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Abstract

We describe the design and implementation of Climate Fast Input/Output (CFIO), a fast
input/output (I/O) library for high resolution climate models. CFIO provides a simple
method for modelers to overlap the I/O phase with the computing phase automatically,
so as to shorten the running time of numerical simulations. To minimize the code mod-5

ifications required for porting, CFIO provides similar interfaces and features to Parallel
network Common Data Form (PnetCDF), which is one of the most widely used I/O
libraries in climate models. We deployed CFIO in three high resolution climate mod-
els, including two ocean models (POP and LICOM) and one sea ice model (CICE).
The experimental results show that CFIO improves the performance of climate models10

significantly versus the original serial I/O approach. When running with CFIO at 0.1◦

resolution with about 1000 CPU cores, we managed to reduce the running time by
factors of 7.9, 4.6 and 2.0 for POP, CICE, and LICOM respectively. We also compared
the performance of CFIO against PnetCDF in different scenarios. For scenarios with
both data output operations and computations, CFIO decreases the I/O overhead by a15

factor of 5.1 compared to PnetCDF.

1 Introduction

Scientific computing for climate modeling has undergone radical changes over the past
decade. One major trend is to increase the resolution of the models, so as to provide
finer simulation of physical processes of the atmosphere, ocean, land, and sea ice.20

This trend is motivated by the availability of supercomputers with core counts in the
range of tens to hundreds of thousands.

With a higher resolution, the amount of data generated by climate models will be
significantly larger than before. In order to provide scientific data for the Fifth Assess-
ment Report of the United Nations Intergovernmental Panel on Climate Change (IPCC25

AR5), modelers must run coupled climate models to simulate various types of climate
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change scenarios. The experiments in general last for months and generate hundreds
of terabytes of data. The output of such a large amount of data results in severe per-
formance degradation for numerical simulation experiments.

To improve the I/O performance of climate models, previous efforts and I/O libraries
include the Message Passing Interface-Input/Output (MPI-IO, Corbetty et al., 1996),5

the network Common Data Form (netCDF, Rew and Davis, 1990), Parallel netCDF
(PnetCDF, Li et al., 2003), Parallel I/O (PIO, Dennis et al., 2012), and Adaptable IO
System (ADIOS, Lofstead et al., 2009, Lofstead et al., 2008).

Most of the above libraries attempt to improve the I/O throughput through paralleliza-
tion techniques. For real applications, the overall running time mainly consists of two10

phases: computing time and I/O time. While the above libraries are helpful for short-
ening the I/O time of large-scale data, the computing phase still needs to wait for the
I/O phase in iterative simulations. In a sense, the I/O phase and the computing phase
are still serial with respect to each other. There is opportunity to improve I/O efficiency
through overlapping the I/O phase and the computing phase.15

With these issues in mind, we designed and implemented CFIO, a parallel I/O library
that is specifically developed for climate models. The main idea of CFIO is to apply
an I/O forwarding technique to provide automatic overlapping of I/O and computing. To
minimize the code modifications required for porting, CFIO provides similar interfaces
and features to PnetCDF, which is widely used by the climate community and different20

climate models.
We tested CFIO on three real climate models: Parallel Ocean Program (POP, Smith

et al., 2010), Community Ice Code (CICE, Hunke and Lipscomb, 2010) and LASG/IAP
Climate system Ocean Model (LICOM, Yu et al., 2012). When running at 0.1◦ resolution
with about 1000 CPU cores, we managed to decrease the running time by factors of25

7.9, 4.6 and 2.0 for POP, CICE, and LICOM respectively. We also compared the perfor-
mance of CFIO against PnetCDF in different scenarios. Compared to PnetCDF, CFIO
decreases overall running time in real climate modeling scenarios. Although CFIO has
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slightly lower throughput than PnetCDF, CFIO decreases I/O overhead by a factor of
5.1, resulting in better overall performance.

The current release of CFIO is version 1.20. The source code and documentation for
CFIO can be downloaded from Github website (https://github.com/cfio/cfio).

