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Abstract

Many inverse problems in the atmospheric sciences involve parameters with known
physical constraints. Examples include non-negativity (e.g., emissions of some urban
air pollutants) or upward limits implied by reaction or solubility constants. However,
probabilistic inverse modeling approaches based on Gaussian assumptions cannot in-5

corporate such bounds and thus often produce unrealistic results. The atmospheric
literature lacks consensus on the best means to overcome this problem, and existing
atmospheric studies rely on a limited number of the possible methods with little exami-
nation of the relative merits of each.

This paper investigates the applicability of several approaches to bounded inverse10

problems and is also the first application of Markov chain Monte Carlo (MCMC) to es-
timation of atmospheric trace gas fluxes. The approaches discussed here are broadly
applicable. A common method of data transformations is found to unrealistically skew
estimates for the examined example application. The method of Lagrange multipliers
and two MCMC methods yield more realistic and accurate results. In general, the ex-15

amined MCMC approaches produce the most realistic result but can require substantial
computational time. Lagrange multipliers offer an appealing alternative for large, com-
putationally intensive problems when exact uncertainty bounds are less central to the
analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates
the strengths and weaknesses of each approach.20

1 Introduction

Inverse modeling and data assimilation have become ubiquitous in the atmospheric
sciences, and one of the most common applications is the estimation of trace gas
surface fluxes. These top-down approaches optimize emissions or flux estimates such
that modeled atmospheric concentrations reproduce observed concentrations. Most25

methods are based on Bayesian statistical principles and assumptions of Gaussian
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probability density functions (pdfs), implemented in a variety of ways (e.g., Gurney
et al., 2002; Michalak et al., 2004; Henze et al., 2007; Peters et al., 2007; Gourdji et al.,
2008; Stohl et al., 2012).

Many applications require estimating emissions or fluxes that have known physical
limits, often referred to simply as inequality constraints. For example, there are few5

anthropogenic sinks of carbon dioxide or methane, and the release history of air tox-
ins from an industrial hazard site is never negative. In many cases, predicted sources
that violate inequality constraints are not only meaningless but distort prediction in sur-
rounding regions or times. For example, if an inversion estimates an unrealistic nega-
tive emissions region, emissions in adjacent regions may become larger than expected10

due to mass conservation (e.g., Michalak, 2008). Hence, it would not be sufficient
to simply reset negative emissions to zero. Doing so would not correct for distorted
sources elsewhere and would erroneously increase the overall estimated emissions
budget (i.e., would violate the mass balance or budget as constrained by the atmo-
spheric observations).15

Additionally, enforcing inequality constraints is often necessary for obtaining realistic
uncertainty estimates. Even if the posterior emissions themselves do not violate the in-
equality constraints, their confidence intervals could very well extend beyond known
limits under Gaussian assumptions. In such cases, an unconstrained inversion will
produce both upper and lower confidence intervals that are unrealistically large (e.g.,20

Snodgrass and Kitanidis, 1997; Michalak and Kitanidis, 2003). The problem occurs
because unrealistically low emissions within the lower confidence interval must be bal-
anced by larger emissions elsewhere in the upper confidence interval, or vice versa.

In response to the problems associated with unconstrained inversions, existing trace
gas flux estimation studies typically use one of three methods to apply inequality con-25

straints. One method employed in previous studies is a data transformation (refer to
Sect. 3.1, e.g., Muller and Stavrakou, 2005; Bergamaschi et al., 2009). A second
method decreases the uncertainty assigned to many of the prior fluxes until the poste-
rior fluxes obey the known bounds (e.g., Eckhardt et al., 2008; Stohl et al., 2012). This
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adjustment may run counter to the modeler’s physical understanding of the prior es-
timate or associated uncertainties and therefore is not discussed in great detail here.
A third method is that of Lagrange multipliers (refer to Sect. 3.2, e.g., Henze et al.,
2007; Kopacz et al., 2009; Göckede et al., 2010). Existing atmospheric studies provide
little guidance on the merits of one method over another.5

The objective of this study is thus to investigate the merits of the above approaches
and additionally test the applicability of Markov chain Monte Carlo (MCMC) methods
to atmospheric inverse problems with known bounds. MCMC algorithms are common
in Bayesian statistics but are rarely applied to atmospheric studies. The remainder of
this paper is organized as follows: Sect. 2 examines the statistical assumptions of com-10

mon inversion methods that are incompatible with inequality constraints. Section 3 dis-
cusses several possible alternatives to mitigate these statistical assumptions, including
data transformations, Lagrange multipliers, and two specific MCMC implementations –
a multiple-try Metropolis Hastings algorithm and a Gibbs sampler. Finally, Sects. 4 and
5 discuss the costs and benefits of each approach in the context of a synthetic case15

study estimating North American anthropogenic methane emissions.

