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Abstract

A new hybrid Eulerian Lagrangian numerical scheme (HEL) for solving prognostic
equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well
as a fully Lagrangian representation of all prognostic variables.

The time step in Lagrangian space is obtained as a translation of irregularly spaced5

Lagrangian parcels along downstream trajectories. Tendencies due to other physical
processes than advection are calculated in Eulerian space, interpolated, and added
to the Lagrangian parcel values. A directionally biased mixing amongst neighboring
Lagrangian parcels is introduced. The rate of mixing is proportional to the local defor-
mation rate of the flow.10

The time stepping in Eulerian representation is achieved in two steps: first a mass
conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional fore-
cast. This forecast is then nudged towards target values defined from the irregularly
spaced Lagrangian parcel values. The nudging procedure is defined in such a way that
mass conservation and shape preservation is ensured in Eulerian space.15

The HEL scheme has been designed to be accurate, multi-tracer efficient, mass
conserving, and shape preserving. In Lagrangian space only physically based mixing
takes place, i.e., the problem of artificial numerical mixing is avoided. This property is
desirable in atmospheric chemical transport models since spurious numerical mixing
can impact chemical concentrations severely.20

The properties of HEL are here verified in two-dimensional tests. These include de-
formational passive transport on the sphere, and simulations with a semi-implicit shal-
low water model including topography.

1 Introduction

Numerical chemical weather forecast systems and Earth system models include com-25

ponents describing the chemisty, including aerosols, and the interaction of these with
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cloud and radiation processes, e.g. Grell et al. (2005) and Pozzoli et al. (2008). The in-
troduction of many more prognostic variables, sometimes several hundred, represent-
ing the concentrations of the individual chemical species, poses some severe chal-
lenges regarding computational methodologies.

1.1 Desirable properties5

A number of desirable properties for numerical schemes solving the continuity and
other prognostic equations have been identified, e.g. Rasch and Williamson (1990),
Schär and Smolarkiewicz (1996), Lin and Rood (1996), Jöckel et al. (2001) and Lau-
ritzen et al. (2011). These deal with

1. Accuracy10

2. Stability

3. Computational efficiency (i.e., accuracy for a given computational resource)

4. Transportivity and locality (the solution should follow characteristics)

5. Shape preservation (positive definite and non-oscillatory)

6. Conservation of invariant quantities such as mass15

7. Consistency between wind and mass fields (minimize the so-called mass-wind
inconsistency problem)

8. Compatibility (mixing ratios should be bound by their upstream values)

9. Preservation of constant mixing ratios in non-linear flows

10. Preservation of linear correlations between constituents20
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For a brief discussion of these see Machenhauer et al. (2008).
While several of the above listed desired properties are of particular relevance in at-

mospheric chemical transport models, most are also highly desirable/necessary when
it comes to simulation of geophysical dynamics, not least those components involving
water vapor, liquid water droplets and ice crystals in the atmosphere, or e.g. salinity in5

the ocean.
There is, however, one additional property, not listed above and less discussed in

the literature, which is particularly important for chemistry and chemistry-climate appli-
cations:

11. Avoidance of spurious numerical mixing/unmixing (Lauritzen and Thuburn, 2012).10

1.2 Mixing and unmixing in Eulerian based models

The 11th property above refers to the ability of a scheme to preserve pre-existing
functional relations between tracers. Mixing or unmixing can be divided into three
categories (see Fig. 1), real mixing, range preserving unmixing, and overshooting.
Most transport schemes operating on a fixed Eulerian grid (including semi-Lagrangian15

schemes) will lead to numerical mixing between tracers. In a real fluid, mixing can only
result in values that lie on so called mixing lines, which in Fig. 1 are straight lines that
connect any two points in the convex hull (Thuburn and McIntyre, 1997). A transport
scheme should therefore ideally not produce any mixing that cannot be represented by
a mixing line, i.e., real mixing. If mixing results in points which fall outside the domain20

of real mixing, it is spurious unmixing, which can be either range preserving, if the val-
ues fall within the original range of values, or overshooting if the values are outside the
possible range of values. It should be noted that non-shape preserving schemes will
give rise to overshooting, which can result in completely unphysical values, such as
negative concentrations.25

In the case where the flow is completely linear, and therefore free of macro-scale
deformation or turbulence, only molecular mixing will occur. Since, in geophysical
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problems, molecular mixing is normally several orders of magnitude smaller than mix-
ing due to macro-scale turbulence it can be neglected, and therefore no real mixing
takes place when the flow is linear. Any functional relation between tracers will there-
fore remain unchanged for inert tracers, i.e., all points in a diagram like that in Fig. 1
will keep their initial positions. However, as mentioned above, this is generally not the5

case when an Eulerian based numerical scheme is used to solve this simple physical
problem of linear advection. In this case some spurious numerical mixing or unmixing
will normally take place, i.e., the points in the diagram will move away from their ini-
tial positions. In the case where the tracers are chemically active, this can potentially
be a serious problem as spurious chemical reactions are then initiated, or chemical10

equilibria are displaced.
Note that apart from the initial truncation numerical methods based on orthogonal

series expansion functions are the only Eulerian type numerical schemes, which do not
introduce numerical mixing in the case of non-deforming flow. However, generally filters
must be introduced in such such schemes to prevent e.g. development of negative15

values, and this introduces numerical mixing also in regions of (quasi-) linear flow.
In the more realistic case of non-linear flow Lagrangian parcels will deform into thin-

ner and thinner filaments, which in nature are finally mixed via molecular mixing. An
important question is to what extend explicit numerical diffusion/mixing is required as
a supplement to that implied by the native version of some numerical scheme in order20

to mimic the cascade into small scales correctly. For typical grid point/cell based meth-
ods, including semi-Lagrangian schemes, some inherent numerical mixing is almost
unavoidable and this may be sufficient to control the cascade in a statistical sense. In
Galerkin methods – e.g. the classical spectral method (Machenhauer, 1979) – the grad-
ual development of non-resolved filaments and structures is controlled by demanding25

the residual to be orthogonal to the resolved expansion functions (see e.g. Machen-
hauer, 1979 or Durran, 2010). This gives rise to an implied mixing, which, depending
on the chosen expansion functions, is generally non-local in physical space. Explicit
horizontal diffusion – in addition to the implied mixing – is required for most Galerkin
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schemes in order to prevent so-called “spectral blocking” (Machenhauer, 1979), i.e.,
spurious accumulation of energy on the shortest resolved scales. The situation is
different in pseudo-spectral models where the non-linear development of unresolved
structures gives rise to aliasing, i.e., the non-linear generation of unresolved features
is misinterpreted as spurious resolved features, as opposed to the situation in tradi-5

tional spectral models where aliasing is formally avoided (Machenhauer, 1979; Durran,
2010). Diffusion, which introduces explicit numerical mixing, can be used to reduce the
aliasing problem and thereby one can obtain a more realistic spectral distribution of the
prognostic variables in a pseudo-spectral model.

In conclusion explicit mixing, in terms of filters, diffusion, spectral damping etc., is10

needed in both grid point/cell methods and methods based on series expansion in order
to ensure shape preservation, and in particular positive definiteness, and to control the
cascade into smaller scales in a realistic way. In general such mixing will, however, not
represent true physical mixing although it may be “real” in the sense described above.

1.3 The HEL approach15

Here we present a numerical methodology, termed the hybrid Eulerian–Lagrangian
(HEL) numerical scheme, which has been designed to fulfill as many as possible of the
desired properties mentioned in Sect. 1.1. The aim is to combine the Eulerian and the
Lagrangian approaches in such a way that the main problems related to either of these
are eliminated or at least reduced. The ideas behind HEL have been inspired by other20

Lagrangian approaches, in particular that of ATTILA (Atmospheric Tracer Transport
In a Lagrangian Atmospheric model) (Reithmeier and Sausen, 2002; Stenke et al.,
2008, 2009), which uses a fully Lagrangian scheme for all tracers, including water
substances.

Contrary to the problems mentioned in the previous subsection for Eulerian based25

schemes, fully Lagrangian schemes are formally exact for the pure advection problem
assuming trajectories have been calculated exactly. However, with such schemes, and
in general non-linear flows, the Lagrangian parcels become irregularly distributed in
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space and strongly deformed. The irregular distribution is a fundamental problem for
the following reasons:

1. Dynamical tendencies due to non-advective processes generally need to be es-
timated on a regular grid to ensure consistency with and between the governing
prognostic equations.5

2. In practice, it is problematic to calculate parameterized physical processes on an
irregular grid.

3. There may be sub-domains with no or very few parcels.

The result of an interpolation from mass centers of Lagrangian parcels to a regular
Eulerian grid will typically, after some time, show a completely unrealistic “spotty” dis-10

tribution because neighboring parcels originate from quite different positions at the
initial time of the integration (see e.g. lower right panel of Fig. 11). In nature finite size
Lagrangian parcels typically deform into very long, very thin filaments. A Lagrangian
transport scheme aiming at resolving the developing shape of individual parcels with-
out any explicit mixing between neighboring parcels would represent the discrete La-15

grangian analogy to the pseudospectral method. The aliasing of such a Lagrangian
scheme is realised when one interpolates from Lagrangian to physical space, i.e., to
a fixed Eulerian grid. To avoid such aliasing one can introduce mixing between parcels.
One may think of the difference between a mixed and unmixed Lagrangian scheme as
an analogy to the difference between spectral and pseudo-spectral schemes.20

In HEL the density and, optionally, other prognostic variables, are known at all times
via a fully Lagrangian as well as a traditional Eulerian representation. At each time step
a nudging technique is applied where the density information in the downstream trans-
lated Lagrangian parcels is used to modify or “repair” an Eulerian based advection.
In this way the non-dispersive, non-diffusive, and shape preserving advantages of the25

Lagrangian method can be adopted in an otherwise diffusive and/or strongly dispersive
Eulerian based transport scheme. Physical tendency contributions not related to pure
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advection are most obviously and accurately calculated in Eulerian space and subse-
quently interpolated and added to the Lagrangian parcel values. In this way the bulk of
the model history is kept in the Lagrangian representation.

With this generic design we are, however, still left with the problem of aliasing in
Lagrangian space. To reduce or eliminate aliasing we introduce a “real” mixing in La-5

grangian space between neighboring parcels. We let the degree of mixing depend
on the local flow deformation rate. Not surprisingly, the introduction of such mixing
turns out to be instrumental for a proper description of the spectral distribution of prog-
nostic variables although this issue is not covered in the present paper. The mixing,
presented in more detail below, is quite different from the uncontrollable, and in many10

cases unrealistic, numerical mixing/unmixing mentioned previously, which is introduced
in most traditional models based on an Eulerian grid/cell representation, i.e., Eulerian
and semi-Lagrangian type methods. This is because in such models the degree of
mixing is different from tracer to tracer, because it depends on the spatial roughness of
their density fields. The degree of mixing applied here between Lagrangian parcels is15

the same for all tracers, and it depends only on the actual physical deformation of the
Lagrangian parcels. Thus, in the Lagrangian space representation, i.e., for the parcels,
the problem of numerical mixing and unmixing is eliminated. It is noted that the intro-
duction of a flow-dependent mixing based on the degree of deformation is not new.
Sadourny and Maynard (1997) introduced a horizontal diffusion which was dependent20

on the magnitude of the deformation rate of the flow, and later Váňa et al. (2008) used
a similar approach to obtain a flow dependent degree of mixing in a semi-Lagrangian
model. Also ATTILA (Stenke et al., 2009) and CLaMS (Chemical Lagrangian Model of
the Stratosphere) (McKenna et al., 2002) employ mixing depending on horizontal flow
deformation rate.25

Although we are not dealing with chemistry here it is noted that calculation of chem-
ical reactions are naturally performed in the Lagrangian parcels where it is known that
only real mixing takes place.
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1.4 Other relevant Lagrangian type numerical schemes

HEL has some similarities to particle in cell (PIC) methods, which have been used ex-
tensively in e.g. plasma physics (Tskhakaya et al., 2007). However, one, among several
fundamental differences, is that in PIC methods the number of Lagrangian parcels far
exceeds that of Eulerian grid points/cells, while in HEL these numbers are equal or at5

least close to the same order of magnitude. The choise of relatively few Lagrangian
parcels in HEL was motivated by efficiency considerations since computationally ex-
pensive chemical reactions (not dealt here) involving up to several hundred chemical
tracers should be performed in Lagrangian space.