The remainder of this paper is organized as follows. Section 2 discusses the moti-5

vation and the main idea of CFIO. The design and architecture of CFIO is presented
in Sect. 3 in detail. Section 4 introduces the interface of CFIO and provides a simple
example. Section 5 evaluates and analyses the performance of CFIO. Section 6 intro-
duces related work. Conclusions and possible future work are discussed in Sect. 7.

2 Motivation10

In traditional climate models, the computing phase and the I/O phase run alternately.
The computing phase performs simulation for certain time, and then the I/O phase
outputs results following each computing phase. Namely, the computing phase and the
I/O phase for traditional climate models are serial.

In fact, for most current climate models, the initial conditions or datasets for process-15

ing are loaded at the starting phase. Then the restart files, which contain all of the
initial condition information that is necessary to restart from a previous simulation, will
be written to the disk at a fixed frequency. Finally, the historic files, which include all of
the diagnostic variables, will also be written to the disk at certain frequency. In general,
there are no random seeks, no read-after-write operations, and writing operations are20

usually append-only for all of the appropriate parts of the initial files, restart files and
historic files.

Because of the append-only data accessing patterns, the computing step does not
need to wait for the completion of the last I/O step. Motivated by this observation, we
consider the possibility of overlapping the I/O phase with the computing phase. As25

shown in Fig. 1, the computing and the I/O phases can be performed in parallel. Com-
pared with the serial computing and I/O method, the I/O time will be hidden by the
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computing time in a parallel computing and I/O method. This asynchronous computa-
tion and I/O will be useful to shorten the running time of climate models.

Another advantage of overlapping the computing phase with the I/O phase is that the
efficiency of computing and storage resources can be improved. For the serial method,
the computing resource is idle during the I/O phase. On the other hand, the storage5

resource is idle during the computing phase. For the parallel method, the computing
phase and the I/O phase are both pipelined. The computing and storage resources are
always fully utilized.

3 Design of CFIO

This section describes the general design of CFIO. We first introduce the system ar-10

chitecture of CFIO and discuss the I/O forwarding technique, which is the main method
to achieve the overlapping of the computing phase and the I/O phase. We then ana-
lyze the maximum possible speedup we can achieve by using CFIO. We also discuss
the design options for synchronous and asynchronous communication methods of I/O
forwarding.15

3.1 System Architecture of CFIO

Overlapping computation with communication and I/O is an established method for
improving the performance of a parallel program. CFIO takes the advantage of the
computing pattern to reduce the I/O overhead, and uses I/O forwarding to automate
the overlapping of I/O and computing.20

A diagram of the I/O forwarding technique is shown in Fig. 2. When the climate
model uses CFIO as its I/O method, extra I/O processes are launched in addition to
the original computing processes. The computing processes mainly handle the numer-
ical computing tasks, while the I/O processes mainly handle the tasks of outputting
data. All of the I/O requests generated in the computing processes will be forwarded to25
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the I/O processes. The computing processes can therefore perform continuously with-
out waiting for I/O to complete. The I/O processes output the data through calling the
underlying PnetCDF interfaces. The I/O processes form a large buffer pool in memory
and can be used to exchange data efficiently.

The I/O forwarding technique has the following advantages: first, for each computing5

node, forwarding I/O requests to other nodes is useful for reducing the local competi-
tion for CPU and memory resources; second, the independent I/O processes provide
a large memory buffer, which makes certain optimizations possible, such as data ag-
gregation and rearrangement. The non-continuous writing of small data blocks can be
transformed into continuous writing of large data blocks, which can significantly improve10

the performance of the parallel file system.
The system architecture of CFIO is shown in Fig. 3. We use a server-client mecha-

nism to deal with forwarding and handling of I/O requests. The CFIO client is co-located
with the computing process and provides the climate model with a series of interfaces
for accessing the model data. When an I/O request is generated in a computing pro-15

cess, the CFIO client will pack the request into a message and then send it to the CFIO
server via MPI communication.