2 Common Bayesian approaches to inverse modeling

This section describes common approaches to inverse modeling and indicates which
statistical assumptions are incompatible with known bounds.

In a typical inverse problem, the unknown quantity to be estimated (s, dimensions20

m×1) is different from the quantity actually observed (z, dimensions n×1), and the two
are related to one another by function h(s,r ). In the case of trace gas inversions, s are
the true, unknown emissions or fluxes, z are observations of atmospheric concentra-
tion, and r is often an atmospheric transport and/or chemistry model:

z = h(s,r )+N (0,R) (1)25
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where N (0,R), in this case, represents the combined model, measurement, represen-
tation, and spatial/temporal aggregation errors, collectively termed model-data mis-
match. These errors are most commonly assumed to be random and normally dis-
tributed with a mean of zero and an n×n covariance matrix R.

Any a priori information on the spatial or temporal distribution of s can be incorpo-5

rated into a model of the mean, E [s]:

s = E [s]+N (0,Q). (2)

This model, E [s], rarely matches the unknown s exactly, and the m×m covariance
matrix Q describes the magnitude and structure of the residuals between s and E [s].
As with the model-data mismatch, these residuals are also typically assumed to be10

normal with a mean of zero.
The model of the mean can be formulated in a number of ways, but one common

method, used in this paper, is as follows:

E [s] = Xβ (3)

where the m×p matrix X includes p different covariates, and the unknown p ×1 drift15

coefficients (β) adjust the magnitude of these covariates to best match the observa-
tions. The model of the mean could be uninformative (e.g., X is a m×1 vector of ones
as in Mueller et al., 2008) or could include any number of covariates, including cli-
matological information or an existing emissions inventory (e.g., Gourdji et al., 2012;
Miller et al., 2013a). Some inversion approaches assume that the required adjustments20

to X are known, in which case E [s] has pre-determined coefficients and becomes an
m×1 vector (e.g., Rodgers, 2000; Enting, 2002; Tarantola, 2005). An inversion with
unknown coefficients has typically been used within the context of a “geostatistical”
representation of the inverse problem (used in this study) while the coefficients are
usually assumed in the “Synthesis Bayesian” approach, though both approaches are25

Bayesian in nature.
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Equation (1) can be expanded using the formulation of s described in Eq. (3):

z = H N (Xβ,Q)+N (0,R). (4)

The n×m sensitivity matrix, H, is a linearized form of h. This setup assumes, as in most
existing studies, that the measurement residuals (z−Hs) and flux residuals (s−Xβ)
follow a multivariate normal distribution, as will the posterior probabilities of s and β.5

The optimal estimate of unknown s can be obtained by minimizing the sum of
squared residuals subject to the covariances:

Ls,β =
1
2

(z−Hs)T R−1 (z−Hs)+
1
2

(s−Xβ)T Q−1 (s−Xβ) . (5)

If H does not depend on the unknown value of s, then s can typically be estimated by
solving a system of linear equations (refer to Michalak et al., 2004; Tarantola, 2005, for10

more in-depth discussion on estimating s and the associated posterior uncertainties).
Otherwise, the algorithm is usually iterative.

If s has known bounds, then Eq. (4) must be reformulated in a way that honors the
inequality constraints. Some deterministic methods permanently remove elements of s
from the optimization if they violate the bounds (e.g., Lagrange multipliers). In a purely15

stochastic approach, Eq. (4) will instead follow some multivariate probability distribution
(Pru

l ) that is zero outside the lower and upper constraints (l and u, respectively):

z = H Pru
l (s|X,Q)+N (0,R) (6)

Pru
l could be formulated as a multivariate truncated normal, exponential, or gamma dis-

tribution, among many other choices. Most formulations of Pru
l do not lead to a straight-20

forward analytical expression for the minimum of the resulting objective function like
Eq. (5) and instead require an iterative algorithm. The next section describes example
deterministic and stochastic approaches in greater detail.
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3 Strategies for enforcing inequality constraints

