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Abstract

The Parallel Ocean Program (POP) is used in many strongly eddying ocean circulation
simulations. Ideally one would like to do thousand-year long simulations, but the cur-
rent performance of POP prohibits this type of simulations. In this work, using a new
distributed computing approach, two innovations to improve the performance of POP
are presented. The first is a new block partitioning scheme for the optimization of the
load balancing of POP such that it can be run efficiently in a multi-platform setting. The
second is an implementation of part of the POP model code on Graphics Processing
Units. We show that the combination of both innovations leads to a substantial perfor-
mance increase also when running POP simultaneously over multiple computational
platforms.

1 Introduction

Physical oceanography is currently undergoing a paradigm shift in the understanding
of the processes controlling the global ocean circulation. Two factors have contributed
to this shift: (i) the now about twenty-year long record of satellite data and (ii) the
possibility to simulate the ocean circulation using models which include processes on
the Rossby deformation radius (10-50 km). Resolving this scale captures the instability
processes that lead to ocean eddies which subsequently interact and affect the large-
scale ocean flow (Vallis, 2006).

The level of realism (in relation to available observations) in simulating the ocean
with high-resolution strongly eddying models substantially increases compared to the
low-resolution models in which the effects of eddies are parametrized. For example, it
leads to a much better simulation of the different oceanic boundary currents, in partic-
ular the separation of the Gulf Stream in the Atlantic. Also the degree to simulate the
surface kinetic energy distribution, which can be compared with satellite data, markedly
improves (Smith et al., 2000; Maltrud et al., 2010).
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The use of the strongly eddying models is, even on the supercomputing platforms
currently available, still computationally expensive and simulations have a long turn-
around time. Typical performances are one to a few model years per 24 h using thou-
sands of cores (Dennis, 2007). Considering the fact that it takes at least 1000 yr to
reach a near statistical equilibrium state, innovations to increase the performance of
these models and to efficiently analyze the data from the simulations have a high pri-
ority.

Today many traditional cluster systems are equipped with GPUs, because of their
ability to process computationally intensive workloads at unprecedented throughput
and power efficiency rates. Existing software requires modifications such as the ex-
pression of fine-grained parallelism before it may benefit from the added processing
power that GPUs offer (Bleichrodt et al., 2012). However, it is currently not well known
what specific parts of ocean models can benefit the most from execution on GPUs,
how the existing software should be revised to efficiently use GPUs, and what impact
the use of GPUs will have on performance.

In this paper, we present two innovations to improve the performance of the Paral-
lel Ocean Program (POP). POP is also used as the ocean component of the much
used Community Earth System Model (CESM). We have applied our modifications to
a standalone version of POP (v2.1). However, we have confirmed through source code
inspection that all of our changes are also applicable to and fully compatible with the
latest release of CESM (v1.2.0). The main issue is how to adapt POP such that it can
run simultaneously (and efficiently) on multiple GPU clusters. First we address alterna-
tive domain decomposition schemes and hierarchical load balancing strategies which
enable multi-platform simulations such that further scaling can be achieved. Second,
we show how POP can be adapted to run on Graphics Processing Units (GPUs) and
study the effect of GPU usage on its performance. The source code of our modified
version of POP can be obtained from https://github.com/NLeSC/eSalsa-POP/.
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2 Load balancing

The model considered here is the global version of POP (Dukowicz and Smith, 1994)
developed at Los Alamos National Laboratory. We consider the strongly eddying con-
figuration, indicated by R 4, as used in recent high-resolution ocean model simulations
(Maltrud et al., 2010; Weijer et al., 2012). This version has a nominal horizontal res-
olution of 0.1° using a 3600 x 2400 horizontal grid with a tripolar grid layout, having
poles in Canada and Russia. The model has 42 non-equidistant z levels, increasing
in thickness from 10 m just below the upper boundary to 250 m just above the lower
boundary at 6000 m depth. In addition, bottom topography is discretized using partial
bottom cells, creating a more accurate and smoother representation of topographic
slopes.

2.1 Domain decompositions and block distributions

POP supports parallelism on distributed memory computers through the Message
Passing Interface (MPI). To distribute the computation over the processors, POP uses
a three-dimensional mesh, sketched in Fig. 1a. The domain is decomposed into equal
sized rectangular blocks in the horizontal direction (corresponding to the longitude and
latitude). Each block also contains several layers in the vertical direction (depth). The
blocks are then distributed over the available MPI tasks, where each task receives one
or more blocks. Blocks consisting only of land points may be discarded from the com-
putation. Below we will assume that a single MPI task is assigned to a processor core
(unless stated otherwise).

Each block is surrounded by a halo region (Fig. 1b) that contains a copy of the infor-
mation of the neighbouring blocks. These halos allow the calculations on each block to
be performed relatively independently of its neighbour blocks, thereby improving paral-
lel performance. Nevertheless, the data in the halo regions needs to be updated regu-
larly. This requires a data exchange between the blocks, which leads to communication
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between the MPI tasks, the amount of data depending on the width of the halo, the size
of the blocks, and the block distribution over the MPI tasks.

In POP, the halo width is typically set to 2. For an example block size of 60 x 60,
the number of elements that need to be exchanged per block in every halo exchange is
4x(60x2)+4x4 = 496. This number may need to be multiplied by the number of vertical
levels, depending on the datastructure on which the halo exchange is performed. Some
datastructures, like the horizontal velocity, store a value for every gridpoint at every
depth level. As a result, a 3-D halo exchange is required that exchanges elements
from every depth level. Others datastructures, such as surface pressure, only consist
of a single level. There, a 2-D halo exchange is sufficient.

For neighboring blocks that are assigned to the same MPI task, the data exchange
is implemented by an internal copy and no MPl communication is required. Also, no
data needs to be exchanged with (or between) land elements. Therefore, the amount
of data that needs to be communicated between MPI tasks depends heavily on the way
the blocks are distributed over the MPI tasks.