As indicated above the transport and mixing in the HEL scheme is similar to other10

Lagrangian parcel methods like ATTILA, CLaMS and FPIC (Kaas et al., 1997). In Rei-
thmeier and Sausen (2002), and later improved in Stenke et al. (2008) ATTILA was im-
plemented in a general circulation model to simulate transport of water vapor and cloud
water. This was extended in Stenke et al. (2009) to an interactively coupled chemistry-
climate model version of ATTILA, i.e., water vapor, cloud water, and mixing ratios of15

all chemical tracers are known for each Lagrangian parcel. ATTILA is able to maintain
steep gradients, is mass conserving, numerically non-diffusive, and has been used e.g.
for studying the climate radiative forcing related to aircraft contrails (Frömming et al.,
2011). ATTILA does not handle the “dry dynamics” as opposed to HEL, however, be-
sides this the HEL and ATTILA approaches are quite similar when applied for non20

dry-dynamical prognostic variables. One difference, though, is that ATTILA on average
holds more Lagrangian parcels per Eulerian grid cell than the version of HEL presented
here, which on average only has one. More importantly, there are some differences in
the way horizontal mixing between neighboring parcels is performed in ATTILA and
HEL. For both schemes the degree of mixing depends on the horizontal shear defor-25

mation rate of the flow, however, in ATTILA this is a simple analytical expression based
on Smagorinsky (1963), whereas in HEL the deformation of each parcel is kept as an
additional prognostic variable, which is increased each time step in proportion to the
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shear deformation rate, and attempted reduced via realised mixing with neighboring
parcels.

The approaches in the CLaMS model (McKenna et al., 2002) are less similar than
ATTILA to those applied in HEL. The mixing in CLaMS is based on a dynamically
adaptive grid and it becomes active in terms of mass exchange between neighbor-5

ing parcels when the flow deformation is high. A local, in time and space, Lyapunov
exponent is used to determine the degree of mixing that takes place, which in prac-
tice takes place via generation of new Lagrangian parcels in strongly deformed flow,
or merging of clustered Lagrangian parcels. This is one main difference compared to
HEL and ATTILA where Lagrangian parcels survive throughout the integration. In the10

ATLAS model (Wohltmann and Rex, 2009) the flow dependent mixing methodology of
CLaMS has been modified with emphasis on better performance in lower resolution
model configurations. Also in FPIC (Kaas et al., 1997) an implied mixing takes place
via simple birth and merging of particles.

The so-called “Trajectory-Tracking scheme” introduced in Dong and Wang (2011)15

and updated in Dong and Wang (2012) has some similarities to HEL. In two dimen-
sional problems this scheme treats Lagrangian parcels as polygons with a finite num-
ber of edges, and with all Lagrangian parcel polygons spanning exactly the complete
integration domain. The Eulerian space representation is obtained via a first-order con-
servative remapping so that total mass is conserved in the Lagrangian as well as the20

Eulerian representation. A “curvature-guard” algorithm is applied in order to maintain
an accurate polygon representation in non-linear deformation flows. However, this algo-
rithm does not lead to any mixing, as in HEL, between neighboring Lagrangian parcels.
Therefore, in long term simulations, one should expect problems equivalent to aliasing.

1.5 Overview25

The paper is organized as follows: Sect. 2 provides a generic description of the HEL
approach, i.e., HEL without any type of mixing between parcels, while Sect. 3 describes
how mixing between adjacent parcels is achieved. Section 4 presents passive inert
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transport tests on the sphere. Various traditional and more recently proposed error
measures and evaluation statistics are used to demonstrate the performance of HEL
in both solid body rotation flow (Sect. 4.1) and in strongly non-linear flow (Sects. 4.2
and 4.3). Section 5 deals with some initial attempts to implement HEL as the basis for
a dynamical in core in a geophysical fluid dynamics model. In this case the test bed5

is a shallow water model in plane geometry. Finally Sects. 6 and 7 discuss the results
including some outlooks for future work, and summarizes the basic findings.

2 The HEL approach – passive transport

To introduce the procedure followed in HEL in more detail we first consider the conti-
nuity equations for a set of M tracers with densities ρm:10

∂ρm
∂t

= −∇ · (ρmV ), m = 1, . . .,M, (1)

or alternatively on Lagrangian form,

d lnρm
dt

= −∇ · V , m = 1, . . .,M (2)

where V is the flow velocity vector. For simplicity we have ignored any sources and
sinks, and any diffusion in Eqs. (1) or (2).15

In geophysical fluid dynamics Eqs. (1) or (2) are normally solved via finite volume
(FV) methods operating on a fixed Eulerian grid. Two different families of FV methods
have been applied: flux based and cell integrated. In flux based methods the fluxes
of mass swept through each face of pre-defined Eulerian grid cells within a time step
are calculated first, and the change in density is then determined from the net inflow20

of mass into each grid cell. In cell integrated methods a semi-Lagrangian upstream
departure cell is first identified. The estimated total mass in this upstream cell then
determines the corresponding arrival (Eulerian) grid cell density. For a more detailed
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description of the difference between the two families, see Machenhauer et al. (2008),
where it is also demonstrated that they are in fact numerically equivalent. For a general
review of FV methods, we refer to LeVeque (2002) and Eymard et al. (2000).

It should be noted that other non-FV, yet still mass conservative, schemes have
also been used. For the present work it is of particular relevance to mention the so-5

called locally mass conserving semi-Lagrangian method (LMCSL) (Kaas, 2008) which
is based on a simple partition of unity principle.

Depending on the chosen order of accuracy any numerical method – Eulerian or
semi-Lagrangian type – applied for solving Eqs. (1) or (2) on an Eulerian grid will suffer
from some degree of dissipation (or possibly anti-dissipation), some numerical disper-10

sion, and generally, for higher order schemes, the solution will not be shape preserving.
As mentioned above the main motivation behind the present work is to use a fully La-

grangian forecast, run in parallel, to modify the Eulerian grid forecast in such a way that
the above mentioned disadvantages are reduced or eliminated. A purely Lagrangian
forecast describes the temporal evolution of the densities of individual Lagrangian fluid15

parcels as they move around. Formally it is straightforward to integrate Eq. (2) for a La-
grangian parcel from time t to some future time t+∆t:

lnρ (r (t+∆t),t+∆t))− lnρ (r (t),t))

= −
t+∆t∫
t

∇ · V
(
r (t′),t′

)
dt′

= ∆tD, (3)20

where r (t) is the position vector of the parcel at time t, and D represents the average
divergence along the trajectory from r (t) to r (t+∆t). From Eq. (3) one immediately
gets:

ρ (r (t+∆t),t+∆t)) = ρ (r (t),t))exp
(
∆tD

)
, (4)25
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i.e., the effect of divergence over the period from t to t+∆t is an expansion/contraction
factor:

σ = exp
(
∆tD

)
(5)

multiplied by the original parcel density at time t.
We will now consider the actual numerical discretization of the prognostic equations5

in Eulerian and Lagrangian space. The Lagrangian parcels are introduced at the initial
time, and in the present formulation of HEL they survive throughout the model integra-
tion. Also, in the version of HEL presented here, the total number of parcels P and the
number of Eulerian grid cells K are equal. At the initial time step, n = 0, Lagrangian
parcel densities, Lρ, are initialized by the corresponding values in Eulerian grid cell10

centroids, i.e.,

Lρ0
p=

Eρ0
k

Lρ0
m,p=

Eρ0
m,k , m = 1, . . .,M (6)

where p, k = 1, . . .,P (= K ), and m counts the individual tracers as in Eqs. (1) and (2).15

In the following we generally use upper left superscripts L and E to indicate Lagrangian
and Eulerian space representation, respectively. An upper right index denotes the time
step. A list of all prognostic variables in HEL to be described below can be found in
Appendix A.

Assume some numerical scheme has been used to solve Eqs. (1) or (2) in the Eule-20

rian grid cell representation, and let

Eρ̃n+1
k

Eρ̃n+1
m,k , m = 1, . . .,M (7)

denote the forecast in Eulerian grid cells k = 1, . . .,K at time step n+1. In general we25

use the notation (̃ · ) to represent some provisional approximate value. This is also the
3831
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case here where ρ̃ indicates that the forecast at time step n+1 is only a provisional
Eulerian space forecast to be modified by densities in the Lagrangian representation.

Letting parcels follow downstream trajectories from time step n to n+1 estimated
from the actual velocity components in the Eulerian grid, one obtains an approximate
Lagrangian solution to the pure advection problem. However, in a general divergent5

flow the parcel volume density will of course undergo changes. According to Eqs. (4)
and (5) the effect of divergence for parcel p from time step n to n+1 can simply be
modeled as

Lρn+1
p =Lσn+1/2

p
Lρnp (8)

where superscript n+1/2 indicates that the expansion/contraction factor represents10

the effect of divergence from time step n to n+1. In practice σn+1/2 is determined in
Eulerian space from the provisional Eulerian space forecast of the “dry air” density,
Eρ̃n+1, i.e., including the effect of divergence, and from a corresponding purely advec-
tive forecast, i.e., not including the effect of divergence, which we term E,advρn+1:

Eσn+1/2 =
Eρ̃n+1

k
E,advρn+1

, k = 1, . . .,K (9)15

For cell integrated FV and the LMCSL schemes applied in the present paper the calcu-

lation of Eσn+1/2 is straightforward since estimation of E,advρn+1 is an inherent part of
these schemes.

Once new downstream parcel positions L
r
n+1 have been found Lσn+1/2 can be ob-

tained via interpolation from Eσn+1/2. The parcel forecast for parcel p, including diver-20

gence, then simply becomes:

Lρn+1
p =Lσn+1/2

p
Lρnp

Lρn+1
m,p=

Lσn+1/2
p

Lρnm,p, m = 1, . . .,M. (10)
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It is important to note, that in a dynamical model, in order to prevent numerical insta-

bilities related to fast modes, e.g. gravity waves, Eσn+1/2
p must be based on divergence

obtained with a numerically stable scheme.
The modification of the Eulerian densities using the parcel densities is done by first

interpolating the irregularly spaced parcel densities to the Eulerian grid obtaining cer-5

tain Eulerian space target values, ET and ETm, m = 1, . . .,M, and then nudging the
original Eulerian based forecast towards these values under the constraints of mass
conservation and shape preservation (see details in Sect. 2.6).

A generic recipe in an atmospheric multi-tracer application of HEL, not yet consid-
ering the mixing, can be summarized as follows at a given time step n (here omitting10

indices for Eulerian grid cells, k, and Lagrangian parcels, p):

1. Perform a conventional, preferably inherently mass conserving, Eulerian or semi-
Lagrangian time step of total “dry” density, Eρ̃n+1, valid on an Eulerian grid. This
is termed the provisional forecast.

2. Perform a corresponding purely advective time step in Eulerian space E,advρn+1
15

of the “dry” density, and use this to calculate the divergent multiplication factor,
Eσn+1/2 = Eρ̃n+1/E,advρn+1.

3. For all tracers,m = 1, . . .,M, perform a provisional Eulerian space forecast, Eρ̃n+1
m .

4. Perform a pure downstream displacement of the irregularly spaced Lagrangian
parcels, i.e., calculate downstream trajectories and reposition each parcel from20
L
r
n to L

r
n+1.

5. Interpolate Eσn+1/2 from the Eulerian grid cells to the positions L
r
n+1 resulting in

values Lσn+1/2. Then calculate the new parcel densities for both the “dry air” and

all the tracers, including the effect of divergence: Lρn+1 = Lσn+1/2 · Lρn, and Lρn+1
m

= Lσn+1/2 · Lρnm, m = 1, . . .,M.25
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6. Interpolate Lρn+1 from the Lagrangian grid to obtain the target values, ET , in the
Eulerian grid. In Eulerian grid cells with no nearby Lagrangian parcels ET n+1 is
set equal to Eρ̃n+1 from step 1; see details in Sect. 2.5.

7. As step 6 but for all tracers m = 1, . . .,M.

8. Nudge Eρ̃n+1 towards ET n+1 under constraints of mass conservation and shape5

preservation for the density; see details in Sect. 2.6. The result is the final HEL
forecast, Eρn+1, for the “dry air” in Eulerian space.

9. As step 8 but for all tracers m = 1, . . .,M. However, now the constraints are mass
conservation and shape preservation for tracer mixing ratios.

2.1 The underlying numerical scheme10

As outlined above some numerically stable scheme must be chosen in order to ob-
tain the provisional forecast in Eulerian grid space. For applications in HEL it would
be reasonable to use a semi-Lagrangian type scheme since trajectory calculations
can be partly re-used for estimation of the downstream parcel trajectories; also, it
is then possible to take long steps not subject to classical CFL conditions for ad-15

vective processes. Therefore relevant schemes include, e.g., flux based multidimen-
sional schemes such as Lin and Rood (1996) and Leonard et al. (1996), the Departure
area Cell Integrated Semi-Lagrangian (DCISL) scheme (Machenhauer and Olk, 1997),
the Conservative Semi-LAgrangian Multi-tracer transport scheme (CSLAM) (Lauritzen
et al., 2010), the Semi-Lagrangian Inherently Conserving and Efficient scheme (SLICE)20

(Zerroukat et al., 2002), or the Locally Mass Conserving Semi Lagrangian scheme (LM-
CSL) (Kaas, 2008).

