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Abstract

Differential equations posed over immersed manifolds are of particular importance in
studying geophysical flows; for instance, ocean and atmosphere simulations crucially
rely on the capability to solve equations over the sphere. This paper presents the ex-
tension of the FEniCS software components to the automated solution of finite element5

formulations of differential equations defined over general, immersed manifolds. We
describe the implementation and in particular detail how the required extensions es-
sentially reduce to the extension of the FEniCS form compiler to cover this case. The
resulting implementation has all the properties of the FEniCS pipeline and we demon-
strate its flexibility by an extensive range of numerical examples covering a number of10

geophysical benchmark examples and test cases. The results are all in agreement with
the expected values. The description here relates to DOLFIN/FEniCS 1.2.

1 Introduction

The computation of approximate numerical solutions to partial differential equations
(PDEs) is an integral component of computational science. At the same time, the tra-15

ditional development of software for the numerical solution of PDEs is time-consuming
and error-prone. However, the FEniCS Project (http://fenicsproject.org, Logg et al.,
2012b) offers a radical alternative to the traditional development model. Instead of writ-
ing low-level model code in a compiled language such as Fortran or C++, the discreti-
sation of the PDE is expressed in a high level language (the Unified Form Language,20

UFL; Alnæs, 2012) and the corresponding low-level code is generated automatically
by a specialised compiler (Logg et al., 2012d). The impact of this approach is dramatic:
models which require tens to hundreds of thousands of lines of C++ or Fortran, and
which take months or years to develop can be written in tens to hundreds of lines of
high level code and developed in days to weeks.25
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The simulation of geophysical fluids has particular features; for instance, the solution
of PDEs on the surface of the sphere is of particular significance for the simulation of
flow in the ocean and atmosphere. Prior to version 1.2, the FEniCS software has only
supported finite element discretisations defined over meshes of the same geometric
and topological dimension. As such, the required feature; that is, the possibility to define5

discretisations over immersed manifolds such as the sphere, has been missing.
In this paper, we detail the extension of the FEniCS software to enable this fea-

ture and as a consequence a multitude of geophysical flow simulation scenarios. We
achieve this by extending the FEniCS software components to appropriately handle
general two-dimensional manifolds in three-dimensional space, and to general one-10

dimensional manifolds in two- and three-dimensional space. This extension essentially
reduces to the ability to evaluate all of the relevant integrals over an element immersed
in a higher dimensional space, and to giving the correct definitions to the language
elements of UFL in the manifold context. Although the sphere is of particular signifi-
cance in geoscientific modelling, choosing to solve the more general manifold problem15

provides additional flexibility and utility. This generality enables the support of oblate
spheroids, as well as a wide range of manifold geometries in other application areas
across science and engineering.

A number of other finite element software libraries support solving equations over
immersed manifolds, including ALBERTA (Schmidt et al., 2005), DUNE-FEM (includ-20

ing support for div- and curl-conforming finite element spaces) (Dedner et al., 2010),
Nektar++ (Sherwin et al., 2013), deal.II (DeSimone et al., 2009). In addition, high-order
discontinuous Galerkin methods have been implemented on manifolds as part of the
SLIM ocean model project (Bernard et al., 2008). In contrast to these libraries however,
the FEniCS software heavily relies on and draws its primary advantage from special-25

purpose finite element code generation. In our description of the implementation here,
we therefore focus on the extension of the code generation pipeline to the immersed
manifolds case. This implementation aspect differs from that of and extends existing
tools, and constitutes a main contribution of this work.
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This paper is organised as follows. In Sect. 2, we summarise various aspects of
the mathematical formulation of finite element methods over immersed manifolds, in-
cluding definitions of pullbacks of scalar- and vector fields, and differential operators.
The key implementation aspects of the required extensions to the FEniCS software
are presented in Sect. 3. Section 4 considers verification aspects and Sect. 5 further5

describes a wide range of numerical examples and tests. We comment on the scope of
the current implementation, including limitations and natural extensions, in Sect. 6, be-
fore detailing where the implementation and the Supplement can be found in Sects. 7,
and 8, and providing some concluding remarks in Sect. 9.

2 Mathematical formulation10

This section summarises the distinctive mathematical features of finite element formu-
lations defined over computational domains that are immersed manifolds. The math-
ematical formulation adopted will be detailed in increasing complexity, beginning with
the simplest finite element projection for scalar-valued quantities, and then introducing
differential operators and vector-valued functions. The material has deliberately been15

kept at a minimal level of complexity; for readers more interested in the mathemati-
cal theory of manifolds we recommend for instance Barden and Thomas (2003); Holm
(2008).

Throughout this section, we let Ω be a smooth m-dimensional manifold immersed in
Rn, with m ≤ n. For simplicity, we also let 1 ≤m and n ≤ 3. We will refer to m as the20

manifold dimension or topological dimension, and to n as the physical or geometric
dimension. We approximate this manifold by a piecewise linear tessellation of sim-
plices (intervals in one topological dimension, triangles in two topological dimensions,
or tetrahedra in three topological dimensions) T = {T }. In particular, each simplex cell
T in the mesh T will then have topological dimension m and geometric dimension n.25

3560

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3557–3614, 2013

Manifolds in FEniCS
1.2

M. E. Rognes et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1 Galerkin projection on the manifold

The finite element method is founded on the concept of finite element spaces. A finite
element space V is defined to contain all functions that have some specified polynomial
expansion in each cell of the mesh, together with some specified continuity constraint
between neighbouring cells. Broadly speaking, the finite element discretisation of a par-5

tial differential equation can be described as the projection of that equation onto some
finite element space V . The Galerkin projection of a function f onto a finite element
space V is a basic finite element operation and defined as the function v in V such that

∫
T

vwdx =
∫
T

f wdx, (1)10

for all test functions w in V . If V is N-dimensional with basis {φj}
N
j=1, then we may write

v = vjφj , (2)

where {vj} are the expansion coefficients of v relative to the basis {φj}. Here, and in
the rest of the paper, we follow the Einstein summation convention in which summation15

occurs over an index repeated within a product. Taking w =φi in Eq. (1) for i = 1, . . . ,N,
we obtain a finite dimensional linear system for the expansion coefficients vj :

Mi jvj = bi , (3)

having defined

Mi j =
∫
T

φiφjdx =
∑
T∈T

∫
T

φiφjdx, (4)20
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and

bi =
∫
T

fφidx =
∑
T∈T

∫
T

fφidx. (5)

Moreover, for each T ∈ T , we label the local integral contributions

MT ,i j =
∫
T

φiφjdx, (6)

and5

bT ,i =
∫
T

fφidx. (7)

In view of Eqs. (4) and (5), the assembly of the operators M and b reduce to the
evaluation of sums of certain integrals over individual cells T ∈ T . This procedure is
the standard assembly strategy for the finite element method. For more details on finite
element assembly, the reader is directed to Logg et al. (2012c) or any standard text10

on the finite element method (for example Zienkiewicz et al., 2005; Karniadakis and
Sherwin, 1999).

2.1.1 Change of coordinates

A change of coordinates to a reference cell T0 offers a standard and efficient evalua-
tion procedure for each of the local contributions Eqs. (6) and (7). Recalling that each15

cell T ⊂Rn is of topological dimension m, we define a fixed reference cell T0 ⊂Rm

and assume that there exists a mapping GT such that T = GT (T0). We write here
and throughout X = (X1, . . . ,Xm) for the coordinates of a point in reference space and
x = (x1, . . . ,xn) for the coordinates in physical space. Figure 1 illustrates this mapping
and the notation employed.20
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Similarly, we will employ lower case Greek letters for basis functions in physical
space, and the corresponding upper case letters for the pullback of those functions
to the reference cell. For scalar-valued functions, the pullback is through function com-
position:

Φi (X ) =φi (x) =φi (GT (X )) . (8)5

Using the definitions above and the usual change of coordinate rules, Eq. (6) becomes∫
T

φi (x)φj (x)dx =
∫
T

φi (GT (X ))φj (GT (X ))dx =
∫
T0

Φi (X )Φj (X )|JT |dX , (9)

where JT is the Jacobian of the transformation GT and |JT | is the Jacobian determinant.

2.1.2 The Jacobian and its pseudo-determinant10

The derivation in Eq. (9) applies for both the standard case m = n and the immersed
manifold case where m< n. The only difference for the latter case is the generalised
definitions of the Jacobian and its determinant. In general, the Jacobian J of the trans-
form G : Rm →Rn is given by the matrix

Jγτ =
∂G(X )γ
∂Xτ

=
∂xγ
∂Xτ

γ = 1, . . . ,n, τ = 1, . . . ,m. (10)15

Note that τ varies over the manifold dimension m, which is also the geometric and
topological dimension of the reference cell, while γ varies over the physical dimension
n. To make this concrete, the Jacobian for a two-dimensional manifold immersed in R3

is given by:

J =


∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

∂x3
∂X1

∂x3
∂X2

 (11)20
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For affine transformations GT , the Jacobian JT will be constant over each cell T . For
non-affine transformations, for instance in the case of curved cells, the Jacobian will
vary as a function of X .

The Jacobian pseudo-determinant is the transformation of the volume of the differ-
ential integral measure. For a one-dimensional manifold, this is the length of the single5

column vector of J, while, for a two-dimensional manifold, this is the volume of the par-
allelogram spanned by the two columns of J. More precisely, writing the Jacobian in
terms of its column vectors J = [J1,J2, . . . ,Jm], we have

|J| =
{
|J1|2 m = 1

|J1 ×J2|2 m = 2
(12)

where | · |2 denotes the Euclidean norm. The pseudo-determinant employed here is the10

square root of the Gram determinant (Kuptsov, 2011). Note that, in the n =m case, this
reduces to the absolute value of the usual definition of the determinant.

