for training

Where the regression model fit-coefficients do not show a strong dependence on the
emissions scenario (see Sect. 5 above) it is conceivable to derive the regression model
fit-coefficients from all available scenarios at once, rather than from a single scenario.25

As described above and in Appendix A, three different simulations were available to
derive the regression model fit-coefficients. Two different approaches for making use
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of multiple simulations to derive the regression model fit-coefficients are described and
assessed in Sects. 6.1 and 6.2. Previous studies have found that uncertainties in fields
derived using pattern-scaling are much greater when scaling from low to high emis-
sions scenarios than when scaling from high to low scenarios (Huntingford et al., 2000;
Mitchell, 2003). It is therefore important to include AOGCM simulations from high emis-5

sions scenarios when training the regression model.

6.1 The super-ensemble approach

In the super-ensemble approach, the available time series of T ′
max, T ′

min and T ′
global re-

quired to train the regression model are each sequentially concatenated and a single
set of regression model fit-coefficients is derived (Ruosteenoja et al., 2007). The implicit10

assumption in this approach is that the regression model fit-coefficients do not depend
significantly on the scenario on which they are derived, i.e. that the dependence of
T ′

max and T ′
min on T ′

global is largely linear. This assumption was tested in Sect. 5. The
advantage of such an approach is that many more data are available for deriving the
fit-coefficients and therefore, more statistically robust results are obtained. If the simu-15

lations used for the fitting are based on a number of different emissions scenarios, the
resultant regression model fit-coefficients will be less sensitive to any specific scenario.
Furthermore, fitting to a number of simulations reduces the likelihood of generating
geospatial structure in the fit-coefficients (see Sect. 2.6) that may result from multi-
decadal variability in any specific simulation as discussed further in Sect. 6.3. If, how-20

ever, the regression fit-coefficients are simulation/scenario dependent, the uncertainty
on the fit-coefficients will increase when they are obtained from a super-ensemble fit.

As detailed above, to use the CPSM in application mode, the fit-coefficients derived
by fitting to multiple simulations can then be applied to T ′

global time series obtained
from e.g. SCM output to produce the final anomaly fields for any prescribed emissions25

scenario (provided as input to the SCM) and time.
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6.2 The weighted contributions approach

In the weighted contributions approach, multiple sets of regression model fit-coefficients
are obtained by fitting Eq. (1) individually to the available simulations that are based
on different emissions. When the CPSM is used in application mode, and the fit-
coefficients are applied to T ′

global, the multiple sets of regression model coefficients5

result in multiple realizations of the T ′
max and T ′

min fields. A weighted sum of these fields
then produces a single time series of T ′

max and T ′
min fields. The weights are calculated

using:

Wi =
AWi∑Y

y=1(T ′
global SCM

(y )−T ′
global AOGCM

(y ))2
(4)

where AWi are prescribed a priori weights that can, if desired, be used to give a regres-10

sion coefficient set greater emphasis in the derivation of the surface climate variable
fields, T ′

global SCM are the global mean temperature anomalies from the prescribed SCM

simulation, T ′
global AOGCM are the global mean temperature anomalies from the AOGCM

simulation used to derive that particular set of regression model coefficients, and Y
is the total number of years for which both T ′

global SCM and T ′
global AOGCM are available.15

The weights are normalized to sum to 1.0. In this approach, fields generated using re-
gression model fit-coefficients derived from an AOGCM simulation where T ′

global is very
similar to the T ′

global from the SCM, will be given greater weight than fields generated
using regression fit-coefficients derived from an AOGCM simulation which was more
different. The final anomaly field V ′ is then calculated using:20

V ′(y ,m) =
N∑

k=1

Wk ×F ′(y ,m)k (5)

where N is the number of simulations available for deriving the regression model fit-
coefficients and F ′ are the anomaly fields derived from the application of the regression
model using the N sets of fit-coefficients.
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6.3 Relative merits of super-ensemble and weighted contribution approaches