Note, however, that any mass conserving scheme for solving continuity equations
can in principle be used as underlying scheme for HEL. In fact, relaxing the mass
conservation property, any consistent numerical scheme can be used.25
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In the present paper we have tested the use of first and third order versions of the
CSLAM and LMCSL schemes to obtain the first guess forecast in Eulerian space.

2.2 Estimation of trajectories

The downstream displacement of parcel locations obviously is an essential component
in HEL. In simple numerical tests such trajectories can be calculated analytically, or, as5

in dynamical models, they can be calculated via an iterative procedure, which is equiv-
alent to that used in traditional semi-Lagrangian models for estimating the upstream
departure points/cells. In the present applications we have generally used analytical
or approximate analytical trajectories for idealized numerical tests, and iteratively es-
timated trajectories in dynamical model implementations. This is described further in10

Sects. 4.1, 4.2, and 5.1.1.

2.3 Update of the parcel volumes

Each Lagrangian parcel represents a certain volume LV of the fluid which, at the initial
time step, is simply initialized as the volume represented by the volume of the relevant
Eulerian grid cell.15

Once Lρn+1 has been calculated one can update the volume of each parcel. Omitting
the upper index “L” the parcel volume V n+1

p at time step n+1 is determined diagnosti-
cally by the constraint that, in the absence of mixing, the total mass of each Lagrangian
parcel is conserved, i.e.,

V n+1
p ρn+1

p = V np ρ
n
p (11)20
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whereby

V n+1
p = V np

ρnp

ρn+1
p

=
V np

σn+1/2
p

(12)

using Eq. (10).5

The volume of the parcels is a necessary ingredient for mixing between neighboring
parcels (Sect. 3).

2.4 Interpolations from Eulerian to Lagrangian representation

Interpolations between the Eulerian and Lagrangian representations are required as
part of the HEL scheme. For example, as explained above, it is necessary to interpolate10

σ to the Lagrangian representation. Similarly, when HEL is used in a dynamical model,
tendencies related to other physical processes must be interpolated.

In the present formulation of HEL all interpolations from the Eulerian grid cells to the
Lagrangian parcel locations are fourth order Lagrange polynomial interpolations.

2.5 Target values15

Provisional target values, ET̃ n+1, for the Eulerian space “dry air” density can be ob-
tained when Eρ̃n+1 and Lρn+1 have been calculated. The provisional target value in
Eulerian grid cell k is composed as a weighted sum of the provisional Eulerian based
forecast, Eρ̃n+1

k , and a parcel based estimate Rk :

ET̃ n+1
k =

w1
Eρ̃n+1

k +w2Rk

w1 +w2
(13)20
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where Rk is defined as

Rk =
1
Wk

P∑
p=1

wp,k
Eρ̂n+1

p,k with Wk =
P∑
p=1

wp,k (14)

where wp,k is a simple bi-linear interpolation weight given to an estimate of the density
Eρ̂n+1

p,k in Eulerian grid cell k which is based on the density at the location of parcel
number p:5

Eρ̂n+1
p,k =

Lρn+1
p + (Lrn+1

p − rk) ·gp,k . (15)

gp,k is a second order numerical approximation to the gradient ∇
(

Eρ̃
)n+1

at the location

0.5(L
r
n+1
p + rk) and rk is the position vector of the kth Eulerian grid cell.

The weights w1 and w2 in Eq. (13) are determined as follows:

w1 = max[w0, (1−Hk)Wk ]10

w2 = HkWk (16)

where w0 is a small positive number, and Hk is a measure of the homogeneity of the
distribution of Lagrangian parcels around the Eulerian cell k. Here we have used the
following estimate of Hk15

Hk =
2×min[Wl ]

max[Wl ]+min[Wl ]
l ∈ Lk (17)

where Lk is a subset of Eulerian cells including k and its nearest eight surrounding
neighbors (for a regular grid as used here). In Eq. (16) the maximization of w1 is intro-
duced to ensure that the target values are always well-defined. The value of w0 has,
somewhat arbitrarily, been set to 10−5, i.e., in the target values estimated from Eq. (13)20
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there will always be some weight on the Eulerian based forecast. In general this weight
is small but in the special case where Wk = 0, i.e. there are no neighboring parcels at
all, the target value will simply be equal to the provisional Eulerian forecast.

In practice the calculations of Rk and Wk are not performed as sums over all parcels
as indicated in Eq. (14) since this would be very inefficient numerically because it5

is known that only four of the parcel weights, wp,k , for a given parcel p are different
from zero. Instead Rk and Wk are calculated in a single loop over all parcels where
information is distributed (summed) to the neighboring four Eulerian cells, followed by
a second loop where the result is divided by the sum of weights for each cell.

Provisional target values for the tracers ET̃ n+1
m , m = 1, . . .,M are obtained via the10

same technique as outlined for the “dry air”, i.e., ET̃ n+1 above. I.e. all weights are the
same.

To obtain an Eulerian space forecast, which is shape preserving and compatible we
must identify minimum and maximum permitted mixing ratios, q− and q+, respectively,
for each tracer m in each Eulerian grid cell. The mixing ratio for a tracer m is defined15

as qm = ρm/ρ, implying that we can always deduce mixing ratios in both the Eulerian
and Lagrangian representation when ρm and ρ are known, and we can always convert
a mixing ratio qm back to volume density when ρ is known. The upstream Eulerian
mixing ratios at time level n are used by selecting the minimum and maximum mixing
ratios in the four grid cells k1, . . .,k4 surrounding the location of the upstream departure20

point for the trajectory, which at time level n+1 is located at the cell centroid of cell k,
i.e., the departure point in a classical semi-Lagrangian context (see Fig. 2).

Thereby the provisional minimum and maximum mixing ratios for tracer m become:

Eq̃−
m,k = min[Eqnm,ki

]
Eq̃+

m,k = max[Eqnm,ki
]
, i = 1, . . .,4 (18)

The final limits are obtained by using additional information from mixing ratios in the Q25

parcels pi , i = 1, . . .,Q that have Euclidian distance to the Eulerian cell k at time level
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n+1, which is less than 1.5 grid distances:

Eq−
m,k = min[Eq̃m,k ,Lqn+1

m,pi ]
Eq+

m,k = max[Eq̃m,k ,Lqn+1
m,pi ]

, i = 1, . . .,Q (19)

Once the Eulerian space forecast for “dry” air density Eρ has been obtained the min-
imum and maximum permitted values of volume density for tracer m = 1, . . .,M can
easily be obtained:5

Eρ−m,k=
Eq−

m,k ·
Eρk (20)

Eρ+m,k=
Eq+

m,k ·
Eρk (21)

2.6 Nudging of first guess towards target values

After the (shape preserving) target values have been calculated, the provisional, “first10

guess”, Eulerian forecast can be corrected. The correction, or nudging, is done in two

steps. First we calculate the total mass, M =
∑K
k=1

E
ρk ·

EVk , and the total mass of the

target values, MT =
∑K
k=1

E
Tk ·

EVk , as well as the discrepancy, ∆M =MT −M, between
the two. This will lead to three different possibilities:

∆M < 0: Mass of target field is too small.15

∆M = 0: Mass of target field is correct.

∆M > 0: Mass of target field is too large.

In the (extremely unlikely) event that the mass of the target field is exact (∆M = 0), the
Eulerian field is simply replaced by the target field. In the two remaining possibilities
the target field has to be modified to ensure mass conservation. If the mass of the20

target field is less that the actual mass (∆M < 0), we calculate the maximum possible
mass of the field, i.e., M+ =

∑K
k=1ρ

+
k ·

EVk , where shape preservation is still fulfilled. The
3839
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target field and the maximum field can then be combined to produce a final corrected
Eulerian field, which is both mass conserving and shape preserving.

w+ =
∆M

M+ −MT
(22)

Eρk = (1−w+)·ETk +w+·Eρ+k (23)
5

This is always possible as M+ ≥M. The procedure is the same if the mass of the
target field is too large, then the target field is weighed with the minimum mass field,
M− =

∑K
k=1ρ

−
k ·

EVk , to acquire mass conservation.

w− =
∆M

MT −M− (24)

Eρk = (1−w−)·ETk +w−·Eρ−k (25)10

The procedure is then repeated for all tracers m = 1, . . .,M.
The nudging employed in the current version is global, but since all chemistry is cal-

culated in the Lagrangian parcels, it will not introduce errors due to the inevitable nu-
merical mixing in the Eulerian domain. A local nudging method has also been tested,15

but it leads to somewhat poorer – and in practice less localized – results, as the nudg-
ing methods ability to correct the Eulerian values will be lessened by hard locality con-
straints. The traditional concerns when using global methods, i.e., mass redistribution
and unphysical mixing, is fully controlled by the correct values being preserved in the
Lagrangian parcels meaning that HEL is very “local”.20

3 Mixing between parcels

As discussed in Sect. 1 densities/mixing ratios or other invariants will generally develop
into thin filaments as part of the cascade into smaller and smaller scales in non-linear
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geophysical flows. At some point a model at given resolution can not represent the
spatial scale of the filaments, and explicit horizontal diffusion may therefore be required
to prevent spectral blocking. Considered in discrete Lagrangian space, i.e., a model, the
analogue to spectral blocking, is realised as a gradual development into unrealistically
large differences between densities/mixing ratios in neighboring parcels.5

An example of this is presented below in Sect. 5. Therefore, due to their non-
dissipative nature, explicit mixing must be introduced in Lagrangian models. We in-
troduce a directionally biased mixing as an a posteriori operation applied each time
step after the generic HEL forecast, described above, has been obtained.

In the present paper we only consider two-dimensional flow. In this case the degree10

of mixing between neighboring parcels is based on a modified instantaneous and local
two-dimensional rate of deformation:

Dn =max
[

0,

√(
∂vn

∂x
+
∂un

∂y

)2

+
(
∂un

∂x
− ∂v

n

∂y

)2

−
∣∣∣∣∂un∂x +

∂vn

∂y

∣∣∣∣] (26)
15

where un and vn, respectively, are the velocity components in the two directions
spanned by coordinates x and y at time step n. It can be seen that the effect of diver-
gence (last term) is subtracted from the traditional expression for deformation rate. This
is done because the mixing we want to introduce should not lead to excessive damping
when the scheme is applied to the full mass field in a dynamical model. Not introducing20

such a modification would tend to damp dynamically important gravity waves.
The calculation of D is estimated in Eulerian space via centered, i.e., second order

accurate, differences. The expression in Eq. (26) is only valid in Cartesian geometry.
Therefore, in the applications on the sphere presented below, metric factors have been
applied.25

In addition to the prognostic variables discussed above a set of three prognostic
variables are introduced in Lagrangian space (only) in order to perform the mixing. For
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each Lagrangian parcel p these include the actual parcel deformation, Lδp, and the

two coordinates of a position vector, L
rpa

, of a passive auxiliary Lagrangian parcel,
Lpa, that is used to identify the asymptotic dilatation axis for shear, i.e., the direction of
“long term” parcel stretching due to shear considered in a Lagrangian sense, see e.g.
Cohen and Schultz (2005).5

For each parcel p its deformation is initialized to zero at the first time step: Lδ0
p = 0,

and it is updated as part of the mixing procedure described below. The location of the
auxiliary parcel pa for main parcel p is initialized one grid-distance, ∆, away from p in
an arbitrary direction on the integration plane. At each time step the auxiliary parcel is
translated downstream using the same trajectory algorithm as for the main parcels.10

The mixing operates as follows:

1. Once the modified deformation rate, Dn, has been determined in Eulerian space
at a given time step it can be interpolated to the parcel positions enabling calcu-
lation of new provisional parcel deformations

Lδ̃n+1
p =Lδnp +∆tLDn

p (27)15

2. Omitting for simplicity the Lagrangian and parcel indices L and p, and the time in-
dex n+1, let r̃a denote the pure downstream position vector of the auxiliary parcel
for a main parcel, which has downstream position vector r . The final downstream
position vector ra of the auxiliary parcel is then defined as

ra = r +∆
r̃a − r

||r̃a − r | |
(28)20

i.e., the distance between a parcel and its auxiliary parcel is simply normalized to
one grid distance. Two examples of the identification of the a vector are shown
in Fig. 3. No formal proof is given here that the vectors ra will actually converge
toward the Lagrangian shear dilatation axes. Since the additional parcels a are ini-
tialized randomly a certain time will elapse from the model initial state until realistic25
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dilatation axes are identified for each parcel. However this time is proportional to
the deformation rate of the flow, and therefore, when the deformation rate is large,
the dilatation axes is also quickly approached. Obviously if the flow is linear, i.e.,
no mixing is needed, the dilatation axes of the model parcels maintain their initial
random orientations.5

3. For each parcel, p, let µp,k represent a fraction of the parcel volume, LVp, which
is assigned to a neighboring Eulerian grid cell centroid k. µp,k is defined as:

µp,k = 0.25min
[
1,Lδ̃n+1

p

]
exp(−κd2

p,k) (29)

where dp,k is the distance in units of grid distances from the grid cell centroid to

the line parallel to Lan+1
p , which passes through parcel p. The value κ determines10

the degree of directional bias for the mixing. In the present work κ has been set to
10. As an example: if dp,k = 0.5 the exponential factor in Eq. (29) becomes about
0.1, i.e., only grid cells close to the ps’ dilation axis are assigned an apprechiable
fraction of volume. For all Eulerian points k with distances to p larger than ∆, µp,k
is set to zero. I.e., in a regular grid µp,k is only different from zero for a maximum15

of four individual values of k. It is ensured that the sum of these four weights do
not exceed unity. The factor “0.25” is obtained from geometrical considerations of
the relationship between deformation rate and the fraction of the parcel volume
which should be mixed with neighboring parcels – see Fig. 4.