3.1 Data transformations

Data transformations can enforce inequality constraints with relatively easy implemen-
tation, but transformations typically render a linear inverse problem nonlinear and there-
fore require an iterative solution. A number of different data transformations exist, but5

the power transformation is a common approach because it is defined at zero (unlike
log transformations, e.g., Snodgrass and Kitanidis, 1997):

s̃ = α
(
s1/α −1

)
(7)

where s are the fluxes in normal space and α can be any scalar value such that s̃ >
−α, though larger values of α cause more extreme transformations. This formulation10

approaches the natural logarithm for large values of α.
For the power transform, the Jacobian or sensitivity matrix (H) is not linear in the

transformation space. The algorithm, as a result, becomes iterative and requires up-
dating H at every iteration until both H and the best estimate in the transform space
(s̃) converge (described in detail by Snodgrass and Kitanidis, 1997; Fienen et al.,15

2004, among others). Most transformations assume a skewed pdf and therefore lead
to skewed posterior uncertainty estimates, and such asymmetry can have a number
of implications as discussed in Sect. 5. Furthermore, most transformations can only
enforce a single upper or lower bound that is the same for all s.

3.2 Lagrange multipliers and the trust region algorithm20

The method of Lagrange multipliers is commonly used in deterministic optimization
problems to enforce equality or inequality constraints. The approach has also been
adapted to a number of stochastic inverse problems in hydrology (Barnes and You,
1992; Walvoort and de Gruijter, 2001; Michalak and Kitanidis, 2004) and more recently

4537

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4531–4562, 2013

Inverse modeling
with known bounds

S. M. Miller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in an atmospheric context (Henze et al., 2007; Kopacz et al., 2009; Göckede et al.,
2010). Lagrange multipliers can be applied to an inversion by modifying the original
cost function Ls,β:

Ls,β,λ = Ls,β −λT (s− l) (8)

where l in this case is a lower bound on s, where the bound can be spatially and5

temporally variable, and λ are the unknown Lagrange multipliers.
A number of implementations exist, but all methods share many similarities. Any

element of s that would otherwise violate the inequality constraints becomes fixed on
one of the bounds. Most algorithms are iterative and add or remove these elements
from the “active” set at each iteration. The optimization proceeds only on the active10

set and ignores all other elements that have been fixed (e.g., Gill et al., 1981). A large
difference among algorithms is the way in which elements are removed or added to
active set.

One result of this setup is that elements in the fixed set are not modeled as con-
tinuous random variables. Estimated emissions in these regions have no associated15

posterior uncertainty. In other words, Lagrange multipliers compromise the stochastic
nature of the inverse problem in order to enforce the desired constraints.

Several numerical methods are available for solving constrained optimization prob-
lems via the method of Lagrange multipliers, but many are restricted to small or
medium-sized problems (e.g., s has fewer than 1000 elements). These include the20

method of Theil and Van de Panne (Theil and Panne, 1960; Snyman, 2005, Chap. 3.4)
and the active set method (e.g., Gill et al., 1981 or Antoniou and Lu, 2007, Chap. 13.3).

The trust region method, on the other hand, is particularly efficient for larger prob-
lems. Unlike some other approaches, it adds or subtracts multiple elements from the
fixed set at each iteration (e.g., More, 1988; Lin and More, 1999). A trust region al-25

gorithm approximates the objective function at each iteration and estimates the range
over which this approximation can be trusted (referred to as the trust region). The algo-
rithm optimizes s within the trust region and compares the approximated improvement
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to the actual reduction in the cost function (in this case Eq. 5). If the cost function ap-
proximation performs well, the algorithm is allowed to make more aggressive moves at
each iteration. In other words, the algorithm may increase the size of the trust region
if the approximation does well and vice versa. Though it was originally developed for
unconstrained problems, Gay (1984) extended the trust region method to constrained5

optimization. For additional discussion of general trust region algorithms, see Sorensen
(1982); Lin and More (1999); Conn et al. (2000, Chap. 1, Chap. 6), or Yuan (2000).

This paper adopts a general algorithm outlined in Lin and More (1999). The reader
is referred to a review article (Yuan, 2000) for a broad discussion of possible imple-
mentations. Most require the gradient (∇L) and Hessian (∇2L) of the cost function. For10

reference, these equations are listed below for the geostatistical approach:

∇Ls,β = −1
2

HT R−1(z−Hs) +
1
2

Gs

∇2Ls,β =
1
2

G +
1
2

HT R−1H (9)

G = Q−1 − Q−1X(XT Q−1X)−1XT Q−1
15

To construct these equations, we first integrate over all possible values of β in the
original cost function (Eq. 5) (Kitanidis, 1986). This integration rearranges the cost
function only in terms of the unknown s, making the trust region algorithm far more
tractable. Rodgers (2000) presents analogous equations for a prior model setup that
has pre-determined coefficients (β).20