To explore the relative performance of the super-ensemble and weighted contribution
approaches, these two methods were applied for training the CPSM. T ′

max and T ′
min time

series from HadGEM2-ES simulations based on RCP 2.6 and RCP 8.5 emissions were
used to derive the fit-coefficients for (i) training the regression model using the super-5

ensemble approach (Sect. 6.1) and (ii) training the regression model on RCP 2.6 and
RCP 8.5 separately resulting in two sets of coefficients (Sect. 6.2). These three sets
of fit-coefficients (one from the super-ensemble approach and two from the weighted
contributions approach) were then used to model T ′

max and T ′
min, where T ′

global from
the HadGEM2-ES RCP 4.5 simulation was used as the predictor time series. As men-10

tioned in Sect. 3, in this study the focus is on exploring the methodological aspects
of the pattern-scaling approach and therefore output from the same AOGCM (but dif-
ferent emissions scenario) is used in application mode instead of using time series
from a SCM. By comparing time series generated by the CPSM with time series from
the HadGEM2-ES RCP 4.5 simulation, a validation of the CPSM can be achieved.15

The Savitzky-Golay smoothed T ′
max and T ′

min annual mean time series from the raw
HadGEM2-ES RCP 4.5 simulation are compared to the annual mean time series de-
rived from the CPSM output for four selected locations and are shown in Fig. 10.

The results from the weighted contributions approach (blue line in Fig. 10) agree
reasonably well with the results derived from the super-ensemble approach (red line20

in Fig. 10) for both T ′
max and T ′

min. Both the output from the weighted contributions
approach and from the super-ensemble approach reproduces the HadGEM2-ES time
series well for most of the selected sites. The largest differences in the simulation of
T ′

max between the two methods, but also between the HadGEM2-ES time series and
the CPSM output, occur over Alexandra, New Zealand. The increase in T ′

max at Alexan-25

dra ceaseth around 2070 but occurs later in both the super-ensemble and weighted
contribution approach. Furthermore, T ′

max warms faster than it would be expected from
T ′

global. The α value for RCP 4.5 is effectively greater than for RCP 2.6 and RCP 8.5 (see

4854

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4833/2013/gmdd-6-4833-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4833/2013/gmdd-6-4833-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4833–4882, 2013

Methodological
aspects of climate

pattern-scaling

S. Kremser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 8) and so when the training is performed on RCP 2.6 and RCP 8.5, the amplitude
of the T ′

max signal is under-estimated.
Since the T ′

global time series from the RCP 4.5 simulation is more similar in magnitude
to the RCP 2.6 simulation than the RCP 8.5 simulation, in the weighted contributions
approach the fields derived from the RCP 2.6 derived fit-coefficients (F ′ in Eq. 5) is5

weighted more than the fields obtained using the regression model fit-coefficients de-
rived from the RCP 8.5 simulation. In contrast, in the super-ensemble approach, the
correlation between T ′

max and T ′
global is driven primarily by the strongest signal which,

in this study, comes from the T ′
max time series obtained from the RCP 8.5 simulation.

Therefore, if the evolution of the climate variable of interest for RCP 2.6 emissions10

scenario is similar to the one from the RCP 4.5 emissions scenario, using the coeffi-
cients from the weighting contribution approach in the CPSM application will reproduce
the evolution of the climate variable under RCP 4.5 better than the application of the
super-ensemble coefficients (e.g. the USA site in Fig. 10). If, however, the evolution of
the climate variable of interest for RCP 8.5 is similar to that from RCP 4.5, using the15

fit-coefficients from the super-ensemble approach will reproduce the evolution of the
climate variable slightly better (e.g. T ′

min for Alexandra in Fig. 10).
To derive a more robust and global measure of how well the CPSM (based on (a) the

weighted contribution, and (b) the super-ensemble approaches) can reproduce the
RCP 4.5 T ′

min time series modelled by HadGEM2-ES when trained on the RCP 2.620

and RCP 8.5 simulations, time series of T ′
min obtained from the CPSM were regressed

against smoothed time series of the same variable from the AOGCM. The slopes of
linear fits to the scatter plots of CPSM data against AOGCM data from the two ap-
proaches are shown in Fig. 11 together with the probability distribution function of the
slopes (histogram in the rightmost panel of Fig. 11). If the T ′

min time series from the25

CPSM and from the AOGCM output at each grid point showed the same secular vari-
ation, all values plotted in Fig. 11 would be 1.0.