4. Once µp,k is calculated a total mass contribution, µp,k
Lρm,pVp, for each tracer m20

is transferred from the Lagrangian parcel p to Eulerian grid cell k. In other words
the average density of mass contributions from all parcels “neighboring” k is

ρm,k =

∑
pµp,k

Lρm,pVp∑
pµp,kVp

, (30)
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where it is noted that µp,k represents elements in a sparse matrix with non-zero
contributions from only none or a few parcels.

5. Now the mixing can be realized by transferring the mixed densities in the Eulerian
cells back to the Lagrangian parcels. For parcel p the final mixed density Lρm,p
becomes:5

Lρm,p = (1−µp,k) u,Lρm,p +µp,kρm,k (31)

where we have formally used the notation u,Lρm,p to indicate the unmixed fore-
casted density in parcel p resulting from the generic HEL recipe.

Note, that not only tracers are mixed using Eq. (31). To ensure full consistence
between prognostic variables also the “dry air” is mixed.10

It can easily be shown that the total parcel mass for each tracer and for the com-
plete “dry parcel mass of the atmosphere” are conserved when applying Eq. (31).

6. Based on the amount of actual mixing, Mp, that has taken place for parcel p via
the above operations the final parcel deformation is calculated. The actual mixing,
not including trivial mixing of parcels with themselves, is15

Mp =
∑
k

µp,k

∑
p′wp′,kVp′ −µp,kVp∑

p′wp′,kVp′
(32)

where it is again noted that for regular grids the sum over k only includes four grid
cells surrounding parcel p. The parcel deformation is finally reduced according to
the degree of mixing that has actually taken place:

Lδn+1
p =Lδ̃n+1

p (1−4Mp) (33)20

where the factor of “4” is a constant determining how much Lδp is reduced per unit
change in relative area. This factor is obtained from the same geometrical con-
siderations mentioned above (see Fig. 4) of the relationship between deformation
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rate and the fraction of the parcel volume which is actually mixed with neighboring
parcels. Note that the factor of 0.25 in Eq. (29) ensures that Lδn+1

p cannot be less
than zero.

Most computational operations in the above list are common for all tracers and there-
fore, in multi-tracer applications, the total number of operations is limited.5

4 Passive tracer numerical simulations on a cubed sphere

To validate HEL we perform inert passive tracer transport on the sphere driven by both
solid body rotation and two types of deformational flow.

For the passive transport tests presented here the underlying Eulerian based
scheme required in HEL is a first order (i.e., shape preserving by definition) version10

of CSLAM (Conservative Semi-LAgrangian Multi-tracer transport scheme) (Lauritzen
et al., 2010). Where necessary this is referred to as CSLAM-1st. The performance of
HEL is compared to that of a third order accurate version of CSLAM in combination
with a simple shape preserving filter (Lauritzen et al., 2010), referred to as CSLAM-M.

In the tests shown here both HEL and CSLAM have been implemented on a so-15

called cubed sphere grid – see Lauritzen et al. (2010) for details.

4.1 Solid body rotation

In standard solid body rotation tests on the sphere a certain spatial distribution is revo-
luted to its original position after one or more rotations. In this case HEL should perform
with high accuracy since the parcels end up in exactly the same grid cell centroids they20

were initialized in, and no mixing takes place because the deformation rate of this flow
is zero. Thereby the target values will be almost exactly equal to their initial value, ex-
cept for the small weight factor w0 (see Eq. 16). This again implies that the final HEL
forecast should be almost exactly equal to the corresponding analytic solution since
global nudging is used.25
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The test example we present here is the solid body advection of a cosine bell with
radius Rc = R/3, where R is the radius of the Earth. The angle of rotation is π/4 relative
to the Earth rotation axis, i.e., the bell passes over the edges of the cubed sphere.
One full revolution is completed in 576 time-steps of 1800s each. These settings are
identical to those in Putman and Lin (2007).5

To validate the results obtained with this simple setup we use the traditional l2 and
l∞ error norms defined in, e.g., Lauritzen et al. (2010). Results in terms of l2 and l∞
after one revolution are plotted in Fig. 5. As expected the HEL is very accurate due
to the low value of the w0 weight. The l2 and l∞ convergence rates for CSLAM-M are
2.82 and 2.04, respectively, while they are 2.24 and 2.16 for HEL. It is noted that the10

convergence rate for HEL increases significantly if a fixed Courant number is used in
such tests (not shown) because this implies that, as the time step decreases, the weight
per time unit on the parcels increases relative to that on the underlying Eulerian based
forecast. While the accuracy increases the shorter the time step in HEL the opposite
is generally the case in semi-Lagrangian models such as CSLAM because the number15

remappings increases when the time step is reduced.
The temporal growth of error in HEL and in CSLAM-M are quite different: running

over several revolutions the error norms continue to grow in CSLAM-M, although slowly,
while in HEL the error norms do not grow with time, as one should also expect from the
way HEL is designed.20

4.2 Deformational flow tests

For the deformation flow tests we have used the two types of analytic flow fields, the
density shapes, and the validation diagnostics suggested in Lauritzen et al. (2012).
For the diagnostics this means that, in addition to the l2 and l∞ error norms and re-
lated convergence rates used for the simple solid body rotation tests above, we have25

calculated an additional set of diagnostics, briefly described below.
The two analytical flow fields used have originally been proposed by Nair and Lau-

ritzen (2010), and they include a non-divergent as well as a divergent flow. In both
3846
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cases the Lagrangian parcels follow relatively complex trajectories, and the flow is com-
posed of a non-linear deformation component, which is different in the two cases, and
an overlaid translational flow. The translational part is designed to perform exactly one
rotation around the sphere (along equator) during the entire simulation. After a half
complete period of simulation the non-linear flow component goes to zero and this part5

of the flow is then reversed so that the final exact solution equals the initial condition.
Half way through the simulation, at the time when the non-linear flow component goes
to zero and starts to reverse, the initial distributions are deformed into thin filaments,
particularly for the non-divergent flow.

Three initial, i.e., t = 0, distributions consisting of two isolated Gaussian hills, two10

slotted cylinders, and two cosine hills are shown in Fig. 6. Details for these distributions
are described in Lauritzen et al. (2012).

As an example Fig. 7 shows the result of simulations at t = T/2, i.e., the most de-
formed time, and at t = T , i.e., the final time, using the slotted cylinder initial condition
and the non-divergent deformation flow. The maximum Courant number is 5.5, and the15

equatorial resolution 1.5◦ in these simulations. At this resolution the final distribution at
time t = T obtained with HEL with mixing is considerable closer to the analytic solution
than CSLAM-M.

For illustrative purposes Fig. 7 also includes the result of a simulation without any
parcel mixing, and where the parameter Hk deliberately has been set to unity. In this20

case, as can be seen, the distribution at time t = T/2 becomes unrealistic since the
initial distribution has been cut into small parts (represented by the individual parcels).
However, as expected since time is reversed, the final distribution in this aliased model
setup is very close to the analytic solution. It is only small errors in the parcel trajecto-
ries, and the fact that w0 is different from zero, that prevents the final field from being25

equal to the analytical solution.
Using the non-divergent flow, basic error norms l2 and l∞ for CSLAM-M and HEL,

and two maximum Courant numbers (1.0 and 5.5), are listed in Tables 1, 2, and 3 for
each of the three initial distributions. In general one can conclude that HEL is very
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accurate at low resolution for the more smooth distributions, i.e., the Gaussian and co-
sine hills, whereas CSLAM-M and HEL are comparable at the high Courant number
and at the two finest resolutions. Another feature is that, as compared to CSLAM-M,
HEL is less sensitive to the maximum Courant number. This is because HEL is influ-
enced much less by the number of semi-Lagrangian re-mappings needed to finalize5

each simulation than CSLAM-M.
The convergence rates for each of the three initial distributions and for the two

Courant numbers are listed in Table 4. In general CSLAM-M converges faster than
HEL at high Courant number for the smooth distributions while the difference is small
for the rough slotted cylinder distribution where the convergence rates in any case are10

low. The convergence rates are comparable in the low Courant number cases.

4.2.1 “Minimal” resolution

Numerical schemes may be constructed to converge fast – at least for smooth distri-
butions. However, as pointed out by Lauritzen et al. (2012) increases in resolution are
often computationally expensive and therefore it is of interest to identify some kind of15

measure of absolute accuracy for a numerical scheme. A diagnostic designed for this
is the “minimal” resolution needed to obtain a certain accuracy for a specific problem.
Following the specifications in Lauritzen et al. (2012) we have calculated the “minimal”
resolution as the resolution required to obtain an l2 error norm for the cosine bell dis-
tribution that is less than 0.033. In the specifications (Lauritzen et al., 2012) the result20

should be obtained for an unlimited scheme, i.e., no shape preserving limiter should
be applied, e.g. on CSLAM, in this case. “Minimal” resolutions for CSLAM and HEL are
listed in Table 5.

The “minimal” resolution for HEL is coarser than that for CSLAM, particularly for
a maximum Courant number of 1. We therefore conclude that the effective resolution25

for HEL is higher than for CSLAM.
The “minimal” resolution for HEL is controlled by the strength of the mixing between

parcels. If HEL is run without any parcel mixing the “minimal” resolution goes to infinity
3848
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in the sense that the numerical solution becomes almost exactly equal to the analytic
solution at any resolution, of course depending on the weight w0.

4.2.2 Filament diagnostics

The filament preservation diagnostic, lf, describes the transport scheme’s ability to
preserve thin filaments or gradients in the concentrations. lf is defined as:5

lf =

{
100.0 · A(τ,t)

A(τ,t=0) , if A(τ,t = 0) 6= 0
0.0 ,else

(34)

Where A(τ,t), the control volume, is a spherical area where the concentration is equal
to or larger than a given threshold value τ. The control volumes should, without over-
lapping, span the entire domain. The test setup is the cosine bells initial condition in
non-divergent flow where lf is calculated at t = T/2 for 19 values of τ in the interval10

τ = (0.10, . . .,0.95). The values of lf are expected to increase for low values of τ and
decrease for high values of τ due to numerical diffusion. At τ = 0.1 the value of lf should
be 100, since the area with the background concentration should not be increased dur-
ing the simulation.

The lf values for CSLAM-M and HEL are presented in Fig. 8 for simulations with15

maximum Courant numbers 1 and 5.5. As expected CSLAM-M is more diffusive, i.e., it
maintains filaments less well, at maximum Courant number 1 as opposed to 5.5. This is
because more re-mappings are required at the lower Courant number. The HEL values
are calculated for both Eulerian and parcel, i.e., Lagrangian, representations. It can be
concluded from Fig. 8 that at time t = T/2 of the simulation the Eulerian representation20

of HEL is generally more diffusive than CSLAM-M for the high maximum Courant num-
ber although the highest functional values are maintained to a higher degree than for
CSLAM-M. This is because a relatively large weight, w1, in Eq. (13) is given to the pro-
visional first order Eulerian forecast, Eρ̃n+1, due to the highly inhomogeneously spaced
parcels at this time. The Eulerian HEL representation does not change significantly25
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with Courant number and is generally better at preserving the maximum values than
the CSLAM-M. Therefore the low Courant number CSLAM-M is more diffusive than the
corresponding Eulerian HEL representation. The Lagrangian lf-values are generally
much closer to 100 than the corresponding CSLAM-M and Eulerian HEL representa-
tions, and there is almost no dependency on the Courant number. The last observation5

is completely as expected since the parcel mixing takes place at the same time in-
terval in the two cases. It is noted (not shown) that the lf-values are quite insensitive
to the mixing frequency between Lagrangian parcels. In a more general application,
using non-analytic trajectories, there could in theory be some spatial overlapping be-
tween parcels. However, such overlaps cannot be quantified due to deformation of the10

Lagrangian parcels into filaments, and HEL does not include information about their
exact shape. The total area, however, is conserved.