2.2 Existing block partitioning schemes

POP currently supports three algorithms for distributing the blocks over the available
MPI tasks, cartesian, rake (Marquet and Dekeyser, 1998), and space-filling curve (Den-
nis, 2007). The cartesian algorithm starts by organizing the tasks in a two-dimensional
grid. Next, the blocks are assigned to these tasks according to their position in the
domain. If the number of MPI tasks does not divide the number of blocks evenly in
either dimension, some tasks may receive more blocks than others. In addition, some
tasks may be left with less work (or even no work) if one or more blocks assigned to
it only contain land. As shown in Dennis (2007), load imbalance between tasks can
significantly degrade the performance of high-resolution ocean simulations.

The rake algorithm attempts to improve the load balance by redistributing the blocks
over the tasks. Note that this requires that the number of blocks is significantly larger
than the number of MPI tasks. The rake algorithm starts with a cartesian distribution
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and the corresponding two-dimensional MPI task grid. First, the average number of
blocks per task is computed. Then, for each row in the task grid, the algorithm takes the
first task in the row and determines whether the number of blocks exceeds the average.
If so, the excess blocks are passed on to the next task. This process is repeated for all
tasks in the row. The process is repeated for all columns of the task grid. As described
in Smith et al. (2010), the algorithm “can be visualized as a rake passing over each
node and dragging excess work into the next available hole”. In an attempt to keep
neighboring blocks close together, constraints are placed on block movements that
prevent blocks from moving too far from their direct neighbours. Unfortunately, there
are instances where the rake algorithm actually results in a worse load balance where
blocks get raked into a corner. As a result Dennis (2007) states that “We do not consider
the current implementation of the rake algorithm... sufficiently robust.”

The space-filling curve algorithm described in Dennis (2007) uses a combination of
Hilbert, meandering Peano, and Cinco curves to partition the blocks (Fig. 2). Concep-
tually, it draws a single line that visits each of the blocks exactly once. It then splits this
line into equal size segments, each segment visiting the same number of blocks. Due
to the way the line is drawn, the blocks in each segment are also continuous in the
two-dimensional domain. This solution degrades slightly when the land-only blocks are
discarded, which introduces “cuts” in the curve. Nevertheless, the space-filling curve
algorithm significantly improves the load balance between MPI tasks. A limitation of this
approach is that each of the space-filling curves can only partition domains of a spe-
cific size. For example, a domain P x P can be partitioned by a Hilbert curve if P = 2",
or by a meandering Peano curve if P =3, where n and m are integers. By using
combinations of different curves the set of supported problem sizes can be extended.

2.3 A new hierarchical partitioning scheme

None of the load balancing algorithms described in the previous section takes into ac-
count the inherent hierarchical nature of modern computing hardware. This typically
consists of multiple cores per processor, multiple processors per node, multiple nodes
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per cluster, and even the availability of multiple clusters for a numerical simulation. The
communication performance drops as we go up in the hierarchy. The cores in a pro-
cessor share cache memory and can therefore communicate almost instantaneously,
while communication between processors has to go through main memory which is
much slower. Communication between processors on different nodes must go through
an external network which is orders of magnitude slower, and communication between
clusters in different locations is again orders of magnitude slower. Therefore, simply
balancing the load for the individual processors (or cores) is not sufficient. In addition,
the hierarchy of the target machine must be taken into account to reduce the amount
of communication between the components.

Our new hierarchical load balancing scheme, like the rake and space-filling curve
algorithms described earlier, assumes that the number of blocks is significantly larger
than the number of processors. Instead of simply specifying the number of MPI tasks for
which to create a partitioning, the user must now specify a sequence of partitionings.
For example, a sequence 2:16: 8 indicates that the blocks must first be partitioned
into 2 sets (preferably of equal size), each of which is then partitioned into 16 pieces,
that are further divided into 8 pieces. The sequence of partitionings relates directly to
the hierarchy that is present in the computational platform. For example, the 2:16: 8
partitioning can be used for an experiment on two clusters, each containing 16 nodes
of 8 cores.

Once the user has specified the desired partitioning, the algorithm proceeds by re-
peatedly splitting the available blocks into N (preferably equal sized) subsets. We try to
partition the domain in such a way that the shape of each of the subsets is as close to
a square as possible. This will reduce the amount of communication out of each subset
in relation to the amount of work inside each subset.

When splitting a domain, multiple solutions may be available which are equivalent
from a load balancing perspective. However, the amount of communication required
between subsets may vary between these solutions due to assignment of blocks to
MPI tasks and the location of land-only blocks. Our algorithm therefore compares these
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30

solutions and selects the one which generates the least communication between sub-
sets.

To explain our algorithm in more detail, we use the simplified example domain shown
in the upper left panel (a1) of Fig. 4. This example domain contains 1200 x 1000 grid
elements. It is divided into blocks of 100 x 100, resulting in 12 x 10 blocks, of which
20 are land-only blocks. To divide this domain into 10 subsets, the algorithm starts by
computing the required number of blocks per subset. The 100 non-land blocks must be
divided into 10 subsets, resulting in 10 blocks per subset. Next, the algorithm tries to
arrange the desired number of subsets in a (roughly) rectangular grid. The dimensions
of this grid, consisting of N subsets, is determined as follows:

f:= floor(sqgrt(N));
c:= ceiling(sqrt(N))

if (f =c) We have found a square grid of [f x f]

if f *c = N) We have found a rectangular grid of [f x c]

if (N <f =*c) We have found a rectangular grid of [f x c] - (f *C-N)
if (N >f =c) We have found a square grid of [c x c] - (c *C-N)

In the first two cases of the algorithm shown above, a square or rectangular decom-
position is available containing exactly N subsets. In the last two cases, the decompo-
sition contains respectively (f xc — N) or (¢ xc — N) subsets too many. To correct this,
we repeatedly remove a single subset from each row until the desired number of sub-
sets is reached. Figure 3 shows four example subdivisions, for values of N = 4,6,8 and
10, that correspond to each of these four cases. For our example domain we will use
the rightmost subdivision in Fig. 3 for N = 10 named [3, 3,2, 2], which represents the
number of blocks in each column.