The CFIO server is running as a daemon program in the I/O process to receive
messages and handle I/O requests from multiple CFIO clients. After receiving an I/O
request, the CFIO server places the request into an I/O queue. When handling I/O20

requests, the CFIO server takes one I/O request off the queue and unpacks the I/O
request. The CFIO server then calls the corresponding PnetCDF function to perform
the actual I/O operation. For data writing operations, data aggregation is performed to
gather subarray data from each CFIO client into a large array of data.

As shown in Fig. 4, the data is forwarded from the computing process to the I/O pro-25

cess. Thus, the total running time of the simulation consists of the computing time, the
I/O forwarding time and the I/O time. One possible scenario that we must consider is
that the I/O time is greater than the computing time, and can not be hidden by the com-
puting phase. In this scenario, we can increase the number of I/O processes to solve
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the problem. More I/O processes provide a larger buffer pool, which can accommodate
more data. Meanwhile, more I/O processes also lead to a faster writing speed. In this
way, we can further reduce the I/O time and completely overlap the I/O phase with the
computing phase.

3.2 Speedup Analysis5

In this section, we formulate an analytical model to estimate the maximum possible
speedup of a program when switching to CFIO.

We denote the running time of a model with its default I/O approach and CFIO as
Torigin and Tcfio respectively. As shown in Fig. 4, Tcfio and Torigin can be calculated as
follows :10

Torigin = Tcompute + Tio (1)

Tcfio = max{Tcompute + Tsend,Trecv + Tio} (2)

where Tcompute and Tio are the computing time and the I/O time in one simulation step,
Tsend and Trecv are the time of sending I/O requests at the client and the time of receiving15

I/O requests at the server.
If the I/O time cannot be hidden by the computing phase, Tcfio equals the value of

(Trecv+Tio). As mentioned above, this scenario can be avoided by increasing the number
of I/O processes. So in an ideal case, Tcfio = Tcompute + Tsend. The speedup S of using
CFIO can be calculated as:20

S =
Torigin

Tcfio
=

Tcompute + Tio

Tcompute + Tsend
(3)

An upper bound on speedup (when neglecting Tsend) can be derived as:

S <
Tcompute + Tio

Tcompute
= 1+

Tio

Tcompute
(4)
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The Eq. (4) means that the upper bound of speedup with CFIO is determined by the
proportion of the I/O time and the computing time of the original program. The greater
the proportion of I/O time in the entire running time, the greater speedup CFIO can
achieve.

3.3 Communication Method for I/O Forwarding5

There are two options when designing the communication method for I/O forwarding:
synchronous and asynchronous methods.

Our initial design for I/O Forwarding is using the asynchronous communication ap-
proach. In this approach, all the I/O requests are packed into a client buffer; then,
forwarding is performed by a separate sending thread during the computing phases.10

This approach permits I/O forwarding to overlap with computing, which implies that the
major overhead of calling an asynchronous CFIO function is memory copy.

However, after performing many experiments, we observed that the asynchronous
communication approach leads to network resource competition between the comput-
ing phase and the I/O forwarding phase. The competition overhead is negligible when15

we run the climate model with a small number of cores. However, when the number
of cores increases to several hundreds, the competition leads to significant increase
of the computing time, which completely overrides the benefits of overlapping the I/O
forwarding with computing.

In contrast, the synchronous communication approach is a better choice for larger20

scale computing. When using this approach, the communication needed by the com-
puting phase will not occur during the I/O forwarding phase. Therefore, the network
resource competition is avoided. The effects of asynchronous communication and syn-
chronous communication used in CFIO are compared in Sect. 5.1.

Note that synchronous communication can lead to buffer exhaustion in I/O processes25

because of the bursty I/O behavior in climate models. In this case, the CFIO client has
to remain idle until the CFIO server finishes handling some of the buffered requests and
releases sufficient buffer space. Because the I/O pattern of a climate model is known,
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the buffer exhaustion can be avoided by launching enough servers, the number of
which is controlled by the user. How to determine the optimal number of CFIO servers
for a particular program and a particular machine environment is the subject of ongoing
work.