2.2 Derivatives on the manifold

In order to evaluate more complicated variational forms, it is necessary to be able to
evaluate derivatives of functions defined on the manifold. As before, it is sufficient only15

to consider the case of a basis function defined on a single cell, since all integrals will
be decomposed into sums of integrals over basis functions on single cells.

Suppose we have some function φ(x) defined on an cell T ⊂Rn with pullback Φ(X )
defined on the reference cell T0 ⊂Rm. The gradient of Φ in reference space is immedi-
ate:20

(∇XΦ(X ))τ =
∂Φ(X )

∂Xτ
τ = 1, . . . ,m. (13)

Define the tangent space of cell T as the image of the corresponding Jacobian J over
reference space; thus, any v in the tangent space can be written as v = JV for some
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V in reference space. We define the gradient of φ in physical space ∇xφ via the usual
Gâteaux directional derivative:

∇xφ(x) · v = lim
ε→0

φ(x+εv)−φ(x)
ε

(14)

for any v in the tangent space.
Assume that the mapping G is affine and non-degenerate, such that the columns of5

J are linearly independent. It follows from the definitions above that

∇XΦ(X ) · V = lim
ε→0

Φ (X +εV )−Φ(X )
ε

= lim
ε→0

φ (x+εv)−φ(x)
ε

= ∇xφ(x) · v . (15)

Next, let J† denote the Moore-Penrose pseudo-inverse of J (Penrose, 1955), given in
this case by

J† =
(

JTJ
)−1

JT, (16)10

where the superscript T denotes the transpose. Then clearly, for v = JV ,

J†v =
(

JTJ
)−1(

JTJ
)
V = V . (17)

Inserting Eq. (17) into Eq. (15), and rearranging, we find that

∇xφ(x) · v = (J†)T∇XΦ(X ) · v . (18)

In our implementation, vector quantities are always represented as elements of the15

n-dimensional space in which the manifold is immersed. In this representation, we
additionally require that

∇xφ(x) ·k = 0, (19)
3565
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where k is the unit normal vector to the cell T , and hence we obtain the n-dimensional
vector

∇xφ(x) = (J†)T∇XΦ(X ). (20)

From Eq. (16), it follows immediately that the column space of (J†)T coincides with that
of J. We therefore observe that ∇xφ(x) is in the tangent space of cell T as expected.5

In the special case of a one-dimensional manifold (m = 1), the pseudo-inverse reduces
to

J† =
JT

|J|2
. (21)

2.2.1 The weak Laplacian

To illustrate the practical implication of the above, we examine the integral form corre-10

sponding to the weak Laplacian over a pair of basis functions φi and φj on a single
cell T :∫
T

∇φi · ∇φjdx. (22)

Applying Eq. (20) and the change of integration measure, we immediately find that∫
T

∇xφi (x) · ∇xφj (x)dx =
∫
T0

(
(J†)T∇XΦi (X )

)
·
(

(J†)T∇XΦj (X )
)
|J|dX . (23)15

So, as before, the integrals over cells in the mesh may be evaluated on the ref-
erence cell using the Jacobian and, in this case, its pseudo-inverse. Observe that
(J†)T∇XΦj (X ) has dimension n, and that the index in the inner product in Eq. (23)
therefore runs from 1 to n.
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2.3 Constructing vector-valued fields on the manifold

Recall that, in our implementation, vector quantities are always represented as ele-
ments of the n-dimensional space in which the manifold is immersed. In this represen-
tation, there are two distinct forms of finite element space for vector-valued quantities
employed in the finite element method. In the most simple case, the finite element5

space is the Cartesian product of scalar-valued spaces: each component of the vec-
tor varies independently as a piecewise polynomial over each cell. The finite element
space may be continuous at cell boundaries, in which case all components will be con-
tinuous, or discontinuous, in which case no continuity is enforced at cell boundaries for
any component of the vector value. As a matter of notation, we will write CGn

k for the10

space of continuous n-dimensional vector fields with polynomial degree k, and DGn
k for

the corresponding space with no inter-element continuity constraint.
Recall that T = T is the tessellation of the m-dimensional manifold in Rn by m-

simplices. A vector field represented in this way has n components, where n is the
dimension of the space in which the manifold is immersed. For instance, a vector field15

of this type on a tessellation of the surface of the sphere will have three components,
not two. This has the natural consequence that the vector field is not constrained to
be tangent to the manifold. Where this is required, it will have to be imposed as an
additional constraint in the equations to be solved. There is an example illustrating this
in Sect. 5.1.2.20

Since these finite element spaces are the Cartesian products of scalar-valued com-
ponent spaces, the basis functions for the vector field can be written with respect to the
scalar basis functions. For example, if {φj}

N
j=1 is the basis for a scalar-valued space,

the basis for the corresponding two dimensional vector space is given by

{φi}
2N
i=1 =

{[
φj
0

]}N
j=1

⋃ {[
0
φk

]}N
k=1

. (24)25
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The pullback through the map from the reference cell GT is applied separately to each
Cartesian component:

Φi (X ) =φi (x) =φi (GT (X )). (25)

Consequently, the mass integral over a single cell transforms in the same manner as
the scalar case:5 ∫
T

φi (x) ·φj (x)dx =
∫
T0

Φi (X ) ·Φj (X )|JT |dX , (26)

The Cartesian product vector spaces are, in fact, a special case of a more general
class of mixed finite element spaces which can be composed of any other finite ele-
ment spaces. If U and V are finite element spaces of any type with bases {φj}

N
j=1 and

{ψk}
M
k=1, then W = U × V is the Cartesian product of these spaces with basis given by10

{ωi}
N+M
i=1 =

{[
φj
0

]}N
j=1

⋃ {[
0
ψk

]}M
k=1

. (27)

This definition is fully recursive so any number of spaces of any type can be combined
in this way. Mixed spaces require no special handling in the manifold case beyond
that required by the component spaces. That is to say, without loss of generality, if
ω is a basis function of W of the form ω =

[
φ 0

]T
then its pullback Ω is given by15

Ω=
[
Φ 0

]T
, where Φ is the pullback of φ.

Vector-valued finite element spaces can, as we have just seen, be constructed via
Cartesian products of scalar finite element spaces. However, there are also a collection
of highly useful finite element families that are inherently vector-valued. In the geosci-
entific context, the most common example of such is the lowest order Raviart–Thomas20

element (Raviart and Thomas, 1977), familiar to the finite volume community as the
C-grid velocity discretisation (Arakawa and Lamb, 1977). Other examples include the
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Nédélec edge and face elements (Nédélec, 1980, 1986). In both cases we compute in
Cartesian coordinates, with the metric terms being formed implicitly through the trans-
formation from the reference element.

We have already defined the grad operator on a manifold. The vector calculus oper-
ators div and curl on a two-dimensional manifold M are most easily defined as limits of5

flux and circulation integrals,

divu(x) = lim
ε→0

1

|Cε|

∮
Cε

u ·ndx, (28)

curl u(x) = lim
ε→0

1

|Cε|

∮
Cε

u ·dx, (29)

where Cε is a loop centred on x that approaches a circle of radius ε as ε→ 0, and |Cε|10

is the area on the manifold enclosed by Cε.
Vector fields u from divergence-conforming (div-conforming) finite element spaces

(such as the Raviart–Thomas finite element space) are constrained so that the nor-
mal component u ·n is continuous across each facet of the tessellation, where n is the
normal vector on the facet. The tangential component(s) are not required to be contin-15

uous. There is sufficient continuity for the divergence operator to be globally defined,
hence the term “div-conforming”. For such element spaces, vector fields are naturally
mapped from a reference cell to each physical cell via the contravariant Piola trans-
form (Brezzi and Fortin, 1991; Rognes et al., 2009): letting Φ be a vector field defined
on the reference cell T0, we define the field φ on the physical cell T as20

φ(x) =
1

±|JT |
JT Φ(X ). (30)

We remark that, in the case of a m-dimensional manifold immersed in Rn, Φ is a vec-
tor field with m components and Eq. (30) defines φ as an n-vector field. Moreover,
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observe that φ is in the tangent space of T by construction. The sign of Eq. (30) is pos-
itive if the current element has the same orientation as the manifold and negative if the
orientations differ. On a non-orientable manifold the sign is indeterminant and the con-
travariant Piola transformation cannot be employed. The implementation of manifold
orientation is discussed in Sect. 3.3.2.5

Conversely, curl-conforming finite element spaces, such as Nédélec spaces, are de-
fined such that for each field in this space the component of the field tangent to each
facet is continuous across that facet, while the normal component to the facet may be
discontinuous. The desired tangential continuity is enabled if the fields are mapped
from a reference cell to each physical cell via the covariant Piola transform:10

φ(x) = (J†
T )TΦ(X ). (31)

We note that the covariant Piola transform also maps m-vector fields to n-vector fields,
and that its image is in the tangent space of T , by definition, since the column space of
(J†
T )T coincides with the column space of JT as previously noted in Sect. 2.2.

2.4 Facet integrals15

Suppose u = uiψi is a scalar field and v = vjφj is a vector field. A commonly occur-
ring integral form (for example for the pressure gradient in a mixed finite element fluid
simulation) is∫
T

∇u · vdx. (32)

A routine manipulation, for example to impose boundary conditions or to introduce20

coupling between elements if the spaces are discontinuous, is to integrate by parts:∫
T

∇u · vdx = −
∫
T

u∇ · vdx +
∫
Γ0

u+v + ·n+ +u−v − ·n−ds +
∫
Γ

uv ·nds. (33)
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Here, Γ indicates the surface of T (empty if the manifold is closed), and Γ0 is the set
of interior facets (points in one dimension, edges in two dimensions and faces in three
dimensions) between cells in T . n is the outward pointing normal to the element in
question, with the superscripts + and − denoting the two sides of each interior facet. In
the manifold case, there are two features of facet normals which are significant. The first5

is that, as with other vector-valued quantities, the facet normal has dimension n, that
of the physical space. The second is that adjacent cells on a manifold are not typically
coplanar (m = 2) or colinear (m = 1). Consequently, the identity n

+ = −n−, which holds
in the standard n =m case, does not generally hold on a manifold.

