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This supplement describes in greater detail the multiple-try Metropolis-Hastings algorithm
and the Gibbs sampler implementation.

1 The multiple-try Metropolis-Hastings

This algorithm (Liu et al., 2000) first requires the generation of an unconstrained unconditional
realization, denoted suu. The realization for step l, denoted suu,l, is created by applying a
modification to suu,l−1. The modification to the previous realization is provided by what is
known as the jumping distribution T (). This distribution should create new realizations that
are sufficiently different from the previous one such that the algorithm effectively samples the
entire probability space. However, the jumping distribution should avoid creating subsequent
realizations that are so different such that suu,l gets rejected by the algorithm (e.g., Chib and
Greenberg, 1995).

The jumping distribution used here requires taking the Cholesky decomposition of Q:

Q = CCT (1)

The distribution T () can be chosen in any number of ways (e.g., Chib and Greenberg, 1995),
but we generate new unconditional unconstrained realizations as follows (where u is a random
vector with distribution N (0, 1)):

suu,0 = Cu (2)

suu,l = 0.9suu,l−1 + 0.5Cu

The multiple-try Metropolis-Hasting with inequality constraints has the following steps:

1. Draw k trial proposals for suu,l from the jumping distribution described by Eq. 2.

2. Compute a conditional constrained realization (scc,l) for each of the trial proposals by
minimizing the posterior negative log-likelihood via Lagrange multipliers:

Ls,β = 1
2(z + v −Hs∗cc,l)

TR−1(z + v −Hs∗cc,l)+ (3)

1
2(s∗cc,l − s∗uu,l)

TG(s∗cc,l − s∗uu,l)

where v is a random vector with covariance R. In this case, the asterisk (∗) indicates
that the candidate is one of k trial proposals for the realization.
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3. Compute the weighting function for each trial proposal:

w(s∗cc,l|scc,l−1) =
p′′(s∗cc,l|z,H,X)

T (s∗cc,l|scc,l−1)
(4)

where p′′(s∗cc,l|z,H,X) indicates the posterior probability of s∗cc,l, and T (s∗cc,l|scc,l−1) is
the jumping probability of s∗cc,l given scc,l−1. The posterior probability and approximate
jumping probability can be calculated as follows (Michalak and Kitanidis, 2002):

p′′(s∗cc,l|z,H,X) ∝ exp[−1
2(z −Hs∗cc,l)

TR−1(z −Hs∗cc,l) (5)

− 1
2s
∗
cc,l

TGs∗cc,l]

T (s∗cc,l|scc,l−1) ∼ exp[−1
2(s∗uu,l − 0.9suu,l−1)

T (6)

Q−1

0.52
(s∗uu,l − 0.9suu,l−1)]

4. Select scc,l from the trial proposals by individually, randomly drawing each element from
s∗cc,l with probability proportional to the weighting function w(s∗cc,l|scc,l−1). Select the
corresponding elements of s∗uu,l to construct suu,l.

5. Create (k− 1) new trial proposals for scc,l−1. To do this, draw samples from the jumping
distribution T (s∗uu,l−1|suu,l) (i.e., s∗uu,l−1 = 0.9suu,l + 0.5Cu). Calculate the trial con-
ditional constrained realizations s∗cc,l−1 using the procedure outlined in step 2. Set trail
proposal k to scc,l−1. Finally, calculate the weighting function for each trial conditional
constrained realization, w(s∗cc,l−1|scc,l).

6. Calculate the acceptance/rejection probability (Liu et al., 2000):

ξ = min

{
1,

∑k w(s∗cc,l|scc,l−1)∑k w(s∗cc,l−1|scc,l)

}
(7)

Accept scc,l if ξ > U(0, 1). Otherwise, set scc,l = scc,l−1.
Repeat steps 1 – 6 until a sufficient number of realizations have been generated to sample

across the entire posterior probability space. Note that unlike the Gibbs sampler, this multiple-
try Metropolis-Hastings algorithm does not require discarding realizations from an initial spin-
up period. For this application, we choose k = 8. Larger values for k can lead to greater
acceptance rates but higher computational cost. Liu et al. (2000) note that an acceptance rate
of 0.4− 0.5 is ideal for a multiple-try Metropolis-Hastings algorithm.

2 The Gibbs sampler implementation

The Gibbs sampler requires generating the conditional probability density, the probability of
any individual element in s given an estimate of all other elements in s. This conditional
density is denoted p(si|s, z) where i is one of m elements in s. The equations for p(si|s, z) can
be found in Michalak (2008) for the inversion setup discussed in this paper.

The Gibbs sampler has the following steps:

1. Make an initial guess for s1 where the subscript ‘1’ denotes the first realization of s.
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2. Obtain a new realization, sl, from the previous realization, sl−1. To do this, successively
generate a conditional probability for each element in s, and draw a random sample from
each one:

p(s1,l) = p(s1,l|s2,l−1, ..., sm,l−1)

p(s2,l) = p(s2,l|s1,l, s3,l−1, ..., sm,l−1)

p(si,l) = p(si,l|s1,l, ..., si−1,l, si+1,l−1, ..., sm,l−1)

p(sm,l) = p(sm,l|s1,l, ..., sm−1,l)

(8)

3. Update l to l + 1 and continue generating realizations.

Create a large number of realizations (in this case 1200) to fully sample across the posterior
probability space. The initial realizations are usually discarded as a “spin-up” period.

In this implementation p(si|s, z) is Gaussian. To enforce the inequality constraints, Micha-
lak (2008) draws a random sample from p(si|s, z) until the random draw falls within the bounds.
This draw becomes the estimate for si,l. The approach is equivalent to sampling from a trun-
cated normal distribution.

This study uses a modified approach for the methane case study. If the random sample
from p(si|s, z) is positive, it becomes the estimate for si,l. If the random sample is negative, set
si,l = 0. This approach is equivalent to sampling from a truncated normal distribution with an
added Dirac delta function. The method adapted here increases the probability of estimating
zero emissions for a given flux or emissions location.
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