4 The CFIO Interface5

As the netCDF format is the de facto data format in the climate community, we choose
to inherit the netCDF format to minimize the required efforts in terms of code updates
and data post-processing when switching to CFIO. In netCDF, writing a new dataset
contains a sequence of operations, which creates the dataset, defines the dimen-
sions, variables, and attributes, ends define mode, writes variable data, and closes10

the dataset file. CFIO supports all of the functions that are required to perform this
series of operations. These functions can be classified into three categories:

1. Dataset Functions: create/close a dataset, set the dataset to define/data mode.

2. Define Mode Functions: define dataset dimensions, variables and attributes in
define mode.15

3. Data Access Functions: read/write variable data in data mode.

There are four additional functions that involve initialization and finalization of the
library and an operation that relates to the I/O forwarding. All of the additional functions
are shown in Table 1.

For the requirement of consistency across all computing processes, all CFIO func-20

tions are defined as collective I/O operations. For example, when a climate model in-
tends to write a new dataset, all of the computing processes should call the CFIO
functions in the same sequence, and the same arguments should be passed into the
functions.
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Listing 1. A simple example with CFIO.

! I n i t i a l i z e
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
i e r r = c f i o _ i n i t (LAT_PROC, LON_PROC, r a t i o )

5

! * * * * * * * * * * * * * * * * * * * *
! computing and ou tpu t ing
! * * * * * * * * * * * * * * * * * * * *
IF ( c f io_proc_ type ( ) == CFIO_TYPE_CLIENT) THEN

! * * * * * * * * Computing phase * * * * * * * * * * * *10

. . . . . .
! * * * * * * * * I /O phase * * * * * * * * * * * * * * * * * * * * * *
! ou tput data
i e r r = c f i o _ c r e a t e ( f i lename , 0 , nc id )
i e r r = c f io_def_d im ( ncid , " l a t " , l a t , dim ( 1 ) )15

i e r r = c f io_def_d im ( ncid , " lon " , lon , dim ( 2 ) )
i e r r = c f i o_de f_va r ( ncid , " ss t " ,NF_FLOAT,2 , dim , 0 )
i e r r = c f io_enddef ( nc id )
i e r r = c f i o_pu t_va ra_ rea l ( ncid ,0 ,2 , s t a r t , count , ss t )
i e r r = c f i o _ c l o s e ( nc id )20

i e r r = c f io_end_ io ( )
END IF

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
! F i n a l i z e25

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
i e r r = c f i o _ f i n a l i z e ( )
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Listing 1 shows a simple example of outputting data with CFIO. This example out-
puts Sea Surface Temperature (SST) data with latitude and longitude dimensions. The30

cfio_init function is used to describe the dimensions of the output array and the num-
ber of CFIO servers. The function takes three arguments: LAT_PROC, LON_PROC
and ratio. LAT_PROC and LON_PROC are used to describe the latitude and longitude
dimension decompositions of the horizontal domain among computing processes; ra-
tio stands for the proportion of computing processes and I/O processes. If we run the35

example application with N processes, there will be N/ratio processes acting as I/O

4784

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4775/2013/gmdd-6-4775-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4775/2013/gmdd-6-4775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4775–4807, 2013

CFIO

X. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

processes. The cfio_proc_type function is called to indicate the type of the local pro-
cess. The computing processes should run the computing code and call the CFIO data
access functions to output data. The I/O process will be launched automatically to run
the CFIO server. The cfio_put_vara_real function is called to output the variable data
and the cfio_end_io function is called to send a signal indicating that the current I/O5

phase is finished. This signal is used for the management of the buffer and the com-
munication between the sender and the receiver.

This example shows that the I/O forwarding is automatically implemented and the
complicated underlying mechanisms are opaque to the modelers. If the original pro-
gram is already using netCDF interfaces, the users would not need to perform any10

extra programming rather than adding a few configuration function calls and switching
“nf90” (the prefix for the standard netCDF Fortran 90 interfaces) into “cfio” when calling
the I/O functions.