Next, we compute the required number of blocks per column using the average num-
ber of blocks per subset and the selected subdivision. For our example, we will use the
[3,3,2,2] subdivision as in Fig. 3 and the 10 blocks/subset average, which will result
in columns containing [30, 30,20, 20] blocks. We then split the domain into subsets by
traversing the blocks in a vertical zigzag fashion and selecting all non-land block until
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the desired number of blocks for that column in reached. The panels (a2—a6) in Fig. 4
show how the example domain is split into the 4 columns. We subsequently split each
of the columns in a horizontal zigzag fashion into the desired number of subsets for that
column. Figure 4, panels (b1-b5), show an example for the first column, which needs
to be split into 3 subsets of 10 blocks each. A similar subdivision is applied to the other
columns. The final block distribution for the example domain is shown in Fig. 4c.

As explained above, the subdivision shown in panel (c) of Fig. 4 is only one out of
a series of options. Several permutations of the [3, 3,2,2] subdivision can be created
that are equivalent from a load-balancing perspective, but require a different amount
of communication. In addition, the subdivision can also be rotated, thereby initially
dividing the domain row-wise instead of column-wise. Finally, when selecting the blocks
in a zig-zag fashion (as shown in Fig. 4) a choice can be made from which position to
start the selection, top or bottom, or left or right. In our algorithm we simply compute
all unique permutations of the subdivision in all possible rotations, with all possible
starting points. We then select the solution with the lowest average communication
per subset. If multiple equivalent solutions exist, we select the one with the lowest
maximum communication per subset. Table 1 shows the best scoring results for all
permutations of the [3, 3,2, 2] subdivision. All solutions use the same number of blocks
per task, but the amount of communication varies per solution. Once a domain has
been split into the desired number of subsets, the algorithm is repeated for each of
these subsets for the next split.

2.4 Hierarchical partitioning of tripole grids

In the application of the hierarchical load balancing scheme to POP, the tripolar grid lay-
out, where the North Pole is replaced with two poles located (on land) in Canada and
Russia, needs special attention. In this case, additional communication is required for
the blocks located on the line between these poles, as explained in Smith et al. (2010).
These blocks are located on the upper boundary of the grid, as shown in Fig. 5a.
To support a tripolar grid layout in our hierarchical load balancing scheme, we add
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whenever a subset contains a tripole block. The extra communication will then be taken
into account in the search phase of the algorithm. Although this approach will improve
the partitioning, the result will not be optimal. As shown in Fig. 5a, two communicating
tripole blocks may be located on opposite sides of the grid. This makes it difficult for our
partitioning scheme to put these two blocks into the same subset. We overcome this
problem by remapping the grid before we start the partitioning (Fig. 5b). By simply mov-
ing blocks from one side of the grid to the other, we enable our partitioning algorithm
to optimize the tripole communication. Note that this remapping is only performed on
the grid used in our partitioning algorithm. No change to POP is required, as POP only
uses the result of the partitioning in which the original block numbering is maintained.

3 Results: load balancing

In this section we will compare the performance of our hierarchical algorithm to the
cartesian, rake and space-filling curve block partitioning schemes. In our experiments
we carry out a 10 day simulation with the R, version of POP, as described at the
beginning of Sect. 2, and show performance measures averaged over these 10 days.

3.1 Hardware

The Huygens (http://www.surfsara.nl) is an IBM pSeries 575, a clustered SMP (Sym-
metric Multiprocessing) system. Each node contains 16 dual core IBM Power 6 proces-
sors running at 4.7 Ghz, resulting in 32 cores per node. As the cores support Simulta-
neous Multi Threading (SMT), every node appears to have 64 CPUs. Most applications
will perform better by using 64 MPI tasks per node (two MPI tasks per processor core).
Per node, 128 GB of memory is available (4 GB per core). The nodes are connected

using 8x(4xDDR) InfiniBand, resulting in a 160 Gbits™" inter-node bandwidth.
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The DAS4 (http://www.cs.vu.nl/das4) is a six-cluster wide-area distributed system.
DAS-4 is heterogeneous in design, but in this experiment we will use dual-quad-core
compute nodes containing Intel E5620 CPUs running at 2.4 Ghz, resulting in 8 cores
per node. The nodes contain 24 GB of memory (3 GB per core). Nodes are connected
using QDR InfiniBand resulting in a 20 Gbits™' bandwidth. We use DAS-4 in a sin-
gle cluster and two cluster experiment. In the two cluster experiment, the clusters are
connected using a internet link with a maximum bandwidth of 1 Gbits™'. The average
round trip time between clusters is 2.6 ms. As the link is shared with other users, the
available bandwidth and round trip latency may vary over time.

3.2 Using MPI for multiple clusters.

For POP to run on multiple clusters, an MPI implementation is required that is capable
of communicating both within and between clusters. This is far from trivial, as clusters
are often protected by a firewall that disallows any incoming communication into the
cluster. Also, it is common for the compute nodes to be configured such that they can
only communicate with the cluster frontend, but not directly with the outside world, as
explained in Maassen and Bal (2007). To solve this problem, we created wrapper code
that is capable of intercepting the MPI calls in POP. For each intercepted call, the MPI
wrapper decides if it should be forwarded to the local MPI implementation, or if it should
be send to another cluster. To use the MPI wrapper code, POP needs to be recompiled
using a different MPI library but no changes to the POP code itself are required.

To communicate between clusters, one or more support processes, so-called hubs,
are used. Each hub typically runs on the cluster frontend, and serves as a gateway to
the other clusters. If necessary multiple hubs can be connected together to circumvent
communication restrictions caused by firewalls. In Fig. 6, the left panel shows a tradi-
tional POP run on a single machine, while the right image illustrates how a hub is used
in DAS4 to connect two clusters together. Only a single hub is needed, as all compute
nodes in DAS4 can communicate with all head nodes, even those of other clusters.
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However, compute nodes cannot directly communicate with compute nodes in other
clusters.