3 Integrating manifolds into the FEniCS Project pipeline10

3.1 The FEniCS Project pipeline

The FEniCS Project is a collection of numerical software, supported by a set of novel al-
gorithms and techniques, aimed at the automated solution of differential equations us-
ing finite element methods (Logg et al., 2012b). The FEniCS Project software consists
of a number of interoperable software components which define a full computational15

pipeline when used together.
The core of the FEniCS pipeline is the following (cf. Fig. 2). Consider the common

use case where a finite element formulation of a partial differential equation is given
in mathematical form and the numerical solution is the desired output. The simplest
such example is the Galerkin projection problem Eq. (1) over, for instance, the space of20

piecewise linear functions, defined relative to the tessellation T , to obtain the discrete
solution u.

The first step is to express the variational formulation in the domain-specific Python-
embedded language Unified Form Language (UFL) (Alnæs et al., 2013; Alnæs, 2012).
Continuing with Eq. (1) as an example, to express the variational formulation the user25
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must express (i) the finite element space V ; (ii) the basis functions u,v and coefficient
f involved; and (iii) the right-hand and left-hand side variational forms.

The next step in the pipeline is the processing of the UFL specification by a special
purpose compiler: the FEniCS Form Compiler (FFC) (Kirby and Logg, 2006; Logg et al.,
2012d). FFC is targeted at generating efficient, lower-level code for the assembly of5

the relevant finite element tensors. FFC generates code that conforms to the Unified
Form-assembly Code (UFC) interface (Alnæs et al., 2009, 2012). More precisely, given
a set of variational forms specified in UFL, separate classes are generated for each of
the finite elements over which the basis functions and any coefficients are defined, for
each of the variational forms, and for each of the integrals appearing in the forms. The10

finite element classes then provide functions for evaluating the specific basis functions,
computing the specific local-to-global degree of freedom maps, evaluating the specific
degrees of freedom on arbitrary functions et cetera. The integral class(es) similarly
provide functions for computing the specific local element tensor.

The generated code can then be used by the user directly, or, as is more common, be15

used via the problem-solving environment and finite element library DOLFIN. DOLFIN
provides high performance computing functionality for simplicial meshes, automated
assembly of variational forms, relying on the generated code for each specific form
as detailed above, and interfaces to numerical linear algebra libraries; for more details
see (Logg and Wells, 2010; Logg et al., 2012e). DOLFIN provides both a C++ interface20

and a Python interface. In the Python interface, the steps detailed above are all closely
integrated; in particular, the code generation happens seamlessly via just-in-time (JIT)
compilation.

Three implementation points crystallise as necessary in order to integrate weak for-
mulations defined over manifolds into the FEniCS pipeline.25

– Extend the form language UFL to include finite elements and variational forms
defined over simplicial cells of differing geometric and topological dimension.
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– Extend the form compiler FFC to provide corresponding support for the novel UFL
finite elements and forms introduced.

– Support UFC and DOLFIN data structures for, and operations over, meshes de-
fined over simplicial cells with differing geometric and topological dimension.

The extensions to the previous functionality required to achieve these three aspects5

are described below.

3.2 Extending and interpreting UFL over manifolds

As described in Alnæs et al. (2013), UFL is in essence composed of three sublan-
guages for expressing (i) finite elements; (ii) expressions, including terminal types and
operators acting on them; and (iii) variational forms.10

3.2.1 Finite and mixed finite elements over manifolds

A basic UFL finite element is defined in terms of a family, a cell and a (polynomial)
degree. In order to allow finite elements to be defined over manifolds, the only modi-
fication required is to define a cell of differing geometric and topological dimensions.
Such cells are in place in UFL for m ≤ n = 1,2,3. Geometric quantities, such as the15

volume, the circumradius or facet normals, are associated with each cell type. When
appropriate, these are defined relative to the topological dimension of the cell; for in-
stance, the volume of a triangle cell embedded in R3 refers to the 2-dimensional volume
of the cell.

UFL allows Cartesian combinations (and nested combinations) of finite elements of20

arbitrary families and degrees to form vector, tensor or mixed elements with an arbitrary
number of components. The number of components (the value dimension) of a vector
element defaults to the geometric dimension n of the cell over which the element is
defined. Similarly the shape of a tensor element defaults to (n,n). The UFL code listing
in Fig. 3 illustrates this. Note that UFL mixed elements (including vector and tensor25
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elements) are defined over a common cell. As a consequence, mixed elements for
which different components are defined over different cells are not supported.

We emphasise that UFL vector elements are generally not constrained to lie in the
tangent space of the manifold. This is a deliberate choice for the sake of flexibility, ap-
plicability and consistency. For applications where the vector fields should be restricted5

to the tangent space, this requirement can be enforced either via an additional varia-
tional constraint, or, if applicable, by employing div-conforming or curl-conforming finite
elements. Note however that the basis functions and coefficients defined over the latter
are still indexed from 0, . . . ,n−1 where n is the geometric dimension of the cell and
value dimension of the element.10

3.2.2 Differential operators over manifolds in UFL

A variational form is typically defined, both mathematically and in UFL, via a set of op-
erators acting on a set of basis functions or coefficients integrated over some domain.
Taking Eq. (22) as an example, the differential operator ∇x acts on basis functions φi
and φj . The operators defined by UFL include arithmetic, algebraic, indexing and dif-15

ferential operators. The arithmetic and algebraic operators extend trivially to the case
of functions defined over manifolds; on the other hand, the precise extensions of the
differential operators deserve a few comments.

UFL provides the differential operators grad , div , curl , and rot . In addition,
component-wise derivatives can be expressed via dx(i) or Dx(u, i) for some func-20

tion u and index i , which ranges over the n Cartesian components of the gradient
vector represented in the embedded space. The UFL gradient grad can be viewed
as the base operator: it is defined in accordance with Eq. (14), which, in particular, de-
fines ∇u as an element of Rn. As such, for a scalar-valued basis function u defined over
a cell of geometric dimension n, grad(u) is a vector-valued expression, indexable by25

an index i ranging from 0 to n. Moreover, we define

grad(u)[i] := ∇(u)i , (34)
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where ∇u is represented in the n-dimensional physical space; the extension to gradi-
ents of vector- and tensor-valued expressions, expanded in n-dimensional Cartesian
components, is immediate. Building on Eq. (34), we define the component derivatives
dx(i) and Dx(u, i) as

u.dx(i) ≡ Dx(u, i) := grad(u)[i] . (35)5

In short, the component derivatives are defined as the components of the gradient, and
components are defined in terms of the standard Euclidean orthonormal basis for Rn.
Figure 4 shows the UFL code corresponding to example Eq. (22).

On an affine triangle, the definition of the divergence operator Eq. (28) simplifies to∑2
i=0(∇u)i , since there are no curvature terms. Therefore, in our implementation, we10

simply define

div(u) :=
n−1∑
i=0

u.dx(i) . (36)

This would need to be modified if non-affine cells were introduced. The UFL operators
curl and rot have not been modified from their definitions for the case m = n and
should only be used with care for the case m< n.15

3.2.3 Integration measures over manifolds

UFL supports variational forms defined via integration of an integrand I over a set of
predefined classes of domains defined relative to a tessellation T = {T } and sums of
such integrals. The more commonly used domains are: all cells (dx ), all exterior facets
(ds ) and all interior facets (dS). More precisely, by definition,20

I * dx :=
∑
T∈T

∫
T

Idx, I * ds :=
∑
e∈Ee

∫
e

Ids, I * dS :=
∑
e∈Ei

∫
e

Ids. (37)
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Here, Ee refers to the set of all exterior facets of the tessellation T while E i refers to
the set of all interior facets. Recall that T is composed of cells of geometric dimension
n and topological dimension m, 1 ≤m ≤ n ≤ 3. The facets T therefore have geometric
dimension n and topological dimension m−1, and dx and ds in Eq. (37) refer to the
standard Lebesgue integration measures on Rm and Rm−1 respectively.5

For example, this implies that the integral over all cells of a mesh of the surface
of a ball will equal the integral over all exterior facets of a mesh of the ball. Figure 5
illustrates this using DOLFIN code 1.

3.3 Extending the FEniCS Form Compiler (FFC) onto manifolds

The interface of the form compiler FFC has two main entry points: one for compiling10

a (set of) UFL form(s) and one for compiling a separate UFL finite element.