5 Experiments

We conducted our experiments on the Explore100 supercomputer at Tsinghua Uni-15

versity. The supercomputer consists of 740 nodes, each of which has two 2.93 GHz
Intel Xeon X5670 6-core processors and 32 gigabytes (GB) memory. The nodes are
connected through an Infiniband network, which provides a maximum bandwidth of
40 Gbps. The file system is Lustre, with 1 Meta Data Server (MDS) and 40 Object Stor-
age Targets (OST). The peak writing performance of this file system is 4 GBps. The20

node operating system is RedHat Enterprise Linux 5.5 x86_64. All of the programs in
our experiments are compiled with Intel compiler v11.1, and the MPI environment is
Intel MPI v4.0.2.

In the following sections, we first describe our evaluation of CFIO through three cli-
mate models, and then provide a comparison between the performance of CFIO and25

PnetCDF in various scenarios.
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5.1 POP Case Study

POP is an ocean circulation model that has been developed at Los Alamos National
Laboratory and written in Fortran with MPI support. We use version 2.0.1 of POP in this
study. POP partitions the data arrays equally across all of the computing processes
by using a two-dimensional data decomposition of the horizontal domain. In its de-5

fault I/O approach, data outputs from different processes are gathered by one process
and then written to disk by calling a serial netCDF interface. National Center for At-
mospheric Research (NCAR) officially adopts POP as the ocean component of the
Community Climate System Model (CCSM) and the Community Earth System Model
(CESM), and has added various features to meet the needs of the CCSM and CESM10

coupled models. To enable experiments for high-resolution (0.1◦) ocean modeling, we
used the standalone POP instead of a coupled climate model.

The POP output files consist of restart files, history files and movie files. The restart
file is generated for each simulated day. History and movie files are generated for each
simulated hour. The variables included in the output netCDF files are two dimensional15

arrays with size of 3600×2400 , representing the spatial domain, and three dimensional
arrays in the size of 3600×2400×40, in which the third dimension represents sea depth.
The total size of the final output files is 315 GB. In this experiment, the POP with 0.1◦

resolution ran for 440 iterations to simulate 2 days.
We recorded the overall POP running time with CFIO and compared the results with20

POP running with default I/O and with NO-I/O. The overall running time with NO-I/O
describes the pure computation time, which can be used as the upper bound of the
maximum performance that can be achieved by complete overlapping of I/O and com-
puting. Figure 5 shows the experimental results. Our current design requires the num-
ber of computing processes to be multiples of the number of I/O processes. Therefore,25

the case of 64 I/O processes and 160 computing processes is not yet covered in our
current experiments.

4786

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4775/2013/gmdd-6-4775-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4775/2013/gmdd-6-4775-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4775–4807, 2013

CFIO

X. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

As expected, CFIO outperformed the default I/O approach in POP, with both 32 and
64 I/O processes. When running with 1280 computing processes and 32 I/O processes,
the overall running time of POP decreased from 3246 to 471 s, which means that we
obtained a 6.9× speedup for POP with CFIO, which is already close to the upper bound
given in the NO-I/O case. The performance of running with 64 I/O processes is better5

than that of running with 32 I/O processes. In the case of 1280 computing processes,
we observed that the overall running time can be further reduced by 12 % (471 down
to 413 s) when switching from 32 to 64 I/O processes. This translates into an increased
speedup of 7.9× when compared to the original performance of POP.

We also compared the POP running time for each of the two different communication10

approaches discussed in Sect. 3.3. To obtain an accurate understanding of the impact
from I/O forwarding, we measured the computing time and I/O time separately in POP.
We also evaluated the case with NO-I/O, to measure the pure computing running time
that is not affected by any I/O operations.

Figure 6 shows the performance result for different communication methods when15

running with 32 I/O processes. We observed that when using the synchronous com-
munication method, the computing time is always close to the case of NO-I/O. How-
ever, when using the asynchronous communication method, the computing time be-
came significantly larger than the NO-I/O case when POP scales to a larger num-
ber of cores. POP running with 160 computing processes was the only case where20

the asynchronous communication method achieved shorter running time than the syn-
chronous method. With the number of computing processes increased to 320, the total
running time with the asynchronous communication method became larger than the
synchronous method, due to the communication conflicts between the I/O forward-
ing and the computation. When running with 1280 computing processes, the comput-25

ing time with the asynchronous communication method increased to 1101 s, which is
around 3 times larger than the case with NO-I/O. Based on these results, we chose to
use synchronous communication as our default communication method.
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5.2 CICE Case Study