It is important to note that without parcel mixing the Lagrangian lf-values would all be
exactly 100. As argued above, introduction of mixing is fundamental in all Lagrangian
models in order to avoid long term unphysical accumulation of energy at the small-15

est resolved scales. The same applies to such Eulerian based models (in principle,
including semi-Lagrangian models) where the inherent numerical mixing is “too weak”
to properly represent non-linear scale interactions and prevent spectral blocking for
a given model resolution. This is typically the case in e.g. spectral or pseudo-spectral
models. So, although we know that explicit mixing must be introduced in some un-20

diffusive models for purely physical reasons we do not know exactly how much mixing
is required. I.e., the optimal lf-values are, unfortunately, also unknown. The fundamen-
tal idea behind the parcel mixing applied here has been to base it on simple geometric
considerations and thereby obtain a simple first principle guess on the required amount
of actual physical mixing.25

4.2.3 Pre-existing functional relations and mixing

To evaluate the mixing properties discussed in Sect. 1.2 the statistics proposed in
Lauritzen and Thuburn (2012); Lauritzen et al. (2012) have been calculated for initial
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conditions consisting of two tracers: cosine bells – corresponding to χ in Fig. 1 – and
corresponding non-linearly related bells – corresponding to ξ. The flow is the same
non-divergent deformation flow as above.

These mixing statistics include real mixing, lr, range preserving unmixing, lu, and
overshooting, lo. The more precise definitions of lr, lu, and lo are provided in Ap-5

pendix B.
The error norm, lo, should always be zero indicating that the scheme in question is

shape preserving. However, the second norm, lu, which ideally should be zero as well,
will generally not be zero, unless the scheme is semi-linear and monotone (Thuburn
and McIntyre, 1997). This was one of the motivational factors for the development10

of HEL. The first norm, lr, should be a non-zero value, since “real” mixing is always
present, it should however, as described in Sect. 3, not be artificial numerical mixing
but physically based mixing.

The mixing diagnostics for CSLAM-M and HEL are listed in Table 6. Mixing diag-
nostics are important indicators for the influence of transport schemes on chemical15

reaction rates and equilibria. Since chemistry calculations (not dealt with here) are per-
formed in Lagrangian space only the parcel values of lr, lu, and lo are listed for HEL.
It can be seen from Table 6 that HEL behaves according to its construction: only real
mixing and no range preserving un-mixing or overshooting takes place. In CSLAM-M
a weak range-preserving un-mixing can be seen, and the general level of real mixing20

is larger than for HEL, particularly at low resolution and low Courant number.

4.3 Non-linear passive advection with divergence

Traditional l2 and l∞ error norms for the strongly divergent flow are presented in Table 7
for the cosine hill initial condition. In this case the two maximum Courant numbers
tested are 0.6 and 3.2, respectively, and it can be seen that HEL is now considerably25

more accurate than CSLAM-M, particularly for the small Courant number tested. As for
the non-divergent case HEL is relatively insensitive to the Courant number.
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5 Implementation and tests in a shallow water dynamical model

In this section we demonstrate a dynamical application of HEL namely as transport
scheme also for the dynamical core of an existing geophysical type model, namely
a simple shallow water model in Cartesian geometry (Kaas, 2008).

5.1 Model setup5

The governing differential equations are

du
dt

= f v −g
∂(h+hs)

∂x
(35)

dv
dt

= −f u−g
∂(h+hs)

∂y
(36)

dh
dt

= −h∇ · V +Dh + Fh (37)

dhm
dt

= −hm∇ · V +Cm +Sm +Dm, m = 1, . . .,M (38)10

where u, v are the flow speed components in the x–y plane, f is the Coriolis parameter,
g the gravitational acceleration, h is the geopotential thickness of the flow, and hs the
stationary surface geopotential height (“topography”). hm is a quantity we can think of
as the contribution to geopotential height from the m’th tracer. The mixing ratio for the15

m’th tracer can be evaluated from

qm = hm/h, (39)

i.e., formally the volume density for this tracer is ρm = ρhm/h, where ρ is the density of
the “dry” fluid in the shallow water model. It has been assumed that

∑
hm � h since,

otherwise, the expression in Eq. (39), which formally represents specific density would20

not approximate mixing ratio. The term Fh represents a weak globally mass conserv-
ing Newtonian relaxation towards the initial “zonal” average profile of h. Fh mimics the

3852

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3819–3891, 2013

A hybrid Eulerian
Lagrangian

numerical scheme

E. Kaas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

effect of diabatic processes. Finally the C, D, and S terms represents possible chem-
istry, diffusion/mixing, and possible source and sink terms (i.e., emissions, depositions,
sedimentations), respectively.

Although u, v , and h do not depend on the hm values of the tracers the model is for-
mally set up as “online coupled” (see, e.g., Grell and Baklanov, 2011), i.e., all equations5

are solved each time step.
The integration domain covers a domain defined by x ∈ [xmin,xmax] and y ∈

[ymin,ymax], with xmin = 0 km, xmax = 20 000 km, ymin = −10 000 km, and ymax =
10 000 km. The boundary conditions are periodic in both directions and with en-
forced symmetry around the line y = 0 (“Equator”) for the variables u, h, hs, Fh, and10

hm,m = 1, . . .,M, and anti-symmetry around the same line for v . Also, the Coriolis pa-
rameter

f = 2Ωsin
(
π

y
ymax − ymin

)
is anti-symmetric around y = 0 (Ω is the angular velocity of the Earth rotation).

As for the inert tracer applications tested above the strategy followed for applying15

HEL in the shallow water model is to use parcel densities/geopotential thicknesses to
modify an existing solution in Eulerian space. As underlying solution we have used
a locally mass conserving, semi-Lagrangian transport scheme LMCSL (i.e., not the
CSLAM as above) with a semi-implicit treatment of the gravity – inertial wave terms, in
combination with an Arakawa C-grid staggering; see Kaas (2008) for details.20

In the present implementation we have only applied the HEL technique on the mass
fields (h and the hm’s) of the model. The wind field forecast is based on the same third
order semi-Lagrangian scheme as in Kaas (2008).

As for the case of passive/inert advection the divergent expansion/contraction fac-

tors, σn+1/2, that are needed to include the effects of divergence in Lagrangian space25
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are first calculated in Eulerian space:

Eσn+1/2 =
Eh̃n+1

E,advhn+1
, (40)

where Eh̃ is the complete provisional Eulerian space forecast including semi-implicit
adjustments, and E,advh is the corresponding purely advective semi-Lagrangian fore-

cast, i.e., also an Eulerian space forecast. The Eulerian space values Eσn+1/2 are now5

interpolated to each parcel location (see Sect. 2.4) at time level n+1 and subsequently
multiplied on the parcel values of Lh and Lhm, m = 1, . . .,M. Mixing depending on the
flow deformation rate is then performed in Lagrangian space as described in Sect. 3

The final Eulerian space forecasts of Eh and Ehm, m = 1, . . .,M are obtained via
exactly the same nudging procedure as described above in Sect. 2.610

For the inert and passive advection tests with prescribed analytical velocities in
Sect. 4 the underlying Eulerian space forecasts were all based on a first order nu-
merical scheme providing good numerical efficiency. Here in our dynamical model im-
plementation we have found that it is necessary to keep third order accurate remap-
pings in the semi-Lagrangian scheme in order to obtain sufficiently accurate estimates15

of pressure gradient terms and to ensure sufficiently accurate coupling between the
momentum equations Eqs. (35), (36), and the continuity equation Eq. (37).

Although we have used third order re-mappings it could of course still be possible
to run with first order remappings for all the tracers, m = 1, . . .,M, i.e., when solving
Eq. (38). In this way one can retain the same high multi-tracer efficiency as in the20

transport tests in Sect. 4. One may argue, though, that this violates the mass-wind
consistency property, i.e., the 7th of the desired properties listed in Sect. 1. It is noted,
however, that since the bulk of the model memory in HEL is kept in Lagrangian space,
this is now only a theoretical problem: if an inert and passive tracer m is initialized as
hm = h, the Lagrangian space density of this variable will continue to be exactly equal25

to that of h, i.e., at any time step n we have Lhnm=
Lhn, independent on the order of

accuracy of the underlying Eulerian space based forecast of Ehm.
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5.1.1 Estimation of trajectories

For the passive advection tests in Sect. 4 all trajectories were calculated from analyt-
ically defined velocity fields. In the shallow water model, as well as in any update to
a three dimensional model, it is necessary to estimate trajectories. If the provisional
forecast in the Eulerian representation is obtained with a semi-Lagrangian model, as5

here, upstream trajectories are needed, i.e., one has to identify all departure points
at time n∆t for trajectories which at time (n+1)∆t ends up in each Eulerian grid cell
centroid. In HEL it is furthermore required to calculate downstream arrival points at
time (n+1)∆t for trajectories beginning at the irregularly spaced locations for each
Lagrangian parcel at time n∆t.10

For the upstream trajectories we use the approach described in Kaas (2008). This
is a conventional iterative procedure using two iterations. However, here we use third
order accurate bi-cubic Lagrange interpolations of the upstream velocities at time level
n as opposed to the first order interpolations in Kaas (2008). As explained in Kaas
(2008), in order to ensure satisfactory behavior of the LMCSL scheme, it necessary to15

include the effect of accelerations in the estimate of the trajectories. For the estima-
tion of downstream parcel trajectories an equivalent procedure has been followed (see
Appendix C for details).

5.1.2 Shallow water model results

The initial state of the shallow water model is chosen rather arbitrarily as wavy structure20

in the geopotential surface height field, h, shown in Fig. 9, with the velocity field (not
shown) simply initialized to be in geostrophic balance with this mass field. Figure 9 also
shows the bottom topography, hs, consisting of a “sharp” isolated “mountain”, and an
initial field of mixing ratio for a single tracer field, which here simply is a step function
in a background of zero mixing ratio.25

The results obtained with HEL are compared to those obtained with the third or-
der semi-implicit LMCSL scheme (Kaas, 2008) without introduction of any shape
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preserving filters. It is noted (not shown) that one could just as well have veri-
fied HEL against a traditional semi-implicit semi-Lagrangian (SISL) time stepping
scheme, since SI-LMCSL and SISL turns produces almost identical forecasts. All
simulations presented below have been performed with a horizontal resolution of
128×128 points cells−1. The time step was one hour, which gives a maximum Courant5

number slightly below one. It is informed that LMCSL and HEL (both with and with-
out parcel mixing) can be run stably with maximum Courant numbers up to about 3,
and thereafter numerical mountain wave resonance, Rivest et al. (1994); Lindberg and
Alexeev (2000), becomes visibly destabilizing. No off-centering or other techniques to
control mountain wave resonance were introduced.10

Figure 10 shows the surface height field and the mixing ratio field after 48 h of simula-
tion for the initial conditions plotted in Fig. 9. It can be seen that the geopotential height
fields for each the two forecasts are almost indistinguishable, although the HEL result
is based on densities at the locations of the irregularly spaced Lagrangian parcels. The
mixing ratio fields are also similar and it can be seen that HEL via its design is shape15

preserving.
Corresponding height and mixing ratios after 20 days of simulations are shown in

Fig. 11. It can be seen that HEL and LMCSL continue to produce similar results for the
height field despite the underlying non-linear model equations (non-linear chaotic error
growth does not become visible until around day 30–40). The tracer mixing ratios are20

also similar although the LMCSL field is more smooth than that obtained with HEL.
In the lower panel of Fig. 11 we have also – for illustrative purposes – plotted the

height and mixing ratio field obtained in an additional HEL-simulation where the parcel
mixing was switched off. The mixing ratio for the passive inert tracer is now highly unre-
alistic demonstrating the importance of the mixing we have introduced. In this unmixed25

version the initial step function type mixing ratio has been “cut into bits and pieces”
determined by the location of the individual Lagrangian parcels. It is noted (not shown)
that the density of parcels is quite homogenous in the sense that there are no larger re-
gions without any parcels. Surprisingly, the height field continues to be smooth and very
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similar to that of LMCSL and of the parcel mixed version of HEL, and the unmixed HEL
continues to be numerically stable. We suspect that dynamical adjustments between
the velocity and mass fields in the model tend to prevent development of local small
scale “lows” and “highs”, which one could envisage due to errors in parcel trajectory
calculations. As an example: the flow around a parcel with anomalously low density,5

i.e., height, as compared to its nearest neighbors, tends to be unbalanced in way lead-
ing to development of local convergence, which eventually increases the parcel density
via the σ factor (see Eq. 40)

By introducing a passive tracer with initial density equal to that of h, i.e., the mixing
ratio is equal to one, we have tested to what extend the HEL is “wind-mass” consistent,10

and it has been found that this is indeed the case since the density field (not shown)
continued to be almost completely identical to that of h even in long simulations. It is
noted, that for this test it was necessary to switch off the Newtonian cooling Fh since
otherwise one field would have been forced while the other was not.