3.3.1 Compiling variational forms and integrals over manifolds

A UFL form is a sum of UFL integrals each of predefined type determined by the
measure symbol. The role of FFC is to generate UFC-compliant code for the form
and for each of the integrals. The main part of the integral code is the compu-15

tation of the local element tensor over a given physical mesh entity for the spe-
cific integral. This functionality is provided by the generated code body of the
ufc:: * integral::tabulate tensor functions. The UFC specification allows
mesh entities and in particular physical cells with differing topological and geometric
dimensions. The extension of FFC to immersed manifolds is therefore restricted to20

extending the generation of the local element tensor code body to this case.
For all integral types, the generated code computes the local element tensors by

pulling the integral back to a suitable reference cell as shown in Eq. (9) for the local
1UFL is not concerned with actual meshes so (Python) DOLFIN code, in which the varia-

tional form specification is integrated with the problem solving environment, is used to illustrate
here. The essence is the definitions of the forms a and b.
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mass matrix and in Eq. (23) for the local stiffness matrix. For an integral over a cell of
topological dimension m, the integral is pulled back to the reference element2 of both
topological and geometric dimension m. FFC uses FIAT (Kirby, 2004) to pre-evaluate
the reference basis functions on the reference cell. Since FIAT only operates on the
reference cell, it requires no modification for our purposes.5

As demonstrated in Sect. 2, the mathematical representation of the variational forms
supported by FFC differs between the standard and immerse manifolds cases only in
the definition of the Jacobian and its pseudo-determinant and inverse. FFC’s internal
representation follows the mathematics, with the consequence that only the final, code
generation, stage requires modification for the immersed manifold case.10

The code generation stage of FFC relies on predefined code snippets or kernels
for computing the Jacobians, the Jacobian (pseudo-) determinants and the Jacobian
(pseudo-) inverses. Compiling forms over cells with differing topological and geomet-
ric dimension is therefore simply enabled by providing implementations based on the
definition Eqs. (12) and (16) for the (remaining) cases 1 ≤m< n ≤ 3. This light-touch15

modification is compatible with the full range of optimisations which FFC can insert in
the generated form code. We show an example of the generated code corresponding
to Eq. (23) in Fig. 6. The geometrically defined UFL operands such as facet normal are
likewise extended to immersed manifolds by corresponding modified code snippets.

3.3.2 Compiling finite elements and dofmaps over manifolds20

In addition to the code for integrals and forms, FFC generates UFC finite element and
dofmap (degree-of-freedom map) classes for all finite elements encountered in a form
and when compiling a separate finite element. The primary non-trivial functionality pro-
vided by these generated classes are: evaluating degrees of freedom on arbitrary co-
efficients, evaluating basis functions at arbitrary points, and interpolating vertex values.25

2The definition of the UFC reference cells for dimensions 1,2,3 are given in Alnæs et al.
(2012).
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As for forms and integrals, the FFC code generation strategy for these operations re-
lies on pulling the finite element basis functions back to the appropriate reference cell
or, in some cases, pushing the degrees of freedom forward from the reference to the
physical cell.

In the cases of scalar basis functions Eq. (8) or Cartesian products of these Eq. (25),5

the implementation of the pullbacks and push-forwards extend trivially from the case
with matching topological and geometric dimension to that of differing topological and
geometric dimension. For div- and curl-conforming elements, the implementation of
the pullback is based on the Piola contravariant and covariant transforms Eqs. (30)
and (31). As for forms, the intermediate compiler representation preserves the semi-10

symbolic representation given by the mathematical expressions, and so the gener-
ated code again simply calls out to the redefined Jacobians, pseudo-determinants and
pseudo-inverses.

However, the finite element families mapped via the contravariant Piola transform
present one additional novel aspect: the choice of sign in Eq. (30). As detailed15

in Rognes et al. (2009) for the case of matching topological and geometric dimensions,
using the signed determinant of the Jacobian in combination with the UFC numbering
of mesh entities result in the desired normal component continuity. However, as the
generalised Jacobian determinant does not carry a sign, the choice of sign in Eq. (30)
must be determined by alternative means. In fact, it is not possible to determine the20

sign based on the geometry of the physical cell only. Therefore, the code generation
assumes that the choice of sign is determined via an additional input argument to the
relevant UFC functions.

3.4 Extending DOLFIN onto manifolds

DOLFIN natively supports meshes defined over cells with differing topological and ge-25

ometric dimension. Therefore, the extensions to the form compiler FFC detailed above
essentially yield a fully functional FEniCS pipeline for these meshes.
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In view of the previous remarks regarding the contravariant Piola finite element fami-
lies, the DOLFIN meshes have been extended to keep track of cell orientations defined
relative to a global normal direction. More precisely, for a triangle cell with vertex co-
ordinates v0,v1,v2 embedded in R3, we identify its first two edges by e0 = v1 − v0 and
e1 = v2 − v0. The local cell normal nl is defined by nl = e0 ×e1. Given a global (po-5

tentially spatially) varying normal field n, the cell is identified as “up”-oriented if nl
and n are aligned; that is, if nl ×n(vm) > 0 for n evaluated at the cell barycenter vm
and “down”-oriented if nl ×n(vm) < 0. This orientation information is then propagated
through the UFC interface to the code generated by FFC. As an ultimate consequence,
the contravariant Piola element families are not available for non-orientable manifolds.10

4 Verification

The FEniCS components, including the extension to immersed manifolds presented
here, are primarily tested and verified via the following means: firstly, automated unit,
system, and regression tests; and secondly, numerical experiments testing the ob-
served convergence rates or other numerical properties of certain test cases against15

theoretically established values. We make some comments on verification via the first
class of tests here. To illustrate the use of the implementation and to provide some fur-
ther evidence towards its correctness, we provide some examples of the second class
of tests in Sect. 5 below.

The FFC implementation is tested through a series of sample forms and elements20

aiming at covering the scope of forms and elements supported by FFC. The compila-
tion of forms and elements are tested in multiple ways, primarily via regression testing.
In particular, the generated code is directly compared to previously established refer-
ences, it is verified that the generated code compiles and runs, and finally the output
of the generated code when run with a set of sample input is compared with previ-25

ously established references. These tests are carried out for the different represen-
tations available in FFC, with and without optimisations. Moreover, since the different
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representations must provide equal results, the results from running the generated
code are compared across representations. This procedure thoroughly tests the sam-
ple forms and elements included in the test suite. However, we remark that the quality
of this verification strongly depends on the coverage of the test suite.

In DOLFIN, in addition to regression tests as for FFC above, unit tests are empha-5

sised: separate functionality is tested on cases of reduced complexity for which the
computed answer can be compared to a known, exact value. In particular, for the ex-
tensions of the FEniCS functionality described in this manuscript, unit tests were added
ensuring that cell orientations are correctly computed and that all geometry computa-
tions relating to cell volumes, circumradius, facet normals and facet area, for all com-10

binations of geometric and topological dimensions 1 ≤m ≤ n ≤ 3, are correct. A series
of tests verifying the correctness of the results from the automated assembly of simple
forms defined over finite elements over cells of varying geometric and topological di-
mension were also included. A simple, but useful, example is comparing the result of∫
K 1dx to the area of K for varying domains K of known area.15

For the manifolds case, a much used technique for corroborating the correctness of
the extended implementation is comparing the case of an immersed smooth surface
with vanishing curvature to the equivalent standard, and hence thoroughly tested, flat
case. For example, a known test case on the unit square can be repeated for the unit
square immersed in R3 and the result verified. Further tests may be constructed by20

subjecting the unit square mesh to rigid body transformations in R3 and solving the
problem on the transformed mesh.

All of these tests are available as a part of the FEniCS distribution and automati-
cally run nightly (or more frequently) by the FEniCS buildbots. Their status is publicly
available here: http://fenicsproject.org/buildbot/.25
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5 Examples

In this section we provide some examples that cover the main aspects of solving PDEs
on manifolds, and test results that demonstrate that our approach works. We have con-
centrated on the spherical case since that is the main surface of interest in geoscientific
models. The example code is provided in the Supplement.5

5.1 Two mixed formulations of Poisson’s equation

In this section we discuss two different approaches to the discretisation of the gradient
of the scalar solution u of a Poisson equation on the sphere. In the first approach, we
use div-conforming finite element spaces for the vector field σ = ∇u and rely upon the
contravariant Piola transform to enforce tangency to the mesh used to approximate10

the sphere. In the second approach, we use Cartesian products of scalar finite ele-
ment spaces (in this case discontinuous, piecewise polynomial spaces), and enforce
approximate tangency through the introduction of Lagrange multipliers. This approach
was advocated for fluid models on the sphere in Côté (1988) and used in conjunction
with discontinuous Galerkin methods in Giraldo (2006).15

In both of the following examples, we take Ω to be the surface of a unit sphere
centred at the origin, and let Th be an affine tessellation of this surface. For a given
scalar function g, we seek the solution u of the Poisson equation written in dual form,

σ −∇u = 0, (38)

divσ + r = g, (39)20

where r is the domain average of g. Given a solution (u,σ ,r), another solution can be
obtained by adding an arbitrary constant to u; hence, we impose the condition∫
Ω

udx = 0, (40)

which fixes the value of this constant, leading to a unique solution.25
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5.1.1 Div-conforming spaces

To obtain a weak form of Eqs. (38) and (39), we consider the dot product of Eq. (38)
with a vector-valued test function τ, integrated over the domain. Similarly, we multiply
Eq. (39) by a scalar test function v and integrate over the domain, and multiply Eq. (40)
by an arbitrary constant t. We apply integration by parts to transfer the derivative from5

u to τ in the first equation. We obtain∫
Ω

σ · τdx+
∫
Ω

divτudx = 0, (41)

∫
Ω

divσvdx+
∫
Ω

rvdx =
∫
Ω

gvdx, (42)

∫
Ω

tudx = 0, (43)

10

for all t and suitable3 (τ,v). Since τ, v and t are independent, we may combine these
into a single equation:

〈σ ,τ〉+ 〈divσ ,v〉+ 〈divτ,u〉+ 〈r ,v〉+ 〈t,u〉 = 〈g,v〉, (44)

where we have adopted the angle bracket notation

〈gv〉 =
∫
Ω

gvdx, (45)15

for scalar variables (g,v) and

〈σ ,τ〉 =
∫
Ω

σ · τdx, (46)

3“Suitable” meaning that the integrals are finite.
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for vector variables (σ ,τ).
To obtain a finite element discretisation of this discrete form, we simply restrict σ and

τ to a (vector-valued) finite element space V , and u and v to a different finite element
space Q. It follows from inspection of Eq. (44) that V must be div-conforming, but that
Q has no continuity constraints. It is well known in the literature, for example in Auric-5

chio et al. (2004), that stable discretisations can be obtained when4 the div operator
maps from V onto Q; the loss of continuity means that Q may be a discontinuous finite
element space. In this example we consider a number of such pairs of spaces that are
available in FEniCS, presented in Table 1.