3.3 Performance

Table 2 shows the configurations of the partitioning schemes. For each experiment we
use 256 MPI tasks. The cartesian distribution uses a 225 x 150 block size, resulting in
exactly one block per MPI task (no land blocks are discarded). Both rake and space-
filling curve use a block size of 60 x 60 and discard 628 of 2400 blocks (i.e., 26 %). The
table also shows the minimum, average, and maximum communication per MPI task,
and the amount of traffic generated between the clusters for the two cluster experiment.
We will discuss these below. As can be seen from Table 2, the hierarchical domain
distribution significantly decreases the amount of traffic between the clusters compared
to rake and space-filling curve. As a result, the performance overhead of using two
clusters is limited.

The performance results of POP are shown in Fig. 7 in model days/day. On Huygens
and single cluster DAS4, the rake and space-filling curve block distribution clearly im-
prove the performance over the cartesian distribution. On Huygens, the performance
improvement of space-filling curve is close to the amount of work discarded (23 % vs.
26 %). On DAS4 the improvement is much greater (54 % vs. 26 %) due to the bet-
ter cache behavior of smaller blocks. The space-filling curve distribution outperforms
the rake distribution in all cases, due to the better load balancing characteristics, as
shown in Table 2. Figure 7 also shows that for the two cluster DAS4 experiments the
performance degrades. Interestingly, the performance reduction for cartesian is only
10 %, while space-filling curve (41 %) and rake (44 %) are much more effected. This
difference is caused by the increased communication caused by these two block distri-
butions, as shown in Table 2.

Although rake and space-filling curve both decrease the amount of work per MPI
task, they also significantly increase the amount of communication, between tasks.
On supercomputers, where POP is traditionally run, this problem is mitigated by high-
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speed network interconnects, but in a multi-cluster environment, the internet link be-
tween clusters becomes a bottleneck. In Table 2, the column “communication between
clusters” clearly shows that compared to cartesian, rake causes a 3.4x increase in the
communication between clusters. The increase caused by the space-filling curve is
smaller, a factor 2.1, but still significant.

The hierarchical scheme performs slightly better than the space-filling curve scheme
on Huygens and single cluster DAS4 (Fig. 7). This is to be expected, as the communica-
tion overhead is small on these systems due to the fast local network interconnects. On
two cluster DAS4, however, the hierarchical domain distribution provides a significant
performance improvement over the existing algorithms. When running on two clusters,
the performance drop compared to a single cluster run is only 8 % for the hierarchical
domain distribution, compared to 10 % for cartesian, 41 % for space-filling curve and
44 % for rake.

Table 3 shows the speedup on DAS4 compared to a 16-node run on a single cluster.
The speedup on 32-nodes on a single cluster is, with a factor of about 1.9, almost per-
fect. Although the speedup on two clusters (of 16-nodes each) is slightly lower, about
a factor 1.7, the performance gain compared to a single cluster is still significant. These
results clearly demonstrate that using multiple clusters can be beneficial, especially to
increase the number of machines beyond the size of a single cluster.

4 Execution on graphics processing units

This section discusses the main challenges that exist when moving parts of the compu-
tation in POP to a GPU. We use the CUDA programming model (Nvidia, 2013) to have
fine-grained control over our GPU implementation and to be able to explain and im-
prove performance results. Many different software tools, libraries, (directives-based)
parallelization tools, and compilers aim to assist in the development of GPU code.
However, it is our goal to gain a deep understanding of the performance behavior of
POP, which requires more control over the implementation and in particular how data
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is transferred between the host memory and GPU device memory. In the following sec-
tions, we use CUDA terminology (Nvidia, 2013), although our methods could just as
easily apply to OpenCL (Khronos Group, 2013).

POP consists of a large Fortran 90 codebase and in this paper we therefore limit our-
selves to the most compute intensive parts of the program and only offload those com-
putations to the GPU. The main challenge with this approach is to overcome the PCle
bus bottleneck. Whenever computations are to be performed on the GPU the input
and output data has to be transferred from host memory through the PCle bus to GPU
device memory and vice versa. The achieved bandwidth to GPUs connected through
the PCle 2.0 bus is approximately 5.7 GBs™' from host to device and 6.3GBs™' from
device to host. This is significantly lower than the bandwidth between host memory and
a CPU and the bandwidth between GPU device memory and the GPU. Therefore, it
is crucial that we maximize the overlap of data transfers to the GPU with computation
and with transfers from the GPU back to the host.

To overlap GPU communication and computation we need fine-grained control over
how data is transferred to the GPU. There are several alternative techniques for mov-
ing data between host and device using the CUDA Programming model. The most
commonly used approach is to simply use explicit memory copy statements to transfer
large blocks of memory to and from the GPU.

Alternatively, CUDA streams may be used to separate the computation into distinct
streams that may execute in parallel. This way, communication from one stream can be
overlapped with computation and communication in other streams. GPUs with 2 copy
engines, such as Nvidia’s Tesla K20, can use the PCle bus in full duplex with explicit
memory copies in different streams. This way, communication and computation from
different streams can be fully overlapped.

Finally, the mapped memory approach uses no explicit copies, but maps part of the
host memory into device memory space. Whether this approach is feasible depends
on the memory access pattern of the kernel. Typically mapped memory can only be
used efficiently if each input and output element is read or written only once by the
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GPU function, called kernel. Although this approach results in very clean host code,
requiring no explicit copy statements, it requires complex kernel implementations with
intricate memory access patterns to ensure high performance.

4.1 Targets for GPU implementation

To determine which part of POP to port to the GPU, we must first get an impression
of where the most time is spend. It is well-known that the three-dimensional baro-
clinic solver is the most computationally intensive part of POP (Kerbyson and Jones,
2005; Worley and Levesque, 2003). We therefore limit ourselves to analyzing the per-
formance of the baroclinic solver.