5.2 Pre-existing functional relations in the shallow water model15

It was shown in Sect. 4.2.3 that the mixing diagnostics lr, lu, and l0 obtained with HEL
in strongly deforming flow were quite acceptable. We have performed a correspond-
ing calculation for transport in the shallow water flow using exactly the same initial
functional shapes as in Sect. 4.2.3, and in Fig. 12 these are shown as time series for
the non-shape preserving LMCSL scheme and for HEL. As expected LMCSL produce20

non-zero values of both range-preserving unmixing, lu, and of overshooting, l0. For the
Lagrangian representation in HEL lu and l0 are both zero via construction, while the
same is the case for l0 in the Eulerian HEL representation. The level of lu in the latter
is very small as compared to that in LMCSL. The degree of real mixing, lr, in LMCSL
and in the Eulerian representation of HEL are quite similar, while lr in the Lagrangian25

HEL representation is about half of that. The fact that the overall levels of real mix-
ing in HEL and LMCSL have the same order of magnitude indicates that the ways we

3857

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3819–3891, 2013

A hybrid Eulerian
Lagrangian

numerical scheme

E. Kaas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

have obtained the mixing and Eulerian space smoothing in HEL are not completely
unrealistic.

6 Discussion

A number of issues related to the introduction of the new HEL scheme deserve some
discussion provided in the following subsections.5

6.1 Number of parcels

In the present applications of HEL the total number of parcels is equal to the number
of Eulerian grid cells. In principle one could, however, easily increase the number of
parcels, although this has a computational cost, particularly due to increased costs of
mixing. A test (not shown) where the number of parcels in the shallow water model10

is four times that of the number of Eulerian grid cells has been carried out, and the
results were very similar to those in the lower panels of Fig. 10 and the middle panels
of Fig. 11, although the tracer mixing ratio fields in these additional simulations, as
expected, are slightly smoother.

6.2 Mixing15

As noted previously, the mixing between Lagrangian parcels introduced here is based
on simple geometrical principles minimizing the need for empirically based tuning.
However, it is of course possible to formulate such physically based mixing in other
ways, which in practice can lead to a stronger or weaker mixing between parcels.

One potentially controversial issue is the degree of directional bias of the mixing.20

As described in Sect. 3 our mixing is biased so that it is dominated by mixing with
neighbors that are aligned along the asymptotic dilatation axis. This approach is based
on the geometrical principle illustrated in Fig. 4: remapping of the parcels into regular
squared shapes filling the integration domain only requires mixing along the asymptotic
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dilation axis. This remapping is needed to obtain an un-aliased representation of the
Lagrangian parcel densities – a problem that is quite different from that of molecular
mixing, which is generally isotropic in nature. We have tested the effect of performing
the mixing with a fake directional bias, which is not along the assymptotic dilation axis
but instead along an axis perpendicular to it. The result (not shown) is an excessive5

damping and considerably larger error norms for all the inert passive transport tests
reported above. Our actual choice of κ = 10 was based on a compromise: a much
smaller value would be too isotropic and too damping, and a a much larger value
would result in too little realised mixing, i.e. the parcel deformations Lδ would grow to
unrealistic values in strongly non-linear flows.10

The present paper do not investigate the influence of parcel mixing on the distribution
of energy on different wave numbers. This is the subject of ongoing research.

6.3 Local versus global nudging towards the target values

The fourth desirable property listed in Sect. 1.1 states that a transport scheme should
be transportive and local. While this is fully achieved in the parcel (Lagrangian) repre-15

sentation of HEL the locality property is formally not fulfilled in the Eulerian represen-
tation since the nudging we perform on the Eulerian based forecast towards the target
values is performed globally (see Sect. 2.6). We have formulated and tested a local
nudging which only involves mass re-organizations between neighboring cells. This lo-
cally mass conserving version of HEL performs satisfactorily with results (not shown)20

that are almost comparable or somewhat degraded as compared to the standard HEL
version. However, the local nudging is quite expensive from a numerical point of view,
and therefore this version has not been investigated further. In practice since the bulk
memory in HEL is in Lagrangian space the standard version of HEL is highly local as
can also be seen directly from all the plots presented above. In fact, since the limits25

within which local Eulerian values can change due to the nudging are defined from
locally defined values, the global nudging can be considered a localized process.
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6.4 Computational efficiency

The purpose of the present paper has been to describe HEL, and to demonstrate its
accuracy. A careful investigation of the computational cost of HEL would require multi-
ple tests on a massively parallel computer system. Here we have only performed single
processor CPU tests using an Intel Core2 Duo, E6550 @ 2.9 GHz processor, and the5

Intel Fortran 13.0.0 compiler with flags: -ipo, -O3, -no-prec-div, -static, and -xHost. The
tests reveal that HEL is considerably faster than CSLAM-M for the passive tracer test
presented in Sect. 4, particularly when many tracers ara considered. As an example
Fig. 13 shows the CPU timing required to perform the non-divergent deformation test in
Sect. 4.2 with an equatorial spatial resolution of 0.75◦, and a maximum Courant num-10

ber of 5.5. The number of passive inert tracers was varied from 2 to 20 and it is seen
that the multi-tracer efficiency of of HEL is better than that of CSLAM-M.

A main reason for the faster performance of HEL is that only first order accurate re-
mappings are needed in the underlying Eulerian forecast for passive transport, while
in CSLAM-M third order re-mapping have been used.15

Although we have not performed parallel efficiency tests the code has been prepared
somewhat for parallelization. The most important issue relates to the way individual
parcels are transferred from the memory of one CPU/node to another. As usual in geo-
physical fluid dynamics each CPU is reserved for a certain number of horizontal Eule-
rian grid cells including a halo zone. Corresponding to this, the actual physical location20

of each Lagrangian parcel determines in which part of the memory it is stored. Since
the number of parcels in a given domain can vary significantly due to the divergence
of the flow, the actual memory allocation for Lagrangian parcel information required for
each CPU must be somewhat higher than that corresponding to the average parcel
density.25

Although our first tests suggest that HEL is computationally efficient, particularly for
multiple tracers, there is an important memory penalty. Considering, e.g., two dimen-
sional passive transport using a traditional Eulerian based scheme with K Eulerian
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grid cells/points, and with M different tracers the total number of prognostic variables is
K ×M. For HEL, however, the corresponding number is typically K × (M+M+6) where
“6” reflects the additional variables of parcel deformation (Lδ), parcel volume (LV ), com-
ponents of the parcel position vector (Lx and Ly) and the position components of the
auxiliary parcel (Lxa and Lya), respectively.5

6.5 Application in a three dimensional model

Arguably the most important issue is how the HEL scheme is extended for use in
three-dimensional applications. At least two fundamentally different options may be
investigated:

– using a Lagrangian or quasi-Lagrangian vertical coordinate as in Sørensen et al.10

(2012) each Lagrangian parcel could stay within the same layer and have an
instantaneous vertical extension equal to that of the layer. The vertical extension
of Lagrangian parcels may in fact be used as an additional prognostic variable
and used to determine the layer thickness just as it was demonstrated with the
shallow water model in Sect. 5 (a one layer model).15

– letting parcels float freely between the Eulerian vertical levels as in e.g. ATTILA
(Stenke et al. 2008, 2009). For a fully dynamic model implementation instaneous
parcel densities and temperatures may be used to modify or nudge the parcel
vertical positions so that they are more consistent with the vertical structure of the
local atmosphere as represented in the Eulerian grid. It is speculated that such20

nudging may be used as tool to stabilize the model with regard to fast gravity and
sound waves.

In a three dimensional application the mixing between parcels must be re-considered,
and presumably it is necessary to separate horizontal and vertical mixing since they
represent quite different processes in stratified fluids.25

3861

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3819–3891, 2013

A hybrid Eulerian
Lagrangian

numerical scheme

E. Kaas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6.6 Prognostic variables in a dynamic model

In the dynamic tests in Sect. 5 the HEL scheme was only used for transport of the
mass field. In a future application in a baroclinic model in spherical geometry one may
obviously use HEL as transport scheme for other quantities and invariants such as
momentum, total energy, and potential vorticity.5

6.7 Using HEL in an atmospheric chemical transport model

HEL should be suited quite well as numerical fundament for an atmospheric chemical
transport model, and has in fact been designed with this goal in mind. Since the mixing
we have introduced between neighboring parcels is purely “real”, it is logical to perform
chemical calculations in the parcel space. In a subsequent paper (Hansen et al., 2012)10

it is described and demonstrated how HEL performs when it is used as underlying
numerical scheme in a simple so-called online atmospheric chemistry transport model.

7 Conclusions

The original motivation for developing HEL was to set up a numerical method for use
in fluid dynamics, which fulfilled all the 11 desirable properties listed in Sect. 1.1.15

The passive transport tests described in Sect. 4, the testing in the dynamical model
(Sect. 5), and the efficiency investigations in Sect. 6.4 clearly show that HEL fulfils all
11 properties, and that it is very multi-tracer efficient. At high Courant numbers, the
convergence rates of HEL are lower than those of CSLAM-M, with which it has been
compared. However, the absolute level of accuracy in HEL is very high.20

A fundamental component of HEL is a directionally biased mixing between neighbor-
ing cells, which is proportional to the deformation rate of the flow. This mixing has been
formulated in such a way that the 11th property (avoidance of spurious numerical mix-
ing/unmixing) continues to be fulfilled in the Lagrangian representation of HEL. Thereby
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HEL should be ideal as underlying scheme for chemical transport in the atmosphere
particularly if chemistry calculations are performed in Lagrangian space.

Appendix A

List of prognostic variables

The set of prognostic variables for solving the two-dimensional transport/continuity5

problem (passive transport) in HEL includes:

Eρ Density of “dry” air in Eulerian space
Eρm, m = 1, . . .,M Density of tracers in Eulerian space
Lρ Density of “dry” air in Lagrangian parcels
Lρm, m = 1, . . .,M Density of tracers in Lagrangian parcels10

Lx x coordinate of parcel position vectors
Ly y coordinate of parcel position vectors
Lxa x coordinate of auxiliary parcels
Lya y coordinate of auxiliary parcels
LV Area/volume of the Lagrangian parcels15

Lδ Deformation of Lagrangian parcels (A1)

Each variable is represented by K Eulerian cells or P Lagrangian parcels. Note that
for passive transport it has here been assumed that velocity components are known
(non-prognostic) variables.20
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Appendix B

Mixing diagnostics

Real mixing

lr =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk) ∈ A
0 ,else

(B1)

Range preserving unmixing5

lu =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk) ∈ B
0 ,else

(B2)

Overshooting

lo =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk) 6∈ (A∪B)
0 ,else

(B3)

where A =
∑K
k=1∆Ak is the total area and dk is the shortest distance between the point

(χk ,ξk) and the functional relations curve (χ ,ψ(χ )) (see Fig. B1). A is the area that is10

defined by the convex hull, B is the area outside A, but within the range of the initial
data (see Fig. 1).
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Appendix C

Parcel trajectories

The estimation of downstream parcel trajectories a procedure equivalent to that in Kaas
(2008) has been followed. This means that each parcel trajectory is split into two seg-
ments, C1 and C2, so that the new parcel position vector, rn+1

p , becomes5

rn+1
p = rnp +C1 +C2. (C1)

The C1 segment is based on velocities at time level n, and it approximates the forward

trajectory from the departure point rnp to the trajectory midpoint r
n+1/2
p :

C1 ≈
(
∆t
2

)
V
n
p +

1
2

(
∆t
2

)2

Anp (C2)

where V
n
p is the velocity interpolated to the parcel location r

n
p at time level n, and10

the last term on the right hand side represents the trajectory contribution due to the
acceleration Anp also at the time space location r

n
p, assuming a stationary velocity field

in the time period from n∆t to (n+1/2)∆t. I.e.,

Anp = (V · ∇V )np, (C3)

which is estimated via centered differences and subsequent interpolation to r
n
p.15

The second trajectory segment, C2, is based on provisional velocities extrapolated
linearly in time from time level n−1 and n to time level n+1:

Ṽ
n+1

= 2V n − V
n−1, (C4)

where ( ˜ )n+1 indicates a quantity that has been obtained via temporal extrapolation.