CICE is a sea ice model which has also been developed at Los Alamos National Lab-
oratory. It is the sea ice component model of CESM. In general, CICE uses the same
horizontal grid resolution as POP. CICE partitions the data arrays equally across all of
the computing processes by using the same two-dimensional data decomposition as5

POP. CICE uses netCDF as the output file format for history files, and binary file format
for the restart files. Similar to POP, when outputting the history file in CICE, data out-
puts are gathered by one process and then written to disk by calling a serial netCDF
interface.

Because CFIO only supports netCDF format, we only used CFIO to output history10

files in CICE, and the output of restart files was disabled. We used the CICE version
4.1 with 0.1◦ resolution in this experiment. The CICE ran for 960 iterations to simulate
40 days. History files are generated for each simulated day. The variables included in
output netCDF files are 2-D arrays of size 3600×2400. The output files have a fixed
size of 80 GB in total.15

We recorded the overall CICE running time with CFIO and compared the results
with CICE running with default I/O and with NO-I/O. Figure 7 shows the experimental
result. The number of computing processes varied from 160 to 1280. Comparing the
running time of CICE with default I/O and NO-I/O, we clearly see that the I/O brings a
significant overhead to both the running time and the scalability of the program. CFIO20

outperformed the default I/O approach in CICE, with both 32 and 64 I/O processes.
When running with 1280 computing processes, the running time of CICE with 64 I/O
processes was 204 s, which is less than the 226 seconds running time of CFIO with 32
CFIO servers. In terms of scalability, CICE with CFIO demonstrated a similar behavior
to CICE with NO-I/O. Compared to CICE with default I/O (running time 928 s), we25

achieved 4.6× speedup by using 64 I/O processes.
The speedup in the case of CICE was slightly lower than the case of POP. The

main reason is that the I/O load of CICE is not as heavy as POP. Since the running
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time of CICE with NO-I/O (the pure computing time) was 178 s, the proportion of the
I/O time and the computing time is 4.2. Based on Eq. (4), we can infer that the maxi-
mum speedup from using CFIO in the CICE case is 5.2, compared with the maximum
speedup of 9.8 in POP.

5.3 LICOM Case Study5

LICOM is an ocean model developed by the State Key Laboratory of Numerical Mod-
eling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) of the In-
stitute of Atmospheric Physics (IAP) in China. It is the sea component model of the
LASG/IAP Earth System Model FGOALS_g2. LICOM also partitions the data arrays
equally across all of the computing processes by using a two-dimensional data decom-10

position of the horizontal domain. LICOM uses netCDF as the output file format. The
output data, including restart files and history files, are gathered by one process and
then written to disk by calling a serial netCDF interface.

In this experiment, we used LICOM version 2 with 0.1◦ resolution to simulate 10 days.
Restart files are generated for each simulated day. Only one restart file is generated15

at the end of the program. Output file variables are two dimensional arrays with size
of 3602×1683 , in the spatial domain, and three dimensional arrays in the size of
3602×1683×55, in which the third dimension represents sea depth. The output files
have a fixed size of 144 GB in total.

Figure 8 shows the test result of LICOM. In this experiment, the number of com-20

puting processes varied from 200 to 800. The scalability of LICOM is slightly poorer
than POP and CICE. When scaling to 800 computing processes, the computing per-
formance of LICOM started to degrade. Therefore, we used a maximum of 800 instead
of 1280 computing processes in this experiment. LICOM running with 800 computing
processes and 50 I/O processes had an running time of 4561 s. Compared to the origi-25

nal running time of 9101 s, LICOM obtained a 2× speedup by using CFIO. The running
time with NO-I/O (the pure computing time) was 4383 s, with the proportion of I/O time
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to computing time being 1.07. Based on Eq. (4), we can compute that the maximum
speedup from using CFIO in the LICOM case is 2.07.