The problem was solved on a sequence of icosahedral meshes of the sphere, taking10

g = x1x2x3. Example solutions and convergence plots are shown in Fig. 7, with the
error measured using the L2 norm ‖ · ‖0 defined by

‖u‖0 =
∫
Ω

u2dx. (47)

As expected, we obtain first order convergence for RT1 −DG0 and BDM1 −DG0,
and second order convergence for BDFM2 −DG1 and BDM2 −DG1. This example15

corroborates the veracity of the implementation of the contravariant Piola transfor-
mation on manifold meshes. The example code is provided in the Supplement in
examples/mixed-poisson/hdiv-l2/mixed-poisson-sphere.py.

5.1.2 Cartesian product space with Lagrange multipliers

An alternative approach is to work with a Cartesian product finite element space, where20

each Cartesian component of the three dimensional vector field σ is expanded in the
same finite element space, and to enforce tangency of σ through a Lagrange multiplier,

4Together with some easily satisfied technical conditions.
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also expanded in the same space. With this approach, Eqs. (38) and (39) become

σ −∇u− lk = 0, (48)

divσ + r = g, (49)

σ ·k = 0, (50)
5

where l is the Lagrange multiplier, and k is the unit outward normal to the manifold Ω.
On a two-dimensional manifold, we introduce a Lagrange multiplier field l ∈ DGk ; the
finite element problem is to find (σ ,u, l ,r) ∈W = DG3

k ×CGk+1 ×DGk ×R such that

〈σ ,τ〉 − 〈τ,∇u〉+ 〈σ ,∇v〉 − 〈l ,τ ·k〉+ 〈γ,σ ·k〉 − 〈r ,v〉+ 〈t,u〉 = −〈g,v〉 (51)

for all (τ,v ,γ,t) ∈W .10

Code for this example is provided in the Supplement in
examples/mixed-poisson/l2-h1/mixed poisson l2 h1.py. Convergence plots are
provided in Fig. 8. For the DG3

0-CG1 case, we observe second order convergence in
the L2-norm and first order convergence in the H1-norm ‖ · ‖1 defined by

‖u‖1 =
∫
Ω

u2 + |∇u|2dx, (52)15

in accordance with theory (Cotter et al., 2009).
We would usually expect these convergence rates to increase by one order when

we change the spaces to DG3
1 −CG2. However, as discussed in (Bernard et al., 2008),

higher-order convergence can only be achieved if higher-order approximations to the
manifold itself are used, and in our implementation we use affine triangles. Hence, for20

DG3
1 −CG2, we also observe second and first order convergence for L2 and H1 norms

respectively. This example tests the use of three-dimensional vector fields on a two
dimensional manifold mesh.

3584

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3557–3614, 2013

Manifolds in FEniCS
1.2

M. E. Rognes et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5.2 Linear shallow water equations on the sphere

In this section, we use the framework to solve the linear shallow water equations in
a rotating frame on the sphere. These are given by: find the depth of the shallow layer
D and the velocity u, assumed tangential to the sphere, such that

ut + fu
⊥ +g∇D = 0,

Dt +Hdivu = 0,
(53)5

where g is the acceleration due to gravity; H is the (constant) reference layer depth;
f =Ω0x3/R is the Coriolis parameter, where Ω0 is the rotation frequency of the sphere
and R is the sphere radius; and u

⊥ = k ×u, where k is the unit normal vector to the
sphere. The subscript t denotes the partial time derivative.10

A weak form of these equations is obtained by taking the product with test functions
w and φ, integrating over the domain Ω and integrating the gradient by parts. Restrict-
ing to finite element spaces V and Q with w ,u ∈ V , and D,φ ∈Q, leads to the finite
element discretisation

〈w ,ut〉+ 〈w , fu⊥〉 − 〈divw ,gD〉 = 0, (54)15

〈φ,Dt〉+ 〈φ,Hdivu〉 = 0, (55)

for all w in V andφ in Q. As discussed in Le Roux et al. (2005), it is important to choose
a pair of finite element spaces for u and D that would be stable for the mixed Poisson
problem (as described in in Sect. 5.1), in order to avoid having spurious solutions where20

D is highly oscillatory in space but that have very slow frequencies in time. For large
scale atmosphere and ocean modelling, it is also important for the system to have
exact steady state solutions in the f -plane (constant f ) case corresponding to each
divergence-free vector field in the finite element space for velocity; these solutions
represent the large scale balanced flow that slowly evolves in the nonlinear solutions,25

giving rise to “weather”. It was shown in Cotter and Shipton (2012) that the stable
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element pairs using div-conforming elements for u such as those listed in Table 1 also
satisfy this property, and hence we will use such spaces as examples here.

A direct computation shows that the total energy ET given by

ET (t) = Ek(t)+Ep(t), Ek(t) = 0.5H‖u(t)‖2
0, Ep(t) = 0.5g‖D(t)‖2

0, (56)

is conserved for these spatial discretisations. It will also be exactly conserved by the5

implicit midpoint rule time discretisation method, which conserves all quadratic invari-
ants (Leimkuhler and Reich, 2005, for example), and so we use this conservation as
a diagnostic to verify our discretisation.

Snapshots of the solutions using the element combination V = RT1 and Q = DG0
are presented in Fig. 9. The computed energies for the same element combination10

are plotted in Fig. 10. We observe that the total energy is conserved (to within ma-
chine precision) as anticipated. Code for this example is provided in the Supplement in
examples/linear-shallow-water/linear shallow water.py.

5.3 Linear wave equations on the torus

The Supplement also include an example of the solution of the linear wave equation15

over a torus. The equations solved are Eqs. (54) and (55) with f = 0. The initial condi-
tions provided are of a radially propagating wave. The results are qualitatively reason-
able and energy conservation is observed to machine precision in a similar manner to
that shown in Fig. 10. Since the problem solved does not have a straightforward ana-
lytic solution and is similar in character to the preceding sphere case, results are not20

reproduced in the paper. However this section serves as a pointer to the implementa-
tion in the Supplement for readers interested in simulating on manifolds other than the
sphere. The code for this example is included in examples/torus. Of particular interest
may be torus mesh.py which contains a torus mesh object with the required specifica-
tion of the global normal direction, and a facility for providing expressions such as initial25

conditions in manifold (polar) coordinates.
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5.4 Upwind discontinuous Galerkin transport on the sphere

In this section we discuss the transport equation

Dt +div(uD) = 0, (57)

which is a commonly encountered equation in the geosciences, describing the trans-
port of a mass density D by a velocity u; it appears in the shallow-water equations5

as the continuity equation describing the evolution of the layer depth D. This equation
takes the form of a conservation law and therefore is ideally suited for discretisation
using the discontinuous Galerkin (DG) approach which uses finite element spaces with
no continuity constraints across element boundaries, and which extends the first order
upwind finite volume method to higher order locally conservative schemes by increas-10

ing the order of the polynomials in each element.
To obtain the spatial discretisation, we multiply Eq. (57) by a discontinuous test func-

tion φ, integrate over a single cell T , and integrate by parts to obtain∫
T

φDtdx−
∫
T

∇φ ·udx+
∫
∂T

φD̃u ·nTds = 0, (58)

where ∂T is the boundary of T , and nT is the outward pointing normal vector to ∂T ,15

and where D̃ is taken to be the value of D on the upwind side; that is, the side away
from which the velocity u, assumed continuous, is pointing. Local conservation follows
from choosing φ = 1 inside element T and φ = 0 outside.

To write this as a global system, we adopt an (arbitrary) global convention for labelling
the two elements on each side of an interior facet: each interior facet e = T+ ∪ T−, and20

we write φ+ for φ|T+ and φ− for φ|T− . We then sum Eq. (58) over all mesh elements
and the problem becomes: seek D ∈ DGk such that∫
Ω

φDtdx−
∫
Ω

∇φ ·uDdx+
∫
Γ

(φ+ −φ−)F ds = 0, (59)
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for all φ ∈ DGk , where Γ is the union of all interior facets (here we have assumed
for simplicity that Ω is closed so there is no ∂Ω contribution), and where we have
introduced the flux F = D̃u ·n+. (Recall that u = u

+ by the assumption of continuous
u.) Note that now an integral is performed over each facet only once, and so the Γ
integrand contains contributions from both sides of each facet.5

Finally, to express the equations in form that can be easily written in UFL, we define
the following function v over Γ:

v =
{
u ·n if u ·n > 0

0 otherwise
=

1
2

(
u ·n+ |u ·n|

)
. (60)

Then10

F = v+D+ − v−D−, (61)

and we write∫
Ω

φDtdx−
∫
Ω

∇φ ·uDdx+
∫
Γ

(φ+ −φ−)(v+D+ − v−D−)ds = 0. (62)

The block diagonal structure of the mass matrix makes explicit methods attractive
for DG, and Strong Stability Preserving Runge Kutta (SSPRK) methods are typically15

used, since they have usable Courant number restrictions for stability, and are shape-
preserving when combined with suitable slope limiters (Cockburn and Shu, 2001). In
this example, we use the third-order SSPRK method, without limiting.