C2 approximates the forward trajectory from the midpoint r
n+1/2
p to the arrival parcel20
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location r
n+1
p , however, obtained as minus the backward trajectory from the arrival

location:

C2 ≈ −
((

−∆t
2

)
Ṽ
n+1
p +

1
2

(
−∆t

2

)2

Ã
n+1
p

)
, (C5)

where the notation ( )n+1
p indicate terms that have been interpolated to the, initially

unknown, location r
n+1
p .5

An iterative procedure, including two iterations, is used to obtain the final estimate
of rn+1

p . However, since r
n+1
p is unknown initially a pre-iteration is performed to obtain

a first guess of rn+1
p . In the pre-iteration C2 is zero and C1 is obtained as in Eq. (C2)

but with ∆t/2 replaced by ∆t.
All spatial interpolations involved in the estimation of the trajectories are third order10

Lagrange polynomial interpolations.
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Table 1. Statistics for the Gaussian hill problem. The columns show maximum Courant number
(C), Equatorial resolution in degrees (∆λ), and the error norms l2 and l∞, respectively, for both
CSLAM-M and HEL.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 2.422×10−1 3.434×10−1 4.593×10−2 6.934×10−2

1.500 7.606×10−2 1.576×10−1 1.397×10−2 3.284×10−2

0.750 1.376×10−2 5.475×10−2 4.499×10−3 1.431×10−2

0.375 2.592×10−3 1.850×10−2 1.661×10−3 6.989×10−3

3.000 9.953×10−2 1.415×10−1 6.837×10−2 1.021×10−1

1.500 1.990×10−2 5.084×10−2 1.889×10−2 2.814×10−2

0.750 3.112×10−3 1.767×10−2 5.474×10−3 1.570×10−2

0.375 5.371×10−4 5.978×10−3 1.825×10−3 6.990×10−3
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Table 2. As Table 1, but for the slotted cylinder problem.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 4.678×10−1 7.973×10−1 2.561×10−1 6.151×10−1

1.500 3.400×10−1 8.462×10−1 1.739×10−1 6.313×10−1

0.750 2.438×10−1 8.170×10−1 1.215×10−1 6.127×10−1

0.375 1.786×10−1 8.327×10−1 8.658×10−2 6.308×10−1

3.000 3.775×10−1 8.019×10−1 2.698×10−1 6.957×10−1

1.500 2.580×10−1 8.036×10−1 1.729×10−1 6.693×10−1

0.750 1.884×10−1 7.956×10−1 1.198×10−1 6.477×10−1

0.375 1.422×10−1 8.144×10−1 8.504×10−2 6.487×10−1
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Table 3. As Table 1, but for the cosine hill problem.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

1.0

3.000 3.898×10−1 5.268×10−1 7.246×10−2 9.585×10−2

1.500 1.625×10−1 2.903×10−1 2.169×10−2 3.025×10−2

0.750 2.844×10−2 9.827×10−2 6.244×10−3 1.119×10−2

0.375 6.397×10−3 3.319×10−2 1.998×10−3 5.437×10−3

3.000 2.036×10−1 2.684×10−1 9.807×10−2 1.502×10−1

1.500 4.330×10−2 8.907×10−2 2.829×10−2 4.533×10−2

0.750 6.674×10−3 3.063×10−2 7.673×10−3 1.336×10−2

0.375 1.357×10−3 1.047×10−2 2.241×10−3 5.579×10−3
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Table 4. l2 and l∞ convergence rates calculated from the error norms listed in Tables 1, 2, and
3. The second column gives the initial spatial distribution with “GH” indicating Gaussian hill,
“SL” slotted cylinder, and “CH” cosine hill, while the convergence rates are listed in columns
three through six.

Scheme Initial distr. l2, C = 1.0 l∞, C = 1.0 l2, C = 5.5 l∞, C = 5.5

CSLAM-M GH 2.21 1.42 2.53 1.52
HEL GH 1.60 1.11 1.75 1.24

CSLAM-M SL 0.46 0.01 0.47 0.01
HEL SL 0.52 0.01 0.55 0.04

CSLAM-M CH 1.68 1.14 2.44 1.56
HEL CH 1.77 1.55 1.82 1.60
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Table 5. “Minimal” resolution required to obtain an l2 error norm less than 0.033 for the cosine
hill problem in the non-divergent deformation flow. The columns include scheme and Courant
number.

Scheme C = 1.0 C = 5.5

CSLAM 0.8◦ 1.5◦

HEL 1.9◦ 1.6◦
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Table 6. Mixing diagnostics lr, lu, and lo for CSLAM-M and HEL for two equatorial resolu-
tions (1.5◦ and 0.75◦) and two maximum Courant numbers (1 and 5.5). The columns show
scheme, maximum Courant number (C), Equatorial resolution in degrees (∆λ), and the three
error norms, respectively.

Scheme C ∆λ lr lu lo

CSLAM-M 1.0 1.50 2.18×10−3 2.73×10−5 0.0
CSLAM-M 5.5 1.50 6.28×10−4 6.73×10−5 0.0
CSLAM-M 1.0 0.75 3.49×10−4 1.25×10−4 0.0
CSLAM-M 5.5 0.75 1.05×10−4 2.57×10−5 0.0

HEL 1.0 1.50 2.63×10−4 0.0 0.0
HEL 5.5 1.50 2.63×10−4 0.0 0.0
HEL 1.0 0.75 6.75×10−5 0.0 0.0
HEL 5.5 0.75 6.75×10−5 0.0 0.0
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Table 7. As Table 1, but for the cosine hill problem in strongly divergent flow. Note that the
maximum Courant numbers C in this case are different from those of Table 1.

CSLAM-M HEL
C λ l2 l∞ l2 l∞

0.6
3.00 3.184×10−1 4.400×10−1 5.253×10−2 7.607×10−2

1.50 9.755×10−2 2.048×10−1 1.580×10−2 2.638×10−2

0.75 2.346×10−2 7.629×10−2 4.711×10−3 1.034×10−2

3.2
3.00 1.942×10−1 3.034×10−1 5.621×10−2 8.342×10−2

1.50 4.220×10−2 1.132×10−1 1.661×10−2 2.578×10−2

0.75 8.351×10−3 3.965×10−2 4.848×10−3 1.293×10−2
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ξmin

ξ

ξmax

χχmin χmax

range preserving unmixing

range preserving unmixing

real mixing

overshooting

overshooting

Fig. 1. Illustration of numerical mixing categories. The thick curve is the pre-existing functional relation
between tracer ξ and tracer χ. Any new relative concentrations (ξk,χk), generated by the transport
scheme, can be represented as a point. If the point falls within the shaded convex hull, it is classified as
real mixing. If within the dashed rectangle but outside the shaded area it is classified as range preserving
unmixing, and, finally, if outside the dashed rectangle it is classified as overshooting. (adopted from
Lauritzen and Thuburn (2012))
figure

mixing, can be used to reduce the aliasing problem and thereby one can obtain a more realistic
spectral distribution of the prognostic variables in a pseudo-spectral model.

In conclusion explicit mixing, in terms of filters, diffusion, spectral damping etc., is needed
in both grid point/cell methods and methods based on series expansion in order to ensure shape
preservation, and in particular positive definiteness, and to control the cascade into smaller5

scales in a realistic way. In general such mixing will, however, not represent true physical
mixing although it may be ”real” in the sense described above.

6

Fig. 1. Illustration of numerical mixing categories. The thick curve is the pre-existing functional
relation between tracer ξ and tracer χ . Any new relative concentrations (ξk ,χk), generated by
the transport scheme, can be represented as a point. If the point falls within the shaded convex
hull, it is classified as real mixing. If within the dashed rectangle but outside the shaded area
it is classified as range preserving unmixing, and, finally, if outside the dashed rectangle it is
classified as overshooting (adopted from Lauritzen and Thuburn, 2012).
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k4

k2k1

k3

n+1n

Fig. 2. Traditional upstream semi-Lagrangian departure point.

less than 1.5 grid distances:
Eq−m,k = min[Eq̃m,k,

Lq
n+1
m,pi

]
Eq+
m,k = max[Eq̃m,k,

Lq
n+1
m,pi

]
,i= 1,...,Q (19)

Once the Eulerian space forecast for ”dry” air density Eρ has been obtained the minimum and
maximum permitted values of volume density for tracer m= 1,...,M can easily be obtained:
Eρ−m,k = Eq−m,k ·

Eρk (20)5

Eρ+
m,k = Eq+

m,k ·
Eρk (21)

2.6 Nudging of first guess towards target values

After the (shape preserving) target values have been calculated, the provisional, ”first guess”,
Eulerian forecast can be corrected. The correction, or nudging, is done in two steps. First we
calculate the total mass, M =

∑K
k=1

Eρk ·EVk, and the total mass of the target values, MT =10 ∑K
k=1

ETk ·EVk, as well as the discrepancy, ∆M =MT −M , between the two. This will lead
to three different possibilities:

– ∆M < 0: Mass of target field is too small.
20

Fig. 2. Traditional upstream semi-Lagrangian departure point.
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P

Fig. 3. Downstream advection of two different Lagrangian parcels and their auxiliary parcels in a pure
shear flow. For each parcel P and Pa denotes, respectively, its position and the position of the auxiliary
parcel. The associated auxiliary vectors are marked black and gray, respectively, to distinguish between
the two parcels. In this example the (true) asymptotic / Lagrangian dilatation axis, indicated with dashed
lines, is the same all over the small domain shown, although its direction rotates clockwise from time
step n to time step n+1. Note that it is the relative movements between parcels and auxiliary parcels
that are relevant. After several timesteps the auxiliary vectors will align approximately with the true
asymptotic dilatation axis

3. No formal proof is given here that the vectors ra will actually converge toward the
Lagrangian shear dilatation axes. Since the additional parcels a are initialized randomly
a certain time will elapse from the model initial state until realistic dilatation axes are
identified for each parcel. However this time is proportional to the deformation rate of the
flow, and therefore, when the deformation rate is large, the dilatation axes is also quickly5

approached. Obviously if the flow is linear, i.e., no mixing is needed, the dilatation axes
of the model parcels maintain their initial random orientations.

3. For each parcel, p, let µp,k represent a fraction of the parcel volume, LVp, which is assigned

24

Fig. 3. Downstream advection of two different Lagrangian parcels and their auxiliary parcels in
a pure shear flow. For each parcel P and Pa denotes, respectively, its position and the position
of the auxiliary parcel. The associated auxiliary vectors are marked black and gray, respectively,
to distinguish between the two parcels. In this example the (true) asymptotic / Lagrangian dilata-
tion axis, indicated with dashed lines, is the same all over the small domain shown, although
its direction rotates clockwise from time step n to time step n+1. Note that it is the relative
movements between parcels and auxiliary parcels that are relevant. After several timesteps the
auxiliary vectors will align approximately with the true asymptotic dilatation axis.
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Fig. 4. This figure describes why we use a factor of 0.25 between the deformation within one time
step ∆t ·D and the fraction of the parcel area ∆2 that should be mixed. The underlying assumption is
that the deformation is mainly due to shear, and the figure shows how cells are then deformed within
one time step from regular squares into irregular parallelograms with the same area (assuming zero
divergence). In order to re-shape a cell into squares the mass in the two shaded triangles must be given
off via interpolations to the neighboring cells. The factor comes because the sum of the triangular areas
is 0.25∆t ·D∆2.

to a neighboring Eulerian grid cell centroid k. µp,k is defined as:

µp,k =0.25min
[
1,Lδ̃n+1

p

]
exp(−κd2p,k) (29)

where dp,k is the distance in units of grid distances from the grid cell centroid to the line
parallel to Lan+1

p , which passes through parcel p. The value κ determines the degree of
directional bias for the mixing. In the present work κ has been set to 10. As an example:5

if dp,k = 0.5 the exponential factor in (29) becomes about 0.1, i.e., only grid cells close
to the ps’ dilation axis are assigned an apprechiable fraction of volume. For all Eulerian
points k with distances to p larger than ∆, µp,k is set to zero. I.e., in a regular grid µp,k

is only different from zero for a maximum of four individual values of k. It is ensured
that the sum of these four weights do not exceed unity. The factor ”0.25” is obtained from10

geometrical considerations of the relationship between deformation rate and the fraction
of the parcel volume which should be mixed with neighboring parcels - see Figure 4.