The calculated slopes using results from both methods bracket the range 0.8 to 1.2
almost everywhere, with regions in the high northern and southern latitudes exhibiting
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slopes that are statistically significantly different from 1.0 at the 2σ level (hatched area
in Fig. 11). The probability distribution functions of the slopes indicate that the super-
ensemble approach seems to be marginally better in reproducing the AOGCM results
than the individual weighting approach; the most likely value derived from a Gaussian
fit to the histograms is 1.006±0.0991 for the super-ensemble approach compared5

0.983±0.107 for the weighted contributions approach.
The results presented here do not robustly discriminate between the super-ensemble

and individual weighting approaches. Which of the two approaches gives better agree-
ment with the AOGCM signal depends on the location, e.g. in the north-east of Scan-
dinavia the individual weighting approach reproduces the AOGCM time series more10

accurately while over India the super-ensemble approach might be a better choice.

7 Time dependence of the fit-coefficients

The regression model fit-coefficients should, ideally, not vary with time. However, non-
linearities may result in fit-coefficients being different at the end of the period, e.g.
through the 2080s, compared to the beginning of the period, e.g. the 2000s. To inves-15

tigate whether the fit-coefficients show any time dependence, they were expanded to
include a linear dependence on time, i.e. the αk of Eq. (2) were expanded as:

αk = αk0 +αk1 × t (6)

where t represent the number of years after 1980 (t is negative for years before 1980).
The regression model was then trained on T ′

max and T ′
min time series from the Had-20

GEM2-ES RCP 4.5 simulation, where T ′
global was the only predictor. The coefficient

α was expanded first as shown in Eq. (2) and then, secondly, with each of the αk of
Eq. (2) expanded further as in Eq. (6).

As in Sect. 4.4, the SSR value was calculated for each AOGCM grid cell, where
the SSR value, calculated from the model with time dependent fit-coefficients, was25
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divided by the SSR value calculated from the model where time dependent in the fit-
coefficients was excluded. The resultant ratios for T ′

max and T ′
min, using T ′

global from the
RCP 4.5 emissions scenario as the sole predictor, are shown in Fig. 12.

Over most of the globe the inclusion of time dependence in the regression model
fit-coefficient reduces the sum of the squares of the residuals. Reductions are smallest5

over the Northern Hemisphere land and the Antarctic landmass with a most common
reduction of 30 % or less. Over the Weddell Sea and over the Arctic ocean, the sum
of the squares of the residuals of the regression model fit to HadGEM2-ES time series
of T ′

max and T ′
min can be reduced by up to 50 % by including time dependence in the

regression model fit-coefficients. The blue patches in Fig. 12 over the Pacific and Indian10

oceans indicate that including this time dependence can reduce the SSR by about
70 %. While including time dependence in the fit-coefficients can improve the variance
explained by the regression model, these gains are observed more over ocean than
over land. We consider the gains over land to be sufficiently small as to not warrant
including time dependence in the fit-coefficients.15

8 Discussion and conclusions

The results presented above indicate that the climate pattern-scaling approach faith-
fully emulates the behaviour of an AOGCM (in this case HadGEM2-ES) over most
regions of the globe; the Arctic poses a particular challenging region for the application
of a CPSM. A key test of the performance of the CPSM is the extent to which it can re-20

produce fields on which it was not trained. This study has shown that this test is passed
over most regions of the globe; again the Arctic is where it is most likely to fail. How-
ever, validating the performance of the CPSM with a single AOGCM simulation may be
partially compromised by unforced variability (e.g. El Niño/Southern Oscillation, ENSO)
in the AOGCM, although in this study we have smoothed the time series with the goal25