3.3 MCMC algorithms applied to bounded inversions

The following sections discuss two possible MCMC implementations for inequality-
constrained problems. In general, MCMC algorithms make it possible to generate re-
alizations of the unknown quantity from high-dimensional probability density functions.
These algorithms make problems with non-Gaussian distributions and/or complex joint25

pdfs tractable (e.g., Andrieu et al., 2003).
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MCMC algorithms simulate a Markov chain with an equilibrium distribution that
matches the distributions of the quantities being estimated. The methods rely on the
generation of conditional realizations; each realization is a guess of the unknown (e.g.,
s) that should represent a random draw from the posterior probability distribution. The
algorithms create a new realization based only upon the previous one, and the means5

of doing so differentiate the various MCMC methods. Many conditional realizations
are typically generated to adequately sample or represent the equilibrium distribution
(Geyer, 2011). The point-wise properties of the equilibrium probability density (e.g.,
mean, median, percentiles, standard deviation) can be used to represent the statis-
tics of the unknown state, including its uncertainties. A thorough introduction to MCMC10

approaches is given by Geyer (2011).
MCMC methods can also be used for the solution of bounded problems. Each in-

dividual realization of the unknown quantity is restricted by the inequality constraints
(Gelfand et al., 1992), ensuring that both the posterior best estimate and associated
uncertainties will honor known physical limits.15

3.3.1 Metropolis–Hastings

Metropolis–Hastings algorithms have become widespread in Bayesian statistics (see
Chib and Greenberg, 1995; Bolstad, 2012, for in-depth discussion). The modeler uses
an existing, accepted realization of the unknown quantity (in this case s) to generate
a new proposed realization with a Markov chain whose properties are defined by the20

modeler. One possible approach might generate many realizations of s by using slightly
modified inputs for Eq. (5). Instead of using z in Eq. (5), sample randomly from N (z,R).
Instead of using E [s], use E [s]l−1 +N (0,ρQ). E [s]l−1 is the model of the mean in the
previous, accepted realization and ρ is a constant less than one (see the Supplement
for further discussion).25

Each subsequent proposed realization is accepted or discarded based on its prob-
ability (similar in form to Eq. 5 for the problem presented here) relative to the previ-
ous, accepted realization. Realizations with relative probabilities greater than one are
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always accepted while those with probabilities less than one are only sometimes ac-
cepted. A large number of realizations is sequentially generated in this way to sample
across the probability space of the unknown (in this case the posterior probability dis-
tribution of s).

The modeler must carefully balance two considerations when setting the step size (ρ5

for the example above). If each realization is too close to the previous one, the algorithm
will sample the probability space very slowly. However, if the proposed realization is too
far from the previous accepted realization, it will likely have a lower probability and be
rejected (e.g., Chib and Greenberg, 1995).

A number of studies in hydrology have implemented the general algorithm with an10

adaptation for inequality constraints (Michalak and Kitanidis, 2004; Wang and Zabaras,
2006; Zanini and Kitanidis, 2009). For the implementation in these studies, each pro-
posed realization is first constrained to be non-negative with Lagrange multipliers
before being tested for acceptance. This implementation is a compromise between
a purely stochastic approach that would represent all elements as continuous random15

variables and the method of Lagrange multipliers that completely removes some ele-
ments from the optimization.

Though ideal for small problems, Metropolis–Hastings algorithms can often become
stuck in local regions of high probability when there are many quantities being esti-
mated (i.e., when m is large). The acceptance rate can become so small as to make20

implementation impractical (Liu et al., 2000). This study implements a multiple-try
Metropolis–Hastings algorithm (Liu et al., 2000) suitable for larger-scale inverse prob-
lems, described fully in the Supplement.

3.3.2 Gibbs sampler

Unlike the Metropolis Hastings algorithm, the Gibbs sampler calculates a new real-25

ization for each element of the unknown state sequentially (in this case, each of m
elements in s). This method involves calculating a probability distribution for an individ-
ual element conditional on the current realization for all other elements. The algorithm
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takes a random sample from the element-wise conditional probability density, and this
sample becomes the new guess for the given element. Using this method, the Gibbs
sampler sequentially calculates a conditional distribution and random sample for each
of m elements in s until an entire new, full conditional realization has been formed
(see the Supplement). Like the Metropolis–Hastings algorithm, the Gibbs sampler re-5

quires generating a large number of conditional realizations, and the statistics of these
realizations can be used to define a best estimate and associated uncertainties. For
a in-depth review of the Gibbs sampler, refer to Casella and George (1992) or Bolstad
(2012, Chap. 10).