Table 4 gives an overview of the most time consuming functions in POP. These pro-
filing results of are obtained from one month of simulation using the R, ; version (see
beginning of Sect. 2) on the DAS-4 cluster (described in Sect. 2). For this experiment
we have used a cartesian distribution with blocks of size 255 x 300 and 8 processes
per node on 16 nodes.

Table 4 lists the percentage of the total execution time spent in this function, not
including subfunctions. All functions in Table 4, except those from the module pop
solversmod, belong to the baroclinic solver. Our profiling results indicate that the baro-
clinic solver does not contain any true computational hotspots. That is, no individual
function consumes a major part of the computation time.

However, the density computations from the equation of state are requested by sev-
eral different parts both within the baroclinic solver and at the end of each time step.
The computation of water densities is required so frequently by the model that their
computation time consumes 15.09 % of the total execution time on average.

The functions from the vmix_kpp module in Table 4 are part of the computation of
the vertical mixing coefficients for the KPP mixing scheme (Large et al., 1994), which in
total consumes about 35.3 % of the total execution time. We therefore focus on obtain-
ing a GPU implementation for the equation of state and for the computation of vertical
mixing coefficients, in particular the three functions state, buoydiff (the computation of
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buoyancy differences) and ddmix. We focus on buoydiff() and ddmix() since they are
among the most compute intensive functions and are responsible for 64.9 % of the calls
to state().

It is well-known that kernel-level optimizations focused on increasing computation
throughput are generally not worthwhile when memory bandwidth is the primary fac-
tor in limiting performance (Ryoo et al., 2008). A frequently used tool for performance
analysis on multi and many-core hardware using the Roofline model (Williams et al.,
2009) is the arithmetic intensity. For example, the Nvidia Tesla K20 GPU has a the-
oretical peak performance of 1173 GFLOPs™" for double precision and a theoretical
peak global memory bandwidth of 208 GBs™". However, in practice the achieved mem-
ory bandwidth is (roughly) 160 GBs™', as reported by the bandwidthTest tool in the
Nvidia CUDA SDK. A rough estimation tells us that an arithmetic intensity of at least
7.3FLOP byte‘1 is required for the kernel to become compute-bound. Thus, if the arith-
metic intensity is less than 7.3 FLOP byte‘1, we know the kernel is memory bandwidth-
bound when executed on the K20.

The arithmetic intensity of the state() function is computed as follows. Although POP
supports various implementations for the equation of state, we focus on the MWJF 25-
term equation of state (McDougall et al., 2003) because it is the most commonly used
implementation. The MWJF state() function requires the temperature and salinity trac-
ers as inputs as well as 25 coefficients, of which 6 depend on the water pressure, the
rest is constant. The state() function outputs the density of water and optionally also
outputs the derivatives of the water density with respect to temperature and salinity.
When only the density of water is computed, state() performs 40 floating point oper-
ations per grid point with an arithmetic intensity of 2.5 FLOP byte'1, assuming that all
25 coefficients can be stored in on-chip caches and can be fully reused. When all out-
puts are requested, 89 floating point operations are executed per grid point, resulting
in an arithmetic intensity of 5.56 FLOP byte_1. With an arithmetic intensity of either 2.5
or 5.56, the MWJF state() kernel is memory bandwidth-bound. Therefore, we focus
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on optimizing the time spent on communication between host and device, rather than
kernel-level optimizations.

4.2 Efficient integration of GPU code

We now describe how POP should be revised to efficiently use GPUs. For our discus-
sion, we focus on three functions in POP state(), buoydiff(), and ddmix(). Due to a lack
in GPU performance models that consider asynchronous PCle transfers, it is currently
impossible to predict what kind of implementation will be the most efficient. For each
function we have therefore implemented three different versions that we call Explicit,
Implicit, and Streams. We first describe the three versions in general and then discuss
the specific implementations for state(), buoydiff(), and ddmix() in detail.

Explicit is a bulk synchronous implementation that uses explicit memory copy state-
ments to copy all the required input data to GPU and from the GPU for the entire
three-dimensional grid. The kernel used in Explicit creates a two-dimensional array of
threads, i.e. one thread for each horizontal grid point, which iterate the grid points in
the vertical dimension. Implicit uses mapped memory and therefore requires no ex-
plicit memory copy statements. Instead, data is requested by the GPU directly from the
host memory and sent over the PCle bus. The performance of accessing the mem-
ory in this way is very sensitive to the order in which data is requested and care must
be taken not to create gaps or misalignments from the mapping between threads and
data. Therefore, Implicit uses a kernel implementation that creates a one-dimensional
array of threads with size equal to the number of grid points in the three-dimensional
grid. Each thread then computes its three-dimensional index from its one-dimensional
thread ID to direct itself to the correct part of the computation. The Streams implemen-
tation creates one stream for each vertical level and uses explicit copy statements to
copy the corresponding vertical level of the input and output variables to and from the
GPU. If the computation of one vertical level requires input from multiple vertical levels,
CUDA events are used to delay the computation until all inputs have been moved to
the device and vice versa. The kernel used in Streams is similar to the kernel used in

4721

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
<4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Explicit, except for the fact that the kernel only computes the grid points of one vertical
level. Note that, except for the differences described here, the kernels do not contain
any architecture specific optimizations.

While the state() function computes the density of water at a certain vertical level
k, the function is mostly used directly surrounded by a loop over all vertical levels.
These code blocks can safely be replaced by a call to a single function that directly
computes the water densities for all vertical levels. Our Explicit implementation uses
explicit copies to move the three-dimensional grid of tracer values between host and
device and creates one thread for each horizontal grid point, which compute all outputs
in the vertical direction. However, this approach is unable to overlap communication
to and from the device with GPU computation. It is possible to also parallelize the
computation of different vertical levels using CUDA streams. Our Streams implemen-
tation ensures that GPU computation can be overlapped with GPU communication of
different vertical levels, and thus alleviates the PCle bus bottleneck to a large extent.
Because of the simple access pattern in state(), where each input and output element
is read or written only once, it is also a good candidate for the highly parallel Implicit
implementation.