of removing such variability. Access to ensembles of simulations would be valuable in
this regard. Dealing with non-linearities in the response of a local climate variable to
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global forcings also presents a challenge to the CPSM. Cross-scenario linearity and
linearity in time-dependence of the fit-coefficients were both explored. It was found that
a breakdown in linearity across scenarios (i.e. regression model fit-coefficients are sce-
nario dependent) occurs primarily in the Arctic. Including a linear time dependence in
the regression model fit-coefficients improves the performance of the CPSM, primar-5

ily over the oceans. Access to additional predictor time series, such as hemispheric
mean ocean and land temperatures also improves model performance, again primarily
over the oceans. However, when more than one predictor time series is used, it is es-
sential that the predictor basis functions are orthogonalized prior to use. Where more
than a single simulation are available to train the CPSM, two different approaches were10

explored viz. (1) the super-ensemble approach and (2) the weighted contributions ap-
proach. Our CPSM diagnostics did not provide a robust indication which of these two
methods best reproduces the climate response pattern from an AOGCM.

The RCP scenarios which formed the basis for the simulations used in this study do
not only differ in their long-term forcing agents (such as CO2) but also in their short-term15

forcing agents (such as black carbon aerosol) and differences in the balance between
short-lived and long-lived radiative forcing agents in the RCP scenarios may affect
the robustness of the derivation of the regression model fit-coefficients. The effects of
such differences in short-lived radiative forcing agents, which act locally, and long-lived
radiative forcing agents, which act globally, across the RCP scenarios has not been20

quantitatively assessed in this study. This might, in part, cause the non-linearity which
manifests as emissions scenario dependence in the fit-coefficients at some locations.
The differing effects of short-term and long-term forcing agents on the derivation of the
regression model fit-coefficients will be investigated in a future study.

The scope of this study was to present a newly developed CPSM and to investigate25

some methodological aspects of the pattern-scaling approach. For that purpose the cli-
mate patterns were derived from one AOGCM only, HadGEM2-ES. In a future study we
intend to apply the pattern-scaling approach to a number of simulations from different
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AOGCMs. This will allow an estimate of the spread of sensitivities of climate variables
to changes in global mean temperature due to different model parameterizations.

This study focussed on generating anomalies with respect to the baseline period
1961–1990 as more statistically robust results can be derived. Once the T ′

max and T ′
min

anomaly fields have been obtained using the CPSM in application mode, they can be5

added to 1961–1990 monthly mean observations-based climatologies of these fields
to obtain absolute values. These climatologies can be obtained, for example, from the
database of monthly climate observations from meteorological stations held by the Cli-
matic Research Unit (CRU) of the University of Easy Anglia (UEA; Mitchell and Jones,
2005). The monthly mean data are interpolated onto a regular high-resolution (0.5◦)10

longitude-latitude grid, extending over the global land surface, excluding Antarctica, for
the period 1901 to 2009. This dataset is known as CRU TS 3.1 and is available online
at http://www.cru.uea.ac.uk/cru/data/hrg/.

Appendix A

The HadGEM2-ES AOGCM15

The HadGEM2-ES simulations were obtained from the World Climate Research Pro-
gramme’s (WCRP’s) CMIP5 multi-model dataset which is collected, organized, and
archived by the Program for Climate Model Diagnostics and Intercomparison (PCMDI).
Only a brief description of HadGEM2-ES is provided here since detailed documentation
can be found in Collins et al. (2011) and Jones et al. (2011).20

HadGEM2-ES is a coupled AOGCM with a spectral horizontal resolution of the at-
mospheric model component of N96, comparable to 1.875◦× 1.25◦ on a transformed
longitude-latitude grid. The atmospheric component of the model consists of 38 verti-
cal layers, extending to over 39 km in altitude. The ocean component has a horizontal
resolution of 1◦ (decreasing to 1/3◦ at the equator) and 40 unevenly spaced vertical25

levels. HadGEM2-ES includes an interactive land and ocean carbon cycle and an in-
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teractive tropospheric chemistry scheme which simulates the evolution of atmospheric
composition and interaction with atmospheric aerosols.