Several studies in hydrology apply Gibbs sampler methods to constrained inverse10

problems (e.g., Michalak and Kitanidis, 2003; Wang and Zabaras, 2005; Fienen et al.,
2006; Michalak, 2008). Michalak (2008) describes a flexible implementation in context
of groundwater problems that can incorporate any kind of spatial or temporal correlation
in the a priori covariance matrix Q, and this implementation is adapted for the case
study here. The implementation uses a truncated normal distribution instead of a full15

Gaussian as the element-wise conditional pdf. This approach thereby ensures that all
conditional realizations obey the inequality constraints.

The implementation in this study differs from Michalak (2008) in one important way.
Some regions of the United States and Canada have zero anthropogenic methane
emissions, and we alter the shape of the marginal densities to allow a high probability20

at zero. The implementation here draws a random sample from a Gaussian conditional
distribution. If the sample is positive, it becomes the new realization for that element
of s. If the sample is negative, we use zero as the realization for that element. The
approach is equivalent to modeling the marginal distributions as a truncated Gaussian
with an added Dirac delta (a function that is zero at every point except zero). This25

modification relative to Michalak (2008) results in a peak in the marginal densities at
zero.
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4 Methane case study setup

A synthetic case study on the problem of estimating US anthropogenic methane emis-
sions illustrates the comparative costs and benefits of the approaches described above:
the power transformation, Lagrange multipliers, and two MCMC implementations, with
an unconstrained inversion for comparison. The synthetic study setup uses an exist-5

ing methane emissions inventory and an estimate of atmospheric transport to create
an estimation problem with known true emissions. The prescribed methane emissions
are always nonnegative, so the constraints on this inversion are simple; the estimated
emissions must also be nonnegative (l = 0). The remainder of this section describes
the case study setup in detail.10

4.1 Model and synthetic data setup

This study employs a regional-scale, particle-following model known as STILT, the
Stochastic Time-Inverted Lagrangian Transport model (Lin et al., 2003), to quantify
the sensitivity of atmospheric observations to surface sources, and thereby to estimate
the sensitivity matrix H. STILT simulations are driven by Weather Research and Fore-15

casting (WRF) wind fields, version 2.2 (Skamarock et al., 2005); Nehrkorn et al. (2010)
provide a detailed description of the WRF fields used here.

We generate synthetic concentration measurements in the same locations as aircraft
data and nine stationary tower sites over the United States (4600 total observations).
The tower sites are those in the NOAA Earth Systems Research Laboratory and DOE20

monitoring network and are displayed in Fig. 1. Aircraft data includes methane mea-
surements from the NOAA Earth Systems Research Laboratory aircraft program at
a variety of locations over North America, DOE flights over the US Southern Great
Plains (Biraud et al., 2013), and observations from the START08 measurement cam-
paign (Pan et al., 2010). This study includes only aircraft measurements within 2500 m25

of the ground – measurements that are consistently sensitive to surface fluxes (see
Fig. 1, Miller et al., 2013b).
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The study generates synthetic methane measurements using the EDGAR v3.2
FT2000 anthropogenic inventory (Olivier and Peters, 2005). Newer EDGAR invento-
ries are available (e.g. EDGAR v4.2), but top-down studies suggest that version 3.2
best captures the magnitude of anthropogenic sources over the United States (Kort
et al., 2008; Miller et al., 2013b, see Fig. 1).5

We add noise to each synthetic measurement, randomly sampled from the model-
data mismatch covariance matrix (R with diagonal elements σ2

R). The companion study
Miller et al. (2013b) statistically infers this information from in situ methane measure-
ments using restricted maximum likelihood estimation (REML) (as in Kitanidis and
Lane, 1985; Michalak et al., 2004). Table 1 summarizes the model-data mismatch val-10

ues inferred for the towers and aircraft.

4.2 The inversion setup

The inversion covers much of North America (25–55◦ N latitude, 145–51◦ W longitude)
on a 1◦ ×1◦ spatial resolution over the months May–September, 2008. Anthropogenic
methane sources do not change markedly from one season to another (Miller et al.,15

2013b). Therefore, the synthetic data study here estimates a single set of emissions
over the entire five-month period.

All inversions presented here utilize an uninformative prior (e.g., Michalak et al.,
2004; Mueller et al., 2008). In other words, the inversion prior is a single unknown
constant across the entire geographic inversion domain. This method makes as few20

a priori assumptions as possible and relies on the atmospheric data to the fullest ex-
tent to infer information about the emissions. This framework is particularly well-suited
to a synthetic data study; any a priori inventory would be arbitrary since the true emis-
sions are already known.