We take as initial condition for D:

D0 = e
−(x2

2+x
2
3), (63)20

where (x1,x2,x3) are the global Cartesian coordinates as before, and we use the time-
independent rigid rotation velocity field

u = (−x2,x1,0). (64)
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This means that after integrating the equations from t = 0 until t = 2π, we recover the
initial condition. For sufficiently small ∆t, chosen so that spatial discretisation error is
the dominant error term, the difference between D at t = 2π and the initial conditions
provides a metric for the spatial discretisation error.

Snapshots of the solutions using DG1 are presented in Fig. 11. Moreover, plots5

of the L2 error versus mesh size h are provided in Fig. 12, showing the ex-
pected second-order convergence. Note that higher order DG spaces would not yield
a higher order convergence rate since we are using a second-order approximation
to the sphere. This example tests the construction of facet normals and facet inte-
grals on manifold meshes. Code for this example is provided in the Supplement in10

examples/dg-advection/dg-advection.py.

5.5 Nonlinear shallow water equations

The nonlinear shallow water equations are used to model a single incompressible thin
layer of fluid with a free surface. They are often used as a test bed for horizontal dis-
cretisations for use in numerical weather prediction and ocean modelling. A linearised15

version was used previously in Sect. 5.2; the Coriolis parameter f and gravitational
potential g are unchanged from before, but we allow spatial variations in topography,
denoted by b. The velocity u and fluid depth D evolve according to

ut + (u · ∇)u+ fu⊥ +g∇(D+b) = 0, (65)

Dt +div(Du) = 0. (66)20

The momentum Eq. (65) can be rewritten in terms of the relative vorticity ζ = ∇⊥ ·u =
div(u×k), where k is again the local unit normal to the sphere:

ut + (ζ + f )u⊥ +∇
(
g(D+b)+

1
2
|u|2

)
= 0. (67)

25
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Finally, defining a potential vorticity q = ζ+f
D , we obtain the coupled equations

ut +qDu
⊥ +∇

(
g(D+b)+

1
2
|u|2

)
= 0, (68)

Dt +div(Du) = 0. (69)

We use a mixed finite element discretisation of this, stabilised with the Anticipated5

Potential Vorticity Method (APVM), which serves as a direct extension of the energy-
conserving, enstrophy-dissipating C-grid finite difference scheme of Arakawa and Hsu
(1990). We take u ∈ V , D ∈Q, where (V ,Q) are chosen from the stable pairs of finite
element spaces listed in Table 1. The spatially discretised equations are then

〈w ,ut〉+
〈
w , (q− τ(u · ∇)q︸ ︷︷ ︸

APVM term

)F ⊥
〉

−
〈

divw ,g(D+b)+
1
2
|u|2

〉
= 0, (70)10

〈φ,Dt〉+ 〈φ,divF 〉 = 0, (71)

for all w in V , φ in Q, where we have introduced a stabilisation parameter τ and the
volume flux F . Note that the potential vorticity q ∈ E and the volume flux F ∈ V satisfy

〈γ,qD〉 =
〈
−∇⊥γ,u

〉
+ 〈γ, f 〉 , (72)15

〈w ,F 〉 = 〈w ,Du〉 , (73)

for all γ in E and w in V . The finite element space E is chosen so that the ∇⊥ operator
maps from E to V . Suitable choices of E , given V and Q, are also listed in Table 1.

To discretise in time, we will use the θ-method. Define20

u? = un + (1−θ)∆un, D? = Dn + (1−θ)∆Dn, (74)
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where ∆un = u
n+1 −u

n, ∆D = Dn+1 −Dn. The fully discrete equations then read:

0 = 〈w,∆un〉+∆t
[〈
w, (q− τ(u? · ∇)q)F ⊥〉−〈

divw ,g(D? +b)+
1
2
|u?|2

〉]
, (75)

0 = 〈φ,∆Dn〉+∆t〈φ,divF 〉, (76)

0 = 〈γ,qD?〉+ 〈∇⊥γ,u?〉 − 〈γ, f 〉, (77)

0 = 〈w ′,F 〉 − 〈w ′,u?D?〉, (78)5

for all w ,w ′ ∈ V , φ ∈Q, γ ∈ E . We will take θ = 1
2 (implicit midpoint), and choose τ =

1
2∆t. A direct, “monolithic” approach is to solve Eq. (75) through Eq. (78) with DOLFIN’s
built-in nonlinear Newton-based solver. Example code implementing this approach is
presented in examples/williamson2/auto.py.10

The monolithic solver approach is somewhat inefficient, because the Newton itera-
tion requires the solution of a large and difficult-to-precondition linear system. We shall
now describe a more practical approach. Instead of treating q and F as prognostic
variables to be solved for, we instead treat them as implicit functions of u and D, de-
fined through Eqs. (77) and (78). With this definition, we then try to solve Eqs. (75)15

and (76) for ∆un and ∆Dn. The difficulty is that it is no longer possible to use DOLFIN’s
inbuilt automatic differentiation to generate the Jacobian for this system. However, from
physical considerations, the motion in each time step is dominated by the propagation
of fast gravity waves; the potential vorticity q evolves on a much slower timescale. This
means that we can approximate the Jacobian by treating q as if it is independent of20

u and D in Eq. (77) and by approximating F by Hu in the Jacobian calculation, where
H is the average of D over the domain. This motivates the use of the Jacobian from
the linear shallow water equations Eqs. (54) and (55); this is the standard semi-implicit
method for solving the shallow-water equations.

Since we have multiple Newton-like iterations within each time step, we will drop the25

time-dependent superscript n for clarity. We therefore state our problem at each time
step as: given u and D, find ∆u, ∆D. Let ∆uk and ∆Dk be the approximations to ∆u
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and ∆D obtained at the kth iteration. We aim to find a δuk+1 and δDk+1 with which to
update ∆uk and ∆Dk :

∆uk+1 = ∆uk +δuk+1, ∆Dk+1 = ∆Dk +δDk+1. (79)

Let u? = u
n+ (1−θ)∆uk , and similarly D?. We can then introduce q? and F

?, satisfying

〈γ,q?D?〉 = −〈∇⊥γ,u?〉+ 〈γ, f 〉 (80)5

〈w ′,F ?〉 = 〈w ′,u?D?〉 (81)

for all γ ∈ E ,w ′ ∈ V .
The equations for δuk+1 and δDk+1 are then

〈w ,δuk+1〉+ (1−θ)∆t
[
〈w , f (δuk+1)⊥〉 − 〈divw ,gδDk+1〉

]
10

= −〈w ,∆uk〉 −∆t
[
〈w ,q?F ?⊥〉 −

〈
divw ,gD? +

1
2
|u?|2

〉]
(82)

〈φ,δDk+1〉+ (1−θ)∆t〈φ,Hdivδuk+1〉 = −〈φ,∆Dk〉 −∆t〈φ,divF ?〉 . (83)

It can be shown that, with the combinations of finite element spaces we employ,
Eq. (83) implies that the equation15

δDk+1 + (1−θ)∆tHdivδuk+1 = −∆Dk −∆tdivF ? (84)

holds pointwise, and not just in an integral sense. We can therefore substitute for δDk+1

in the first equation and solve two separate equations, rather than a pair of coupled
equations.

We illustrate this approach using two examples from the standard NCAR test set for20

shallow water equations on the sphere (Williamson et al., 1992), namely the solid rota-
tion (test case 2) and mountain (test case 5) cases. The solid rotation case is an exact
steady state solution of the nonlinear rotating shallow water equations, for which the ve-
locity field is that of solid body rotation around the sphere. The metric for this test case

3592

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3557/2013/gmdd-6-3557-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 3557–3614, 2013

Manifolds in FEniCS
1.2

M. E. Rognes et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is the L2 norm of the difference from the initial conditions of the depth field D and the
velocity u after five days. The fields were initialised by finite element projection into the
relevant spaces having sampled the functions at quadrature points. Plots of the error for
various finite element spaces are provided in Fig. 13, with the expected convergence
rates. The mountain test case is a similar initial condition (with slightly different magni-5

tude), but with a large conical mountain in the topography at mid-latitudes. This case
does not have an analytical solution; the metric for this test is the L2 norm of the dif-
ference between the surface height field D+b and a high resolution reference solution
obtained from the spectral model provided by NCAR, at 15 days. Plots of the error are
provided in Fig. 14, and show first order convergence, as expected. Figure 15 shows10

illustrative snapshots obtained from this simulation. Code illustrating the optimised ap-
proach applied to these two examples is presented in examples/williamson2/manual.py
and examples/williamson5/w5.py.

6 Limitations and extensions

The scope of the current implementation leaves room for a set of natural extensions.15

First, the implementation only includes simplicial finite element cells and basis func-
tions; that is, finite elements defined over intervals, triangles and tetrahedra. Moreover,
only affine transformations from reference to physical cells are covered here. We re-
mark that this is not due to a limitation in design: support for tensor product finite ele-
ments, including quadrilaterals and hexahedra, and curved cells is a natural extension20

and will be considered in future work. Note that for these cases, in contrast to the affine
case, the Jacobian of the geometry transformation varies over each cell.

Second, we point out that the current UFL design assumes that mixed finite ele-
ments are defined in terms of a number of component elements sharing a common
cell. A direct consequence of this is that mixed elements defined over different cells, for25

instance a mixed element with two components where one component is defined over
cells of geometric dimension n and topological dimension m and another component
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is defined over cells of geometric dimension n and topological dimension m−1, is not
admitted. This restriction is however independent of the manifolds aspect: an extension
of UFL for the case where m = n would immediately carry over to the case m< n.

7 Copyright and access to code

The FEniCS Project software, including the enhancements documented here, is avail-5

able under version 3 of the GNU Lesser General Public License. The functionality de-
scribed here is available in release version 1.2 and will be maintained in subsequent
versions. FEniCS 1.2 consists of: DOLFIN 1.2.0, FFC 1.2.0, FIAT 1.1, Instant 1.2.0,
UFC 2.2.0, UFL 1.2.0. Users are encouraged to employ the current release of FEniCS.
This is available at http://fenicsproject.org/download. Archive packages for version 1.210

will remain available at http://fenicsproject.org/download/older releases.html.