5.4 CFIO Versus PnetCDF

To compare the performance of CFIO and PnetCDF, we designed two MPI test pro-
grams to evaluate different scenarios. The first MPI test program outputs a 32 GB5

dataset with 500 variables in one large netCDF file to evaluate the throughput of CFIO
and PnetCDF. The second MPI test program simulates the typical I/O patterns of cli-
mate models to show the advantage of I/O forwarding technology.

In the first program, every variable is a two dimensional array with 4096×2048
double-precision floating-point numbers. Data arrays are partitioned equally across all10

of the computing processes, using two-dimensional data decomposition. The size of
the output data per client process decreases as the number of computing processes
increases.

Figure 9 shows the throughput of CFIO as a function of the number of CFIO servers.
The throughput of PnetCDF is shown for comparison. The horizontal axis of PnetCDF15

stands for the number of clients that call PnetCDF functions. We see that the through-
put of CFIO increased with the number of CFIO servers but then stoped increasing
when the number of CFIO servers reached 128. This is mainly due to the limited num-
ber of storage devices in the Lustre file system. The writing throughput of CFIO reached
approximately 1 GBps when using 128 servers and 512 clients. The same pattern was20

observed for PnetCDF. PnetCDF achieved a throughput of approximately 1.24 GBps
when using 128 clients.

The results show that the throughput of CFIO is approximately 10 % less than that
of PnetCDF because of the overhead that is associated with I/O forwarding. Although
CFIO provides slightly lower throughput than PnetCDF, we will show that the practical25

performance is better than PnetCDF in real scenarios emulated by the second pro-
gram.
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In the second program, we emulated a computing and I/O pattern that is typical
in common climate models. There are a total of 40 loop iterations in the program. In
each loop iteration, the program takes 7.5 s to perform floating-point computations,
and will produces 3.2 GB of data. There are no intercommunication operations during
the computing phases. For comparison purposes, we evaluated three different cases:5

CFIO, PnetCDF, and NO-I/O. NO-I/O means that all I/O operations are disabled in the
test application.

Figure 10 shows the overall running time of the test program. Without any I/O op-
erations, the total running time was 300 s. When running with 128 clients, the total
running time using PnetCDF was 417 s, while the corresponding time using CFIO with10

128 servers and 128 clients was 323 s. CFIO decreased the I/O overhead by a factor of
5.1 compared to PnetCDF. Figure 10 also shows that the performance of running with
more servers is better. The I/O overhead with CFIO is the cost of I/O in the last loop,
which cannot be overlapped, plus the cost of I/O forwarding. When the throughput of
CFIO grows with the increase in the number of servers, the cost of I/O in the last loop15

is reduced. The cost of I/O forwarding is also naturally reduced as the number of CFIO
servers increases.

6 Related Work

6.1 Low-level parallel I/O libraries

MPI-IO, a parallel low-level I/O standard, is the I/O part of the MPI-2 standard. MPI-IO20

allows users to collectively specify the I/O requests of a group of processes and to use
a stream of bytes in a file as the data model. ROMIO (Thakur et al., 1999), which is
one of the portable MPI-IO implementations, uses data sieving and collective I/O tech-
niques to improve the I/O performance. Data sieving is used to process noncontiguous
requests from one process. Collective I/O is coordinated access to storage by a group25

of processes.
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6.2 High-level parallel I/O libraries

NetCDF is a scientific I/O library that provides multidimensional data model and is
widely used in climate models. PNetCDF was developed to support parallel I/O for
NetCDF. It was based on MPI-IO, to take advantage of collective I/O optimizations.
Starting with version 4, NetCDF is interoperable with Hierarchical Data Format 5(HDF5),5

which is another high-level I/O library for storing and accessing multidimensional datasets.
PIO is an application-level parallel I/O library that was developed for the CESM. PIO

supports several back-end I/O libraries, including MPI-IO, netCDF, and PnetCDF. PIO
can redistribute data in all of the processes that participate in I/O and can rearrange
data in memory into a more I/O-friendly decomposition. These methods can improve10

the I/O performance and minimize the memory consumption of PIO efficiently.
ADIOS provides a simple function and an external XML file to configure the data

structure and I/O methods. By switching parameters in the XML file, users can choose
an optimal I/O method for their application according to the runtime environment. In
ADIOS, a novel BP file format is designed to decrease the overhead of maintaining15

metadata consistency.