Despite the lack of information in the prior itself, the inversion incorporates important25

structural information about the fluxes in the a priori covariance matrix (Q). Specifically,
the diagonal elements of Q describe the total variability of the fluxes (σQ – the variance
over long spatial scales), and the off-diagonal elements describe the degree of spatial
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correlation in the posterior flux field, assuming an exponential covariance function. The
spatial characteristics of the known emissions field are listed in Table 1 and are used
to construct Q (σQ and l , the decorrelation length parameter). The parameters for the
untransformed space are used in the unconstrained, Metropolis Hastings, and Gibbs
sampler inversions.5

5 Results and discussion

The inversion implementations discussed in this study produce variable results. All
methods place large methane emissions in Kentucky, West Virginia, and along the
eastern seaboard, similar to the true synthetic fluxes (see Fig. 2), but the methods
differ in many other regards. The remainder of this section highlights these differences10

to illustrate the relative merits of each approach.

5.1 Unconstrained inversion

The unconstrained case causes several undesirable side-effects, including but not lim-
ited to negative emissions estimates (Fig. 2). As noted in the introduction, the uncer-
tainties are also too large. Conditional realizations and confidence intervals based on15

multi-Gaussian probabilities extend well beyond the known bounds on the problem
(i.e., are not strictly nonnegative), even in regions where the best estimate itself falls
within these bounds (Fig. 3). Figure 4 visualizes this problem in terms of the marginal
probability distributions – the probability of an individual element in the emissions field
integrating over all possible values of the remaining elements. Even emissions esti-20

mated over source regions (Fig. 4b) include negative values in the confidence interval.
Additionally, the unconstrained confidence intervals and conditional realizations ex-

tend too high for reasons noted in Sect. 1. Figure 5 shows sample conditional realiza-
tions from each method. Emissions in the unconstrained realization extend both lower
and higher than the realizations estimated by either MCMC algorithm.25
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5.2 Data transformations

Transformations can be straightforward to implement, but this class of methods can
skew the probability distributions in the inversion: three of the most important implica-
tions are discussed here. First, the covariances (e.g., prior and posterior uncertainties)
cannot be directly transformed back to normal space; instead, upper and lower esti-5

mation bounds (i.e. percentiles) must be back-transformed to produce posterior confi-
dence intervals. In other words, the covariances become central-value dependent and
are otherwise difficult to physically interpret in back-transformed units. Second, be-
cause the covariances are central-value dependent, it can be difficult to estimate the
a priori covariance matrix (Q), particularly for two of the most common estimation meth-10

ods. One could use existing knowledge of the emissions to estimate the covariances,
but this approach becomes difficult when the covariance matrix has little physical mean-
ing in the untransformed space. The covariance matrices can also be inferred from the
data and model itself using statistical approaches such as REML. The transformation
necessitates iterating between covariance parameter estimation and flux estimation15

until both converge (Snodgrass and Kitanidis, 1997). The nonlinearities created by the
transformation often hinder convergence.

Third, the skewness implied by the power transformation is, in many cases, not repre-
sentative of actual uncertainties in the emissions best estimate. The uncertainties can
become too large in regions of high emissions and too small in regions of low emissions20

(Fig. 2, e.g., Snodgrass and Kitanidis, 1997; Fienen et al., 2004; Muller and Stavrakou,
2005). For example, conditional realizations follow the lower bounds in the methane
case study but produce estimates of the sources that are too large in some high emis-
sions areas. As a result, the back-transformed conditional realizations have an average
eastern US budget of 2.1±0.2 TgCmonth−1, a budget much larger than the synthetic25

fluxes. For all other methods discussed in this paper, the mean of the conditional re-
alizations is identical to the emissions best estimate. Furthermore, the uncertainties in
Table 2 are larger than any other method, yet these uncertainties encompass fewer of
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the synthetic fluxes than other methods. These pitfalls illustrate difficulties in reason-
ing about the range of plausible uncertainties or realizations in the power transform
case. Snodgrass and Kitanidis (1997); Fienen et al. (2004) and Muller and Stavrakou
(2005) provide further discussion on several of above challenges associated with data
transformations.5

5.3 Lagrange multipliers

The emissions estimated via Lagrange multipliers reproduce the magnitude and distri-
bution of the sources well. This method is not truly stochastic, however, and removes
many elements from the optimization entirely (e.g., emissions over most of Manitoba,
Ontario, and Quebec, Canada, in Fig. 2). As such, there is no way to calculate either un-10

certainty bounds or conditional realizations using this approach. The uncertainties as-
signed to the posterior emissions are typically borrowed from the unconstrained case,
though the uncertainties could be borrowed from any other method. Hence, estima-
tion via Lagrange multipliers resolves the problem of unrealistic emissions, but it does
not address the challenge of estimating bounded posterior uncertainties or confidence15

intervals.