More complex uses of the equation of state are found within the computation of the
vertical mixing coefficients for the KPP mixing scheme (Large et al., 1994), in particular,
in the computation of buoyancy differences (buoydiff) and double-diffusion diffusivities
(ddmix). In POP the vertical mixing coefficients are sequentially computed for all ver-
tical levels. The computation of buoyancy differences at level k requires the density of
both the surface level and level k —1 displaced to level k, as well as the water density at
level k. These values can be computed for each level in parallel as long as all the data
is present on the GPU. Overlapping data movement from the host to the GPU with GPU
computation and data movement from the GPU to host becomes significantly more dif-
ficult, because the tracers for levels 1, k — 1, and k need to be present on the GPU to
compute the buoyancy differences at level k. The Streams implementation first sched-
ules memory copies to the GPU for all vertical levels in concurrent streams and then
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invokes GPU kernel launches for all levels. However, before the execution of the kernel
in stream k can start, the memory copies in stream 1, kK — 1, and k need to be com-
plete. The kernel executing in stream k outputs to different vertical levels for different
variables. Therefore, some of the memory copies from device to host in stream k have
to wait for the kernel in stream k —1 to complete. We use the CUDA event management
functions to guarantee no computations or memory transfers start prematurely.

In the ddmix function, the computation of diffusivities at level k requires the deriva-
tives of density with respect to temperature and salinity at level kK and k—1. That s, the
computation of level k reuses the derivatives that were used to compute level k — 1. At
a first glance, it would seem that the computation of all vertical levels cannot be par-
allelized. The sequential approach prevents that these values have to be recomputed,
but inhibits the ability to overlap communication and computation of different vertical
levels. Therefore, our implementation also parallelizes the computation in the vertical
dimension by introducing double work. The cost of computing the derivatives twice is
significantly less than the inability to overlap computation and communication. Similarly
to the buoyancy differences computation, the kernel executing in stream k requires the
memory copies of stream k and k —1 to be complete. Again, CUDA event management
functions are used to guarantee no data is copied from the GPU back the host before
GPU computations have finished.

5 Performance of POP on GPUs

In this section, we will describe the performance of the R, 4 version of POP on a single
cluster and on multiple GPU clusters. In the first subsection below, we focus on the
performance impact on individual POP subroutines when using a GPU. In the second
subsection, we address the performance of the whole POP code on a single GPU and
on multiple GPU clusters.
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5.1 Performance impact of GPU usage: individual routines

First we evaluate the performance of single functions that were taken out of POP
for individual benchmarking. We test our three implementations (Explicit, Implicit
and Streams) for each discussed function of POP on a single node equipped with
a Nvidia Tesla K20 GPU in the DAS4 cluster. The Tesla K20 has 2496 CUDA cores
running at 705 MHz providing a theoretical peak double precision performance of
1173 GFLOPs™". The K20 has 5GB of device memory and a theoretical peak mem-
ory bandwidth of 208 GBs™'. The K20 is connected through a PCle 2.0 bus and has
2 copy engines which enable full duplex use of the PCle bus for concurrent explicit
memory transfers. The grid dimensions used for the experiments discussed here are
229 x 304 x 42. This is the same block size as used to obtain our profiling results, with 2
ghost cells in both horizontal dimensions. For all three implementations the majority of
the execution time is spent on transferring the data to and from the GPU. For example,
for the Streams implementation of state() only 10.3 % of the execution time is spent on
GPU computation, and only 19.4 % and 13.3 % for buoydiff() and ddmix(), respectively.

Figure 8 shows the performance results for all three functions with three different
GPU implementations. For the state() function the Implicit implementation provides the
best performance. Although the kernel implementation used by Implicit is slightly less
efficient than the kernel used by Explicit, the total execution time is significantly less be-
cause a large part of the memory transfers between host and device and computation
are overlapped. While Streams achieves overlapping behavior similar to Implicit, it is
more coarse-grained with one vertical level at a time, rather than individual grid points.
That explains why Implicit outperforms the Streams implementation for the state() func-
tion.

The buoydiff() function has a very low arithmetic intensity and therefore the com-
putation again accounts for only a small part of the total execution time. The Implicit
implementation is slower than Explicit because the access pattern in buoydiff() requires
several input elements multiple times. As a result, the Implicit approach transfers more
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data than necessary over the PCle bus. Although these transfers can be overlapped
with computation and with transfers in the opposite direction, the performance penalty
for transferring data multiple times reduces the overall performance. The Streams ap-
proach again benefits from the fact that data transfers and computation can be over-
lapped, but without the restrictions that come with the Implicit approach. The data
access pattern in buoydiff() requires that operations in some streams may have to wait
for operations in another stream to complete before they can start. The overhead of
these synchronizations accounts for on average 3.26 % of the total execution time of
the Streams implementation.

To parallelize the computation of ddmix() in the vertical dimension the Implicit and
Streams implementations do some double work. That is, some values are computed
twice by different threads operating at different vertical levels, whereas a thread in
the Explicit approach may reuse that value from the computation of a previous verti-
cal level. Therefore, the time spent in computation for Implicit and Streams is higher
than that of Explicit. However, due to the overlap of computation and PCle transfers
in both directions, both Streams and Implicit do outperform the Explicit implementa-
tion in terms of total execution time. The Implicit implementation again suffers from the
fact that, although overlapped with communication and computation, data has to be
transferred multiple times through the PCle bus.