8 Supplementary material

The Supplement include the source code for the code examples given in Sect. 3 and
for each of the numerical examples presented in Sect. 5. In particular, scripts are pro-
vided to reproduce all of the graphs contained in this paper. Relevant references to the15

Supplement appear in the paper at the point at which the material is used, and further
information is provided in the README file.

9 Conclusions

This paper details how the solution of finite element discretisations defined over simpli-
cial meshes of immersed manifolds can be automated via code generation. The corre-20

sponding implementation is generally available as an integral part of FEniCS 1.2. The
numerical examples presented cover a range of different partial differential equations
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and a wide range of different discretisations; we hope that these illustrate the flexibility
and the strength of the approach and implementation.

Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/6/3557/2013/
gmdd-6-3557-2013-supplement.zip.5
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Nédélec, J.-C.: Mixed finite elements in R3, Numer. Math., 35, 315–341,
doi:10.1007/BF01396415, 1980. 35695
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Table 1. Table showing triples (E , V , Q) of finite element spaces. Only the pairs (V , Q) are
used in Sects. 5.1.1 and 5.2, while Sect. 5.5 also requires E . RT refers to the Raviart–Thomas
space (Raviart and Thomas, 1977), BDM to the Brezzi–Douglas–Marini space (Brezzi et al.,
1985), and BDFM to the Brezzi–Douglas–Fortin–Marini space (Brezzi and Fortin, 1991). Note
that we have used the FEniCS numbering convention, in which the number refers to the high-
est order of polynomials appearing in the space, rather than the normal convention, in which
the number reflects the order of numerical approximation; see Logg et al. (2012a) for further
details. For example, in this numbering, the lowest order Raviart-Thomas space is denoted
RT1, rather than RT0, whilst the BDFM space discussed in Cotter and Shipton (2012) is de-
noted BDFM2, not BDFM1. DG0 and DG1 denote discontinuous, piecewise constant and piece-
wise linear spaces, respectively. B3 is the space spanned by cubic “bubble” functions that are
nonzero only on a single element, and vanish on element boundaries.

E V Q

CG1 RT1 DG0
CG2 BDM1 DG0

CG2 ⊕B3 BDFM2 DG1
CG3 BDM2 DG1
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Fig. 1. The transform GT maps the reference cell T0 to cell T , which in this case approximates
part of a sphere. The point X in reference space is mapped to the point x in physical space:
x = GT (X ).
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DOLFINy
Problem.ufl (UFL) FFC−−−−−→ Problem.h (UFC) −−−−−→ main.cpp −−−−−→ Solution

Fig. 2. The FEniCS pipeline viewed from the C++ interface. In the Python interface, the components UFL,

FFC, UFC and DOLFIN are more closely integrated.

The next step in the pipeline is the processing of the UFL specification by a special purpose com-

piler: the FEniCS Form Compiler (FFC) (Kirby and Logg, 2006; Logg et al., 2012d). FFC is targeted285

at generating efficient, lower-level code for the assembly of the relevant finite element tensors. FFC

generates code that conforms to the Unified Form-assembly Code (UFC) interface (Alnæs et al.,

2009, 2012). More precisely, given a set of variational forms specified in UFL, separate classes

are generated for each of the finite elements over which the basis functions and any coefficients are

defined, for each of the variational forms, and for each of the integrals appearing in the forms. The290

finite element classes then provide functions for evaluating the specific basis functions, computing

the specific local-to-global degree of freedom maps, evaluating the specific degrees of freedom on

arbitrary functions et cetera. The integral class(es) similarly provide functions for computing the

specific local element tensor.

The generated code can then be used by the user directly, or, as is more common, be used via295

the problem-solving environment and finite element library DOLFIN. DOLFIN provides high per-

formance computing functionality for simplicial meshes, automated assembly of variational forms,

relying on the generated code for each specific form as detailed above, and interfaces to numerical

linear algebra libraries; for more details see (Logg and Wells, 2010; Logg et al., 2012e). DOLFIN

provides both a C++ interface and a Python interface. In the Python interface, the steps detailed300

above are all closely integrated; in particular, the code generation happens seamlessly via just-in-

time (JIT) compilation.

Three implementation points crystallise as necessary in order to integrate weak formulations de-

fined over manifolds into the FEniCS pipeline.

– Extend the form language UFL to include finite elements and variational forms defined over305

simplicial cells of differing geometric and topological dimension.

– Extend the form compiler FFC to provide corresponding support for the novel UFL finite

elements and forms introduced.

– Support UFC and DOLFIN data structures for, and operations over, meshes defined over sim-

plicial cells with differing geometric and topological dimension.310

The extensions to the previous functionality required to achieve these three aspects are described

11

Fig. 2. The FEniCS pipeline viewed from the C++ interface. In the Python interface, the com-
ponents UFL, FFC, UFC and DOLFIN are more closely integrated.
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below.

3.2 Extending and interpreting UFL over manifolds

As described in Alnæs et al. (2012), UFL is in essence composed of three sublanguages for express-

ing (i) finite elements; (ii) expressions, including terminal types and operators acting on them; and315

(iii) variational forms.

3.2.1 Finite and mixed finite elements over manifolds

A basic UFL finite element is defined in terms of a family, a cell and a (polynomial) degree. In

order to allow finite elements to be defined over manifolds, the only modification required is to

define a cell of differing geometric and topological dimensions. Such cells are in place in UFL320

for m≤ n= 1,2,3. Geometric quantities, such as the volume, the circumradius or facet normals,

are associated with each cell type. When appropriate, these are defined relative to the topological

dimension of the cell; for instance, the volume of a triangle cell embedded in R3 refers to the 2-

dimensional volume of the cell.

UFL allows Cartesian combinations (and nested combinations) of finite elements of arbitrary fam-325

ilies and degrees to form vector, tensor or mixed elements with an arbitrary number of components.

The number of components (the value dimension) of a vector element defaults to the geometric di-

mension n of the cell over which the element is defined. Similarly the shape of a tensor element

defaults to (n,n). The UFL code listing in Figure 3 illustrates this. Note that UFL mixed elements

(including vector and tensor elements) are defined over a common cell. As a consequence, mixed330

elements for which different components are defined over different cells are not supported.

# Define triangle cell embedded in Rˆ3

cell = Cell("triangle", 3)

# Define Lagrange element over this cell

Q = FiniteElement("Lagrange", cell, 1)

# Define Lagrange vector element

V = VectorElement("Lagrange", cell, 1)

# Arguments defined over V will have 3 components:

u = Coefficient(V)

u[0], u[1], u[2]

Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedded in R3. This code is included

in the supplementary materials as snippets/finiteelement.ufl.

We emphasise that UFL vector elements are generally not constrained to lie in the tangent space

of the manifold. This is a deliberate choice for the sake of flexibility, applicability and consistency.

12

Fig. 3. UFL code defining scalar and vector finite elements on a triangle embedded in R3. This
code is included in the Supplement as snippets/finiteelement.ufl.
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cell = Cell("triangle", 3)

V = FiniteElement("Lagrange", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

# or equivalently

# a = sum(u.dx(i)*v.dx(i) for i in range(3))

Fig. 4. UFL code defining the weak Laplacian operator from (22) for piecewise linear elements over a triangle

embedded in R3. This code is included in the supplementary materials as snippets/laplacian.ufl.

3.2.3 Integration measures over manifolds

UFL supports variational forms defined via integration of an integrand I over a set of predefined

classes of domains defined relative to a tessellation T = {T} and sums of such integrals. The more

commonly used domains are: all cells (dx), all exterior facets (ds) and all interior facets (dS). More370

precisely, by definition,

I*dx :=
∑
T∈T

∫
T

I dx, I*ds :=
∑
e∈Ee

∫
e

I ds, I*dS :=
∑
e∈Ei

∫
e

I ds. (37)

Here, Ee refers to the set of all exterior facets of the tessellation T while E i refers to the set of

all interior facets. Recall that T is composed of cells of geometric dimension n and topological

dimension m, 1≤m≤ n≤ 3. The facets T therefore have geometric dimension n and topological375

dimension m−1, and dx and ds in (37) refer to the standard Lebesgue integration measures on Rm

and Rm−1 respectively.

For example, this implies that the integral over all cells of a mesh of the surface of a ball will equal

the integral over all exterior facets of a mesh of the ball. Figure 5 illustrates this using DOLFIN code
1.380

3.3 Extending the FEniCS Form Compiler (FFC) onto manifolds

The interface of the form compiler FFC has two main entry points: one for compiling a (set of) UFL

form(s) and one for compiling a separate UFL finite element.

3.3.1 Compiling variational forms and integrals over manifolds

A UFL form is a sum of UFL integrals each of predefined type determined by the measure symbol.385

The role of FFC is to generate UFC-compliant code for the form and for each of the integrals. The
1UFL is not concerned with actual meshes so (Python) DOLFIN code, in which the variational form specification is

integrated with the problem solving environment, is used to illustrate here. The essence is the definitions of the forms a and

b.