5.4 MCMC implementations

The MCMC implementations discussed here provide an appealing option when robust
uncertainty bounds are a priority in the analysis. Both of the explored implementations
ensure that the best estimate (Fig. 2), conditional realizations (Fig. 5), and confidence20

intervals respect the known bounds.
Both MCMC implementations produce much narrower uncertainty bounds relative to

the other methods (Fig. 2, Table 2). As discussed in the introduction, the reason for this
is twofold. First, the confidence intervals must be smaller because they cannot include
values outside the inequality constraints. Second, if the lower range of the confidence25

intervals is limited, then the maximum emissions values in the interval will also be
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less extreme (and vice versa, see Sect. 1). The uncertainties are smaller, and yet
96–97 % of the synthetic fluxes still fall within the inversion’s 95 % confidence interval
(Table 2). For these reasons, the smaller confidence intervals estimated by the MCMC
implementations are most realistic.

The estimated emissions and marginal distributions look very similar between the5

two MCMC implementations, but the methods show several subtle differences. Unlike
the Gibbs sampler, the implementation of the Metropolis Hastings algorithm here uses
Lagrange multipliers and therefore does not explicitly model every element of s in every
realization as a continuous random variable. Rather, the implementation is an extension
of Lagrange multipliers to circumstances that require bounded confidence intervals.10

As a result, this Metropolis Hastings method will always produce a high probability
at the inequality constraints (i.e., Fig. 4). The choice of a Dirac delta in the Gibbs
sampler produces a similar peak in the pdf at zero, but the Gibbs sampler allows greater
flexibility in setting the shape of the marginal distributions near the bounds.

Appropriate distributional assumptions are important for any type of inversion, and15

the inversion with inequality constraints is no different. The Gibbs sampler in this case
study models the marginal distributions as a truncated Gaussian with a Dirac delta
function (see Sect. 3.3.2). If the fluxes or emissions are unlikely to be exactly zero, an
implementation without the Dirac delta would be more suitable.

Furthermore, the choice of a truncated normal distribution may not always be ap-20

propriate. If the total budget is poorly constrained by the data, this distributional choice
could increase estimated emissions in remote regions far from measurement sites.
A Gaussian pdf that has been truncated at zero will have a higher mean than the
equivalent, full Gaussian distribution, and this effect can shift the posterior mean in
poorly-constrained problems. One solution could be to fix the drift coefficients (β) at25

pre-determined values, but these coefficients are rarely known in practice. In contrast,
if measurement sites are sensitive to emissions across the entire geographic domain
(indicated by H), then either distributional assumption will produce the same trace gas
budget.
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The MCMC implementations produce the most realistic best estimate, conditional
realizations, and uncertainty bounds, but one drawback can be computational cost.
The generation of l conditional realizations using the Gibbs sampler requires a for loop
with lm iterations, and l is usually 1000 or greater to adequately sample the poste-
rior probability space. The computational time of the multiple-try Metropolis Hastings5

depends on the convergence rate of the Lagrange multipliers algorithm and upon the
number of trial realizations (denoted k , see the Supplement) chosen for each iteration
of the multiple-try implementation. The often large ratio of trial to accepted realizations
means that the multiple-try Metropolis Hastings is usually less efficient than the Gibbs
implementation. Parallelization can alleviate some time expense for both algorithms.10

In summary, the Gibbs and Metropolis Hastings implementations produce similar re-
sults, but the Gibbs sampler can afford two advantages: greater flexibility in determining
the shape of the marginal distributions at the bounds and reduced computational time.

6 Conclusions

For inverse problems with parameters that have known physical limits, an uncon-15

strained inversion presents difficulties that go beyond just an unrealistic estimate, and
a common remedy of using data transformations can have many undesirable side ef-
fects. This study uses anthropogenic methane emissions as a lens to evaluate this
approach, as well as several less common ones.

Inverse modeling problems can be constructed to honor known bounds without com-20

promising the integrity of the estimate. Lagrange multipliers are a viable approach for
large problems in which computational time is paramount. However, this method does
not provide an explicit means for calculating uncertainty bounds. Uncertainties are usu-
ally borrowed from the unconstrained case instead, and these are generally too large.