In the GPU implementation of the POP we use in the next subsection, the Implicit
implementation for state() and the Streams implementation for buoydiff() and ddmix()
is used. As buoydiff() is executed before ddmix() as part of the computation of vertical
mixing coefficients, ddmix() reuses the tracers that have been copied to the GPU by
buoydiff(). Additionally, for all three functions the execution on the GPU as well as all
data transfers are overlapped with the computation of other functions on the CPU.
Therefore, the CPU never has to wait for the results of GPU computations.
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5.2 Performance of POP on multiple (GPU) clusters

For the evaluation of POP incorporating the implementation of some of the functions
on a GPU we use the DAS4 (described earlier in Sect. 3.1). First, 8 compute nodes
each containing two quad-core Intel E5620 CPUs (8 cores per node total) running at
2.4 Ghz, 24 GBytes of memory, and a Nvidia GTX480 GPU are used. In addition, we
also use 8 compute nodes each containing two six-core Intel E5-2620 CPUs (12 cores
per node total) running at 2.0 Ghz, 64 Gbyte of memory, and a Nvidia Tesla K20 GPU
each. We employ the new hierarchical partitioning scheme described in Sect. 2.3 using
a block size of 60 x 60.

Figure 9 shows the performance of POP using 4, 8 and 12 MPI tasks per node, with
and without GPU. Note that only a single GPU is available in each node. Therefore, the
GPU is shared between the multiple MPI tasks on a single node. For the 8-core DAS4
nodes, the performance gained by using the GPU is approximately 20 %, both when
using 4 or 8 MPI tasks. This directly corresponds with the execution time consumed by
POP code that has been ported to the GPU. The figure also shows that the scalability of
POP itself is far from perfect. Running on 8 MPI task per node, only provides a speedup
of 1.4 compared to 4 MPI tasks per node, both for the CPU-only and GPU versions.

For the 12-core DAS4 nodes, the performance gained by using the GPU is approxi-
mately 15 % when using 4 MPI tasks per node, and 13 % when using 8 or 12 MPI tasks
per node. Although this relative performance gain is lower that for the 8-core nodes,
the absolute performance gain is much higher, due to the better performance offered
by the (newer) six-core CPU and K20 GPUs. In addition, the scalability of POP on the
12 core nodes is also much better, achieving a speedup of 1.9 on 8-cores and 2.6 on
12-cores (both relative to the 4-core experiment).

Additionally, these results show that it is possible to combine the hierarchical par-
titioning scheme with GPU execution and still obtain a performance increase. This is
a remarkable result, as the hierarchical partitioning scheme prefers small block sizes
to eliminate many land blocks and distribute load evenly among MPI tasks, while the
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GPU code prefers large block sizes to increase GPU utilization. However, GPU utiliza-
tion is again increased by the fact that all MPI tasks running on a single node share
a single GPU for all their GPU computations. It is important to understand that this
would not have been possible with larger block sizes, because of the limited size of the
GPU memory. As such, the two approaches presented in this paper work in concert to
improve the performance of POP.

As a final experiment, we study the performance of POP on multiple platforms in-
cluding GPUs. For this experiment, we use 8-core DAS4 compute nodes with an Nvidia
GTX480 GPU (described in Sects. 3.1 and 5.2).

Figure 10 compares the performance of a 16-nodes single cluster run with a 2 x 8-
node two cluster run. Results are shown for CPU-only and CPU plus GPU experiments.
The results show a performance increase when using the GPUs of 15 % on one cluster
and 13 % on two clusters. The performance loss when going from one to two clusters is
5 % for the CPU-only version and 6 % for the CPU+GPU version. These results clearly
indicate that running POP on multiple GPU clusters is feasible and also beneficial in
terms of performance. Moreover, it allows users with access to multiple smaller GPU
clusters to scale up to well beyond the size of a single GPU cluster.

6 Summary, discussion and conclusions

High-resolution ocean and climate models are becoming a very important tool in cli-
mate research. It is crucially important that multi-century simulations with these models
can be performed efficiently. In this paper, we presented a new distributed computing
approach to increase the performance of the POP model.

We first have shown that it is possible to optimize the load balancing of POP such that
it can run successfully in a multi-platform setting. The new hierarchical load balancing
scheme was shown to perform much better than the existing load balancing schemes
(cartesian, rake and space-filling curve), mainly due to the reduction in communication
between the MPI tasks. Second, it was demonstrated that it is advantageous to port
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part of POP to GPUs (and get a performance increase), even though POP itself does
not contain any real hotspots and is therefore not an obvious candidate for using GPUs.

In the experiments shown, only three functions in POP were implemented on a GPU.
Another substantial portion of the execution time is spent computing the advection of
momentum and the horizontal diffusion of momentum and tracers. Obtaining a GPU
implementation for these functions is deferred to future work. The advection of tracers
also uses the equation of state to compute the potential density referenced to the
surface layer, which is used to compute a variety of time averaged fields. Currently, the
majority of the execution time is spent on PCle transfers. When more computation is
moved to the GPU more data can be reused, and some intermediate data structures
that result from computation may even never have to leave the GPU. In that case,
some PCle transfers can be eliminated completely. In future work we hope to produce
a complete GPU implementation of the vertical mixing part of POP.

The software presented in this paper has the same portability properties as the orig-
inal POP. The GPU code is written in CUDA, which is a widely used language for GPU
Computing applications. To increase portability across different GPU architectures no
architecture specific optimizations have been included. OpenCL is a well-known alter-
native to CUDA that aims at a wider set of many-core compute devices and different
compilers are available for different platforms. However, there are no real linguistic dif-
ferences between CUDA and OpenCL and porting the code will be a simple engineer-
ing effort, automated source-to-source translation tools are also available. The use of
both extensions (domain decomposition or GPU functions) can be enabled, disabled,
and controlled individually through the well-known pop_in namelist file.