The HadGEM2-ES datasets used in this study consist of daily output from an histor-
ical simulation and simulations based on the following Representative Concentration
Pathway (RCP) emissions scenarios (Moss et al., 2010):5

– RCP 2.6 whose radiative forcing peaks at ∼3 Wm−2 before 2100 and then declines
to stabilize at 2.6 Wm−2 after 2100.

– RCP 4.5 whose radiative forcing increases monotonically to 4.5 Wm−2 in 2100
and stabilizes thereafter.

– RCP 8.5 with radiative forcing rising to 8.5 Wm−2 in 2100.10

Monthly mean global fields of Tmax and Tmin were calculated from the daily fields, as
were (up to five) globally and regionally averaged annual mean time series used as
the predictors. In all cases, anomalies were calculated by subtracting the 1961–1990
climatology, obtained from the historical simulation, from the monthly mean fields. By
using the CPSM to model only the anomalies away from the 1961–1990 baseline,15

an observations-based climatology can later be used to provide the baseline, thereby
producing fields that are not affected by systematic AOGCM biases.

Mitchell (2003) showed that more statistically robust regression model fit-coefficients
can be obtained by lengthening the period over which the model is fitted. Therefore
the calculated monthly mean fields from the historical simulation (1961 to 2005) were20

extended with monthly mean fields from the three RCP simulations (2006 to 2100)
to produce three continuous time series extending from 1961 to 2100 on which the
regression model can be trained. Since the RCP simulations were initialized using the
historical simulation, a smooth transition from the historical to the future simulations is
ensured.25
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Fig. 1. January mean daily minimum temperature anomalies (with respect to 1961–1990) at
45.2◦ S, 169.4◦ E extracted from a HadGEM2-ES simulation under RCP 4.5 emissions (orange),
the time series smoothed using the Savitzky-Golay filter (red), the annual mean global mean
surface temperature anomaly (with respect to 1961–1990) time series (T ′

global) from the same
model simulation and emission scenario (pale blue) and the smoothed T ′

global time series (blue).
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Fig. 2. Smoothed January mean daily minimum temperature anomalies at 45.2◦ S, 169.4◦ E
regressed against annual mean global mean surface temperature anomalies. All anomalies
are with respect to the 1961–1990 baseline.
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Fig. 3. (Caption on next page.)
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Fig. 3. Global maps of α fit-coefficients for T ′
max (left column) and T ′

min (right column) for four
selected months of the year. The coefficients were obtained by fitting T ′

global (Eq. 1) to T ′
max and

T ′
min time series from the HadGEM2-ES RCP 4.5 simulation. The colour scale shows the value

of α while the overlaid contours show the 1σ uncertainties on α (hatch marks on the contours
show the direction towards smaller uncertainties). Regions in red show where T ′

max and T ′
min are

warming faster than the global mean surface temperature and regions in blue where they are
warming slower than the global mean surface temperature and possibly even cooling (negative
α values).
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Fig. 4. Annual mean T ′
min smoothed time series at Alexandra, New Zealand (45.2◦ S, 169.4◦ E)

from a HadGEM2-ES simulation based on RCP 4.5 emissions (light green), together with its
regression model fit (dark green). The α fit-coefficients, resolved by season, are shown in the
lower right inset. When these fit-coefficients are used together with the T ′

global predictor time
series from HadGEM2-ES simulations under the RCP 2.6 and RCP 8.5 scenarios they produce
the dark red and dark blue curves, respectively. The actual annual mean RCP 2.6 and RCP 8.5
smoothed T ′

min time series at 45.2◦ S, 169.4◦ E are shown as light blue and light red lines,
respectively. The insert in the upper left shows the mean annual cycle, calculated from the
monthly T ′

min time series, from 2090 to 2098 for all six time series.
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Fig. 5. (Caption on next page.).
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Fig. 5. The change in T ′
max and T ′

min between 1961–1990 and 2090–2099 in January and July
derived from the CPSM (left column) and extracted from the HadGEM2-ES model (right col-
umn). Both model simulations are based on RCP 4.5 emissions, while the CPSM was trained
on HadGEM2-ES simulations based on RCP 8.5 emissions.
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Fig. 6. (Caption on next page.)