The most promising methods, however, are rarely applied in the existing atmospheric25

literature. To that end, this study presents the first application of Markov Chain Monte
Carlo (MCMC) methods to the estimation of atmospheric trace gas fluxes. Both MCMC

4549

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4531–4562, 2013

Inverse modeling
with known bounds

S. M. Miller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

implementations here produce similar results for the methane case study, but the Gibbs
sampler offers better computational efficiency and more flexibility in determining the
shape of posterior probability at the bounds. In general, MCMC algorithms can be
applied to inverse problems with known bounds to produce the most realistic best esti-
mates, confidence intervals, and conditional realizations of any of the aforementioned5

approaches.

Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/6/4531/2013/
gmdd-6-4531-2013-supplement.pdf.
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Table 1. Covariance matrix parameters.

Parameter Value

σR,tower(ppb)a 13.1–68.9
σR,aircraft 19.8

Untransformed space

σQ(µmolm−2s−1) 0.017
l(km) 101

Transformed space (α = 6)b

σQ 0.81
l 261

a Each tower has a different estimated
σR . Refer to Miller et al. (2013b).
b In the case of the power transform, we
set α = 6. This value brings the
posterior emissions estimate closest to
being normally distributed in the
transformed space.
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Table 2. Eastern US anthropogenic budgets and 95 % confidence intervals (Tg C month−1) for
the true synthetic emissions and inversion estimates.

Type Budget % of true emiss. encapsulated
in the given confidence interval
68.2 % 95 %

True emissions 1.61
Unconstrained inversion 1.60±0.13 90 97
Transform 1.59±0.20 64 87
Lagrange multipliers 1.60
Metropolis–Hastings 1.60±0.08 86 97
Gibbs sampler 1.58±0.08 86 96

4557

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4531/2013/gmdd-6-4531-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4531–4562, 2013

Inverse modeling
with known bounds

S. M. Miller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
Synthetic emissions (EDGAR v. 3.2)Measurement sites

μmol m-2 s-1

0.00

0.01

0.02

0.03

0.04

>.05

232 obs.

2
5

3
5

4
5

5
5

−130 −110 −90 −70 −130 −110 −90 −70

218 obs.
137 obs.

44 obs.

42 obs.

244 obs.

166 obs.

138 obs.

44 obs.

Tower site (1265 obs.)

Aircraft (3335 obs.)

Fig. 1. The synthetic measurements and synthetic emissions used in this study. Blue numbers (left)
indicate the observation count at each tower site. The red box (right) indicates the region of the methane
budget calculations (Table 2).
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Fig. 1. The synthetic measurements and synthetic emissions used in this study. Blue numbers
(left) indicate the observation count at each tower site. The red box (right) indicates the region
of the methane budget calculations (Table 2).
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Fig. 2. The posterior best estimate of the emissions and uncertainties associated with each method-
ological approach. The method of Lagrange multipliers does not support a direct means of estimating
uncertainties.
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Fig. 2. The posterior best estimate of the emissions and uncertainties associated with each
methodological approach. The method of Lagrange multipliers does not support a direct means
of estimating uncertainties.
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Fig. 3. The number of uncertainty standard deviations before the methane emissions become negative in
the unconstrained estimate.
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Fig. 3. The number of uncertainty standard deviations before the methane emissions become
negative in the unconstrained estimate.
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Fig. 4. The marginal posterior density for the estimate of methane emissions at three individual loca-
tions. Case (a) is an estimate of emissions north of Thunder Bay, Ontario, Canada, (b) over Indianapolis,
Indiana, and (c) over eastern Kentucky. The unconstrained case is plotted as a normal distribution, and
the other plotted probability densities are produced by applying a kernel smoother to the histogram of re-
alizations. Note that this figure does not include the Lagrange multipliers case because this deterministic
approach produces only a best estimate with no associated marginal densities.
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Fig. 4. The marginal posterior density for the estimate of methane emissions at three indi-
vidual locations. Case (a) is an estimate of emissions north of Thunder Bay, Ontario, Canada,
(b) over Indianapolis, Indiana, and (c) over eastern Kentucky. The unconstrained case is plotted
as a normal distribution, and the other plotted probability densities are produced by applying
a kernel smoother to the histogram of realizations. Note that this figure does not include the
Lagrange multipliers case because this deterministic approach produces only a best estimate
with no associated marginal densities.
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Fig. 5. Example conditional realizations from each different optimization approach.
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