6.3 Overlapping I/O and I/O forwarding

Overlapping I/O has been shown as a useful technique to dramatically improve I/O
performance. Dickens and Thakur (1999) implemented split-collective I/O in MPI 2.0 to
provide a collective I/O that overlaps with computing by threads. The research found20

that simply spawning a thread to perform the collective I/O operation in the background
is worse than the sequential approach. The best approach is to only perform writes
to disk in the background, and to perform the copying and intercommunication that
is required by the collective I/O in the main thread. More et al. (1997), Tsujita (2004)
and Caglar et al. (2003) also used multi-threaded mechanisms to increase the perfor-25

mance of MPI applications. Patrick et al. (2008) presented a comparative study of dif-
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ferent strategies of overlapping I/O, communication and computation. The performance
results showed an obvious benefit from overlapping I/O with other procedures.

I/O forwarding has been used in Prost et al. (2001), Oldfield et al. (2006), Nisar et al.
(2008), Fu et al. (2010), Docan et al. (2010) and May (2001) to reduce the I/O impact
on computing. The IBM Blue Gene series of supercomputers (Yu et al., 2006) uses5

independent I/O nodes in their system to handle I/O requests, which are generated in
computer nodes and forwarded to I/O nodes. Datastager, designed by Abbasi et al.
(2009), is a data staging service that provide asynchronous data extraction for ADIOS.
This service takes the approach that is the most closely related to CFIO among the
studies that inspire our CFIO design. Datastager uses server-directed I/O to manage10

asynchronous communication for data transfer. The Datastager research found that
the asynchronous method for data transfer can significantly impact the performance of
tightly coupled parallel programs. Datastager implements two schedulers to reduce the
impact. The phase-aware scheduler prevents background data transfer in the commu-
nication phase, which is predicted by Datastager or marked by the application develop-15

ers. The rate limiting scheduler manages the number of concurrent requests that are
made to compute nodes to control the data transfer rate.

Palmer et al. (2011) proposed a specialized parallel data I/O method for the Global
Cloud Resolving Model. This method can avoid the creation of very large numbers of
files. The output data layout linearizes the data in a consistent way that is independent20

of the number of processors used to run the simulation and provides a convenient
format for subsequent analysis of the data.

Compared to the previously described work, CFIO provides automatic overlapping
of I/O with computing. CFIO uses I/O forwarding to perform overlapping I/O on remote
processors so that the overhead for managing multiple threads is avoided. In addi-25

tion, CFIO provides synchronous functions that perform I/O overlapping automatically.
Modifications to the existing climate modeling code for asynchronous functions are not
necessary.
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7 Conclusions

In this article, we presented a parallel I/O library, CFIO, which provides automated
overlapping of I/O and computing. CFIO uses similar interfaces to netCDF, so as to
minimize the required code modification when porting. The experimental results show
that CFIO outperforms PnetCDF in typical climate modeling scenarios. We also com-5

pared the performance of using different communication methods, and we found that
the synchronous communication method performs better when a program is running
on a larger number of cores.

For future work, we plan to conduct more experiments on different machines with dif-
ferent file systems. We will also adopt and test CFIO in more climate models. The MPI10

communication method that we used for I/O forwarding requires further optimization.
The method of determining the optimal number of CFIO servers for specific climate
models still needs to study.
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Table 1. Additional Functions of CFIO.

Function Description

cfio_init Initialization of CFIO
cfio_final Finalization of CFIO
cfio_proc_type Indicating whether the process

is an I/O process or a compute
process

cfio_io_end Indicating the completion of an
I/O phase
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Fig. 1. Overlapping I/O with Computing.
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Fig. 2. The schematic diagram of the I/O forwarding technique.
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Fig. 3. The system architecture of CFIO.
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Fig. 4. Overlapping I/O with computing through I/O forwarding.
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