4871

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4833/2013/gmdd-6-4833-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4833/2013/gmdd-6-4833-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4833–4882, 2013

Methodological
aspects of climate

pattern-scaling

S. Kremser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. Plots of the orthogonalized T ′
x time series from the RCP 4.5 simulation of T ′

max together
with their associated annual mean regression model fit-coefficients. Double hatching shows
where the coefficients are not statistically significantly different from zero at the 1σ level and
single hatching where they are not different from zero at the 2σ level. The thin black line on
each map indicates the 0.0 value. Minimum values are shown in blue and pass through cyan,
green, yellow and orange to maximum values in red (see lower left corner in each panel).
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Fig. 7. (Caption on next page.)
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Fig. 7. Histograms of the ratios of the SSR values for the five basis functions CPSM (SSR5) to
the one basis function CPSM (SSR1) for T ′

max (upper panel) and T ′
min (lower panel). The SSR

ratios were determined for every grid point by dividing SSR5 by SSR1. The grid points and
corresponding SSR ratios were assigned to be located over land or ocean and those values
are shown in the histograms. SSR ratios shown here are based on all three RCP simulations,
where the regression model has been trained separately on each RCP scenario.
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Fig. 8. (Caption on next page.).
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Fig. 8. α fit-coefficients for T ′
max (left column) and T ′

min (right column) at seven selected sites
(the Alexandra, New Zealand, site is examined for both T ′

max and T ′
min) derived by fitting the

regression model to output from three simulations of the HadGEM2-ES model based on the
RCP emissions scenarios denoted in the legend. The solid lines show the regression model
coefficients while the shaded regions bordered by dashed lines show the 1σ uncertainties on
the fit-coefficients. The horizontal dashed black line marks the zero line. Note the different
scales on the y axes.
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Fig. 9. The trend in α for T ′
max across the three RCP scenarios from which the α values were

derived (see colour scale on right). Regions of dense stippling show where the trend is not
statistically significantly different from zero at the 1σ level and less dense stippling shows where
the trend is significant at the 1σ level but not at the 2σ level. Unstippled regions show where
the trend is significant at the 2σ level. White dots show the location of the sites presented in
Fig. 8.
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Fig. 10. (Caption on next page.)
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Fig. 10. Annual mean T ′
max (left column) and T ′

min (right column) time series from the HadGEM2-
ES RCP 4.5 simulation (smoothed) compared to annual mean CPSM output based on the
same emissions scenario using the regression model fit-coefficients from the super-ensemble
(Sect. 6.1) and the weighted contributions (Sect. 6.2) approaches based on RCP 2.6 and
RCP 8.5 training. Note the different scales on the y axes.
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Fig. 11. The linear slopes obtained by regressing T ′
min time series from the CPSM against time

series obtained from HadGEM2-ES (smoothed) using (a) the weighted contributions approach
and (b) the super-ensemble approach. Stippled regions show where the slopes are not sta-
tistically significantly different from 1.0 at the 2σ level. Small black dots show the locations of
the sites from Fig. 10. The rightmost panel shows the PDF of the linear slopes for both the
weighting contributions approach and the super-ensemble approach.
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Fig. 12. (Caption on next page.).
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Fig. 12. SSRincl. time/SSRexcl. time ratios for (a) T ′
max and (b) T ′

min. The ratios were derived by divid-
ing the T ′

max (T ′
min) time series from the HadGEM2-ES RCP 4.5 simulation and the T ′

max (T ′
min)

from the regression model based on the same emissions scenarios where (i) the time depen-
dence was included (SSRincl. time, Eq. 6), and (ii) time dependence was excluded (SSRexcl. time,
Eq. 2).
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