Finally, we have shown that the combination of these two approaches also improves
performance. Although we demonstrated this only for the DAS4 cluster, it opens up
the possibility to submit a POP job in the near future over multiple supercomputing
platforms (with or without GPUs). The new hierarchical load balancing scheme and
the MPI wrapper methodology are crucial elements for maintaining the performance of
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POP. Future work is to port more of POP to GPUs and to scale up the multi-cluster
experiments to production size hardware.
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Table 1. Permutations of the [3,3,2,2] example distribution, showing the number of assigned
blocks and the communication per task in grid points per level. The entries are sorted by aver-
age communication per task. The top most entry provides the best solution.

permutation  blocks = communication per task
per task (min/avg/max)
(3,3,2,2) 10 1440/2186/2888
(2,3,3,2) 10 1244/2187/2888
(2,2,3,3) 10 1240/2188/3100
(2,3,2,3) 10 1240/2188/3300
(3,2,2,3) 10 1240/2229/3720
(3,2,3,2) 10 1440/2265/2876
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Table 2. Configuration of the cartesian, rake and space-filling curve and hierarchical distribu-

tions.

algorithm block blocks blocks communication communication

size per core discarded per task between clusters
(min/max) (min/avg/max) (messages/volume)

cartesian 225 x 150 1M 0 (of 256) 0/1267.4/2408 22.3M/99.0 GB

rake 60 x 60 5/8 628 (of 2400) 748/1940.5/3936 77.9 M/337.4 GB

space-filling curve 60 x 60 6/7 628 (of 2400) 1007/1707.7/2960  41.0 M/212.7 GB

hierarchical 60 x 60 6/7 628 (of 2400) 504/1394.9/2584 20.0 M/82.5 GB
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Table 4. List of the most compute intensive functions in POP, covering 76.48 % of the total
computation time. The reported time does not include time spent in functions called by this

function.
% time function module #calls computes
15.09 state state_mod 29562112 density of water and derivatives
6.69 hdiffu_del4 hmix_del4 4865280 horizontal diffusion of momentum
5.79 advu advection 4865280 advection of momentum
5.33 bldepth vmix_kpp 115840  ocean boundary layer depth
5.25 hdifft_del4 hmix_del4 4865280 horizontal diffusion of tracers
4.62 chrongear pop_solversmod 115840  preconditioned conjugate-gradient solver
4.07 ri_iwmix vmix_kpp 115840  viscosity and diffusivity coefficients
3.83 vmix_coeffs_kpp vmix_kpp 115840  vertical mixing coefficients
3.66 impvmixt_correct vertical_mix 115840  implicit vertical mixing corrector step
3.34 blmix vmix_kpp 115840  mixing coefficients within boundary layer
3.27 impvmixt vertical_mix 231680  implicit vertical mixing of tracers
3.27 clinic baroclinic 4865280 forcing terms of baroclinic momentum
3.17 advt_centered advection 4865280 tracer advection using centered differencing
3.12 btropoperator pop_solversmod 14705152 applies operator for the barotropic solver
3.10 baroclinic_driver baroclinic 115840 integration of velocities and tracers
2.88 ddmix vmix_kpp 115840  add double-diffusion diffusivities
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Fig. 2. Examples of the space-filling curve load balancing algorithm, with the Hilbert (left panel),
meandering Peano (middle panel) and Cinco (right panel) curves; image from Dennis (2007).
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Fig. 3. Example subdivisions of a square into 4,6, 8, and 10 rectangular sections.
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Fig. 4. Description of the hierarchical load balancing scheme for an example of 12 x 10 blocks,
of which 20 are land-only blocks, as shown in panel (a1). The initial columnwise split is shown
in panels (a2)—(ab), the next row wise split in the panels (b1)—(b5) and the final results is shown

in panel (c).
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(b)

Fig. 5. (a) A subdivision of the topography into 60 by 40 blocks. The two tripoles are depicted
by the red dots on the upper boundary. Note that the left-most and right-most dots represent
the same tripole; the tripole communication is (partially) shown by the arrows. (b) A remapping
of the grid that moves an area of 30 x 7 blocks. The original tripole boundary is shown as a red
line.
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Fig. 6. An example of POP running without the MPI wrapper on a single cluster (left panel) and
with the MPI wrapper on a multi cluster (right panel).
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Fig. 7. Performance comparison of POP using cartesian, rake, space-filling curve and hierar-
chical block partitioning schemes on three different hardware configurations, each using 256

MPI tasks.
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Fig. 8. Performance results for the three POP functions on a GPU with three different imple-

state
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mentations as obtained on the Tesla K20 GPU with a 229 x 304 block size.

4742

Jaded uoissnosiq

| Jadeq uoissnosiqg | Jaded uoissnasiq

Jaded uoissnosiq

GMDD
6, 4705-4744, 2013

Improving the
performance of the
Parallel Ocean
Program

B. van Werkhoven et al.

(8
] (=)



http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

120 T T
8-core DAS4 (CPU only) I
8-core DAS4 (CPU + GTX480) I g
100 b 12-core DAS4 (CPU only) NN -
12-core DAS4 (CPU + K20) I
> 80 - F
© ~
ke
~
2
o
3 60
[0}
kel
o
€ 40
20
° 2

4 cores/node 8 cores/node

Fig. 9. Performance of POP using 8 computes nodes of the DAS4 cluster, with and without

GPUs, using hierarchical partitioning with 60 x 60 block size.

4743

12 cores/node

Jaded uoissnosiq

| Jadeq uoissnosiqg | Jaded uoissnasiq

Jaded uoissnosiq

GMDD
6, 4705-4744, 2013

Improving the
performance of the
Parallel Ocean
Program

B. van Werkhoven et al.

(8
] (=)



http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

120

100 -

modeldays/day
)] (o]
o o

B
o

20

CPU only

Fig. 10. Performance of POP using 16 computes nodes of the DAS4 cluster, on one or two

T
Single Cluster DAS4 (16 x 8 cores)
Two Clusters DAS4 (2 x 8 x 8 core)

<
o

«©Q
©

CPU+GTX480

clusters, using hierarchical partitioning with 60 x 60 block size.

4744

Jaded uoissnosiq

Jaded uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

GMDD
6, 4705-4744, 2013

Improving the
performance of the
Parallel Ocean
Program

B. van Werkhoven et al.

(8
] (=)



http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4705/2013/gmdd-6-4705-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