25

Fig. 4. This figure describes why we use a factor of 0.25 between the deformation within one
time step ∆t · D and the fraction of the parcel area ∆2 that should be mixed. The underlying
assumption is that the deformation is mainly due to shear, and the figure shows how cells are
then deformed within one time step from regular squares into irregular parallelograms with the
same area (assuming zero divergence). In order to re-shape a cell into squares the mass in the
two shaded triangles must be given off via interpolations to the neighboring cells. The factor
comes because the sum of the triangular areas is 0.25∆t · D∆2.

3881

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3819/2013/gmdd-6-3819-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3819–3891, 2013

A hybrid Eulerian
Lagrangian

numerical scheme

E. Kaas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

 1

24 48 96 192 384

l2
 e

rr
o

r

ncube

Solid body rotation of cosine hill on cubed sphere

2nd/3rd Order
HEL (CSLAM-1st)

CSLAM-M

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

 1

24 48 96 192 384
lin

f 
e

rr
o

r
ncube

Solid body rotation of cosine hill on cubed sphere

2nd/3rd Order
HEL (CSLAM-1st)

CSLAM-M

Fig. 5. Test of convergence for linear advection on cubed sphere using error norms l2 (left) and l∞ (right).
ncube refers to the number of grid cells in each direction on each of the 6 faces of the cubed sphere, i.e.,
ncube= 24 corresponds to an equatorial angular grid distance of 2π/(4×24) = 0.065 radians.

the simple solid body rotation tests above, we have calculated an additional set of diagnostics,
briefly described below.

The two analytical flow fields used have originally been proposed by Nair and Lauritzen
(2010), and they include a non-divergent as well as a divergent flow. In both cases the La-
grangian parcels follow relatively complex trajectories, and the flow is composed of a non-linear5

deformation component, which is different in the two cases, and an overlaid translational flow.
The translational part is designed to perform exactly one rotation around the sphere (along equa-
tor) during the entire simulation. After a half complete period of simulation the non-linear flow
component goes to zero and this part of the flow is then reversed so that the final exact solution
equals the initial condition. Half way through the simulation, at the time when the non-linear10

flow component goes to zero and starts to reverse, the initial distributions are deformed into thin
filaments, particularly for the non-divergent flow.

Three initial, i.e., t= 0, distributions consisting of two isolated Gaussian hills, two slotted
cylinders, and two cosine hills are shown in Figure 6. Details for these distributions are de-
scribed in Lauritzen et al. (2012).15

29

Fig. 5. Test of convergence for linear advection on cubed sphere using error norms l2 (left)
and l∞ (right). ncube refers to the number of grid cells in each direction on each of the 6 faces
of the cubed sphere, i.e., ncube = 24 corresponds to an equatorial angular grid distance of
2π/(4×24) = 0.065 radians.
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Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper left
panel), slotted cylinders (upper right panel), and cosine hills (lower panel).

Table 3. As Table 1, but for the cosine hill problem.
CSLAM-M HEL

C λ l2 l∞ l2 l∞

1.0

3.000 3.898E-01 5.268E-01 7.246E-02 9.585E-02
1.500 1.625E-01 2.903E-01 2.169E-02 3.025E-02
0.750 2.844E-02 9.827E-02 6.244E-03 1.119E-02
0.375 6.397E-03 3.319E-02 1.998E-03 5.437E-03

5.5

3.000 2.036E-01 2.684E-01 9.807E-02 1.502E-01
1.500 4.330E-02 8.907E-02 2.829E-02 4.533E-02
0.750 6.674E-03 3.063E-02 7.673E-03 1.336E-02
0.375 1.357E-03 1.047E-02 2.241E-03 5.579E-03

32

Fig. 6. Initial (and final analytic) distributions for deformational test cases: Gaussian hills (upper
left panel), slotted cylinders (upper right panel), and cosine hills (lower panel).
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Fig. 7. Simulated distributions at times t=T/2 (left panels) and t=T (right panels), based on the slotted
cylinder initial distribution. From top to bottom the plots show results obtained with CSLAM-M, HEL
and HEL without any parcel mixing, respectively, all run with a maximum Courant number of 5.5 and
an equatorial resolution of 1.5◦.

33

Fig. 7. Simulated distributions at times t = T/2 (left panels) and t = T (right panels), based
on the slotted cylinder initial distribution. From top to bottom the plots show results obtained
with CSLAM-M, HEL and HEL without any parcel mixing, respectively, all run with a maximum
Courant number of 5.5 and an equatorial resolution of 1.5◦.
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Fig. 8. Diagnostics for filament preservation, lf , for the two resolutions 1.5◦ (left) and 0.75◦ (right). The
curves show the shape preserving CSLAM-M (crosses), HEL in Eulerian grid (squares), and the HEL in
Lagrangian space (circles). Each scheme is shown with a maximum Courant number of 1.0 (dotted line)
and 5.5 (solid line), respectively.

sisting of two tracers: cosine bells – corresponding to χ in Figure (1) – and corresponding
non-linearly related bells – corresponding to ξ. The flow is the same non-divergent deformation
flow as above.

These mixing statistics include real mixing, lr, range preserving unmixing, lu, and overshoot-
ing, lo. The more precise definitions of lr, lu, and lo are provided in Appendix B.5

The error norm, lo, should always be zero indicating that the scheme in question is shape
preserving. However, the second norm, lu, which ideally should be zero as well, will generally
not be zero, unless the scheme is semi-linear and monotone Thuburn and McIntyre (1997). This
was one of the motivational factors for the development of HEL. The first norm, lr, should be a
non-zero value, since ”real” mixing is always present, it should however, as described in Section10

3, not be artificial numerical mixing but physically based mixing.
The mixing diagnostics for CSLAM-M and HEL are listed in Table 6. Mixing diagnostics

are important indicators for the influence of transport schemes on chemical reaction rates and

37

Fig. 8. Diagnostics for filament preservation, lf, for the two resolutions 1.5◦ (left) and 0.75◦

(right). The curves show the shape preserving CSLAM-M (crosses), HEL in Eulerian grid
(squares), and the HEL in Lagrangian space (circles). Each scheme is shown with a maximum
Courant number of 1.0 (dotted line) and 5.5 (solid line), respectively.
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Fig. 9. Initial height field h (upper left) and surface topography (upper right) for the shallow water
model. The lower panel shows an example of an initial field of a single inert tracer. Only the ”Northern
hemisphere” part of the fields are plotted.

6 Discussion

A number of issues related to the introduction of the new HEL scheme deserve some discussion
provided in the following subsections.

6.1 Number of parcels

In the present applications of HEL the total number of parcels is equal to the number of Eulerian5

grid cells. In principle one could, however, easily increase the number of parcels, although this
has a computational cost, particularly due to increased costs of mixing. A test (not shown)
where the number of parcels in the shallow water model is four times that of the number of
Eulerian grid cells has been carried out, and the results were very similar to those in the lower

45

Fig. 9. Initial height field h (upper left) and surface topography (upper right) for the shallow
water model. The lower panel shows an example of an initial field of a single inert tracer. Only
the “Northern Hemisphere” part of the fields are plotted.
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Fig. 10. Results after 48 hours of simulation based on the initial conditions and bottom topography in
Figure 9. Panels to the left show the surface height field, while those to the right show the mixing ratio.
The upper panels show the result obtained with the LMCSL scheme, while HEL is shown below.

panels of Figure 10 and the middle panels of Figure 11, although the tracer mixing ratio fields
in these additional simulations, as expected, are slightly smoother.

6.2 Mixing

As noted previously, the mixing between Lagrangian parcels introduced here is based on simple
geometrical principles minimizing the need for empirically based tuning. However, it is of5

course possible to formulate such physically based mixing in other ways, which in practice can
lead to a stronger or weaker mixing between parcels.

One potentially controversial issue is the degree of directional bias of the mixing. As de-
scribed in Section 3 our mixing is biased so that it is dominated by mixing with neighbors that

46

Fig. 10. Results after 48 h of simulation based on the initial conditions and bottom topography
in Fig. 9. Panels to the left show the surface height field, while those to the right show the mixing
ratio. The upper panels show the result obtained with the LMCSL scheme, while HEL is shown
below.
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Fig. 11. As Figure 10 but after 480 hours of simulation. The lower panels show results in a HEL-
configuration without any parcel mixing.

47

Fig. 11. As Fig. 10 but after 480 h of simulation. The lower panels show results in a HEL-
configuration without any parcel mixing.
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Fig. 12. Time series of mixing diagnostics lr, lu, and l0 obtained in 48 hour simulations with the shallow
water model using the LMCSL and HEL schemes. For HEL both the Eulerian and the Lagrangian
representations are plotted. It is noted that in the Eulerian representation of HEL l0 = 0 (not shown),
while in the Lagrangian representation both lu = 0 and l0 = 0 (not shown).

are aligned along the asymptotic dilatation axis. This approach is based on the geometrical
principle illustrated in Figure 4: remapping of the parcels into regular squared shapes filling the
integration domain only requires mixing along the asymptotic dilation axis. This remapping is
needed to obtain an un-aliased representation of the Lagrangian parcel densities - a problem that
is quite different from that of molecular mixing, which is generally isotropic in nature. We have5

tested the effect of performing the mixing with a fake directional bias, which is not along the
assymptotic dilation axis but instead along an axis perpendicular to it. The result (not shown)
is an excessive damping and considerably larger error norms for all the inert passive transport
tests reported above. Our actual choice of κ= 10 was based on a compromise: a much smaller
value would be too isotropic and too damping, and a a much larger value would result in too lit-10

tle realised mixing, i.e. the parcel deformations Lδ would grow to unrealistic values in strongly
non-linear flows.

The present paper do not investigate the influence of parcel mixing on the distribution of

48

Fig. 12. Time series of mixing diagnostics lr, lu, and l0 obtained in 48 h simulations with the
shallow water model using the LMCSL and HEL schemes. For HEL both the Eulerian and the
Lagrangian representations are plotted. It is noted that in the Eulerian representation of HEL
l0 = 0 (not shown), while in the Lagrangian representation both lu = 0 and l0 = 0 (not shown).
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Fig. 13. CPU timing on a single processor.

A main reason for the faster performance of HEL is that only first order accurate re-mappings
are needed in the underlying Eulerian forecast for passive transport, while in CSLAM-M third
order re-mapping have been used.

Although we have not performed parallel efficiency tests the code has been prepared some-
what for parallelization. The most important issue relates to the way individual parcels are5

transferred from the memory of one CPU/node to another. As usual in geophysical fluid dy-
namics each CPU is reserved for a certain number of horizontal Eulerian grid cells including
a halo zone. Corresponding to this, the actual physical location of each Lagrangian parcel
determines in which part of the memory it is stored. Since the number of parcels in a given
domain can vary significantly due to the divergence of the flow, the actual memory allocation10

for Lagrangian parcel information required for each CPU must be somewhat higher than that
corresponding to the average parcel density.

Although our first tests suggest that HEL is computationally efficient, particularly for multi-
ple tracers, there is an important memory penalty. Considering, e.g., two dimensional passive
transport using a traditional Eulerian based scheme with K Eulerian grid cells/points, and with15

M different tracers the total number of prognostic variables is K×M . For HEL, however, the
50

Fig. 13. CPU timing on a single processor.
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Fig. 14. Illustration of the distance measure dk (arrows). The filled circles are relative concen-
trations, (ξk,χk), generated by the transport scheme and the unfilled circles are the closest point,
(χroot

k ,ψ(χroot
k )), on the pre-existing functional relation curve. (adopted from Lauritzen and Thuburn

(2012))

the time space location rnp , assuming a stationary velocity field in the time period from n∆t to
(n+1/2)∆t. I.e.,

An
p = (V ·∇V)np , (C3)

which is estimated via centered differences and subsequent interpolation to rnp .
The second trajectory segment, C2, is based on provisional velocities extrapolated linearly

in time from time level n−1 and n to time level n+1:

Ṽn+1 = 2Vn−Vn−1, (C4)

where (˜)n+1 indicates a quantity that has been obtained via temporal extrapolation. C2 ap-
proximates the forward trajectory from the midpoint rn+1/2

p to the arrival parcel location rn+1
p ,

55

Fig. B1. Illustration of the distance measure dk (arrows). The filled circles are relative con-
centrations, (ξk ,χk), generated by the transport scheme and the unfilled circles are the closest
point, (χ root

k ,ψ(χ root
k )), on the pre-existing functional relation curve (adopted from Lauritzen and

Thuburn, 2012).
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