14

Fig. 4. UFL code defining the weak Laplacian operator from Eq. (22) for piecewise lin-
ear elements over a triangle embedded in R3. This code is included in the Supplement as
snippets/laplacian.ufl.
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from dolfin import *

# Define a mesh of a sphere (ball) with radius 1 and a mesh of its

# surface

mesh = Mesh(Sphere(Point(0.0, 0.0, 0.0), 1.0), 8)

surface = BoundaryMesh(mesh, "exterior")

# Integrate 1 over the exterior facets of the mesh of the ball

I = Constant(1.0)

a = I*ds

A = assemble(a, mesh=mesh)

# Integrate 1 over the cells of mesh of the surface of the ball

b = I*dx

B = assemble(b, mesh=surface)

# Confirm that A == B to within numerical precision

eps = 1.e-14

assert (abs(A - B) < eps)

Fig. 5. DOLFIN Python code illustrating that an integral over the surface facets of a meshed ball is equivalent

to the integral over the manifold mesh of the ball’s surface. This example is included in the supplementary

material as snippets/measures.py

main part of the integral code is the computation of the local element tensor over a given physical

mesh entity for the specific integral. This functionality is provided by the generated code body of

the ufc::* integral::tabulate tensor functions. The UFC specification allows mesh

entities and in particular physical cells with differing topological and geometric dimensions. The390

extension of FFC to immersed manifolds is therefore restricted to extending the generation of the

local element tensor code body to this case.

For all integral types, the generated code computes the local element tensors by pulling the integral

back to a suitable reference cell as shown in (9) for the local mass matrix and in (23) for the local

stiffness matrix. For an integral over a cell of topological dimension m, the integral is pulled back395

to the reference element2 of both topological and geometric dimension m. FFC uses FIAT (Kirby,

2004) to pre-evaluate the reference basis functions on the reference cell. Since FIAT only operates

on the reference cell, it requires no modification for our purposes.

As demonstrated in Section 2, the mathematical representation of the variational forms supported

by FFC differs between the standard and immerse manifolds cases only in the definition of the Jaco-400

bian and its pseudo-determinant and inverse. FFC’s internal representation follows the mathematics,

with the consequence that only the final, code generation, stage requires modification for the im-

2The definition of the UFC reference cells for dimensions 1,2,3 are given in Alnæs et al. (2012)

15

Fig. 5. DOLFIN Python code illustrating that an integral over the surface facets of a meshed
ball is equivalent to the integral over the manifold mesh of the ball’s surface. This example is
included in the Supplement as snippets/measures.py.
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/// Tabulate the tensor for the contribution from a local cell

virtual void tabulate_tensor(double* A,

const double * const * w,

const double* vertex_coordinates,

int cell_orientation) const

// Compute Jacobian

double J[6];

compute_jacobian_triangle_3d(J, vertex_coordinates);

// Compute Jacobian inverse and determinant

double K[6];

double detJ;

compute_jacobian_inverse_triangle_3d(K, detJ, J);

// Set scale factor

const double det = std::abs(detJ);

// Compute geometry tensor

const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]);

const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]);

const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]);

const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]);

// Compute element tensor

A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1;

A[1] = -0.5*G0_0_0 - 0.5*G0_1_0;

A[2] = -0.5*G0_0_1 - 0.5*G0_1_1;

A[3] = -0.5*G0_0_0 - 0.5*G0_0_1;

A[4] = 0.5*G0_0_0;

A[5] = 0.5*G0_0_1;

A[6] = -0.5*G0_1_0 - 0.5*G0_1_1;

A[7] = 0.5*G0_1_0;

A[8] = 0.5*G0_1_1;

Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is extracted

from snippets/laplacian.h in the supplementary materials, which was obtained by running FFC on the code in

Figure 4.

17

Fig. 6. Generated code for the bilinear form corresponding to the weak Laplacian. This code is
extracted from snippets/laplacian.h in the Supplement, which was obtained by running FFC on
the code in Fig. 4.
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Fig. 7. Left: plot of the solution u to the div-conforming discretisation of the Poisson equation (44) with

V =RT1 and Q=DG0. Right: ‖u−uh‖0 versus mesh size h (where u is the exact solution and uh is the

numerical solution) for series of discretisations of (44).

and to enforce tangency of σ through a Lagrange multiplier, also expanded in the same space. With

this approach, (38) and (39) become

σ−∇u− lk = 0, (48)

divσ+ r = g, (49)550

σ ·k = 0, (50)

where l is the Lagrange multiplier, and k is the unit outward normal to the manifold Ω. On a

two-dimensional manifold, we introduce a Lagrange multiplier field l ∈ CGk+1; the finite element

problem is to find (σ,u, l,r) ∈W =DG3
k ×CGk+1 ×DGk ×R such that555

〈σ,τ 〉− 〈τ ,∇u〉+ 〈σ,∇v〉− 〈l,τ ·k〉+ 〈γ,σ ·k〉− 〈r,v〉+ 〈t,u〉=−〈g,v〉 (51)

for all (τ ,v,γ, t) ∈W .

Code for this example is provided in the supplementary material in examples/mixed-poisson/l2-

h1/mixed poisson l2 h1.py. Convergence plots are provided in Figure 8. For the DG3
0-CG1 case,

we observe second order convergence in the L2-norm and first order convergence in the H1-norm560

‖ · ‖1 defined by

‖u‖1 =
∫

Ω

u2 + |∇u|2 dx, (52)

in accordance with theory (Cotter et al., 2009).

We would usually expect these convergence rates to increase by one order when we change the

spaces to DG3
1 −CG2. However, as discussed in (Bernard et al., 2008), higher-order convergence565

can only be achieved if higher-order approximations to the manifold itself are used, and in our im-

plementation we use affine triangles. Hence, for DG3
1−CG2, we also observe second and first order

22

Fig. 7. Left: plot of the solution u to the div-conforming discretisation of the Poisson Eq. (44)
with V = RT1 and Q = DG0. Right: ‖u−uh‖0 versus mesh size h (where u is the exact solution
and uh is the numerical solution) for series of discretisations of Eq. (44).
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Fig. 8. ‖u−uh‖0 and ‖u−uh‖1 versus mesh size h (where u is the exact solution and uh is the numerical

solution of (51)), using Lagrange multipliers to enforce approximate tangency. Left: k = 0. Right: k = 1.

convergence for L2 and H1 norms respectively. This example tests the use of three-dimensional

vector fields on a two dimensional manifold mesh.

5.2 Linear shallow water equations on the sphere570

In this section, we use the framework to solve the linear shallow water equations in a rotating frame

on the sphere. These are given by: find the depth of the shallow layer D and the velocity u, assumed

tangential to the sphere, such that

ut + fu⊥+ g∇D = 0,

Dt +H divu= 0,
(53)

where g is the acceleration due to gravity; H is the (constant) reference layer depth; f = Ω0x3/R is575

the Coriolis parameter, where Ω0 is the rotation frequency of the sphere and R is the sphere radius;

and u⊥ = k×u, where k is the unit normal vector to the sphere. The subscript t denotes the partial

time derivative.

A weak form of these equations is obtained by taking the product with test functions w and φ,

integrating over the domain Ω and integrating the gradient by parts. Restricting to finite element580

spaces V and Q with w,u ∈ V , and D,φ ∈Q, leads to the finite element discretisation

〈w,ut〉+ 〈w,fu⊥〉− 〈divw,gD〉= 0, (54)

〈φ,Dt〉+ 〈φ,H divu〉= 0, (55)

for all w in V and φ in Q. As discussed in Le Roux et al. (2005), it is important to choose a pair of585

finite element spaces for u and D that would be stable for the mixed Poisson problem (as described

in in Section 5.1), in order to avoid having spurious solutions where D is highly oscillatory in space

but that have very slow frequencies in time. For large scale atmosphere and ocean modelling, it

is also important for the system to have exact steady state solutions in the f -plane (constant f )

23

Fig. 8. ‖u−uh‖0 and ‖u−uh‖1 versus mesh size h (where u is the exact solution and uh is
the numerical solution of Eq. 51), using Lagrange multipliers to enforce approximate tangency.
Left: k = 0. Right: k = 1.
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Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the method of Section 5.2,

with V = RT1 and Q = DG0. Top: D. Bottom: u.

case corresponding to each divergence-free vector field in the finite element space for velocity; these590

solutions represent the large scale balanced flow that slowly evolves in the nonlinear solutions, giving

rise to “weather”. It was shown in Cotter and Shipton (2012) that the stable element pairs using div-

conforming elements for u such as those listed in Table 1 also satisfy this property, and hence we

will use such spaces as examples here.

A direct computation shows that the total energy ET given by595

ET (t) = Ek(t) +Ep(t), Ek(t) = 0.5H‖u(t)‖20, Ep(t) = 0.5g‖D(t)‖20, (56)

is conserved for these spatial discretisations. It will also be exactly conserved by the implicit mid-

point rule time discretisation method, which conserves all quadratic invariants (Leimkuhler and Re-

ich, 2005, for example), and so we use this conservation as a diagnostic to verify our discretisation.

Snapshots of the solutions using the element combination V = RT1 and Q= DG0 are presented600

in Figure 9. The computed energies for the same element combination are plotted in Figure 10. We

observe that the total energy is conserved (to within machine precision) as anticipated. Code for this

example is provided in the supplementary material in examples/linear-shallow-water/linear shallow water.py.

24

Fig. 9. Snapshots of the solution to the linear shallow water equations obtained using the
method of Sect. 5.2, with V = RT1 and Q = DG0. Top: D. Bottom: u.
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Fig. 10. Linear shallow water equations: kinetic Ek, potential Ep, and total energy ET versus time t for an

implicit midpoint in time and RT1×DG0 in space discretisation of (54)–(55). The total energy is conserved to

machine precision, as expected.

5.3 Linear wave equations on the torus605

The supplementary materials also include an example of the solution of the linear wave equation

over a torus. The equations solved are (54) and (55) with f = 0. The initial conditions provided are

of a radially propagating wave. The results are qualitatively reasonable and energy conservation is

observed to machine precision in a similar manner to that shown in Figure 10. Since the problem

solved does not have a straightforward analytic solution and is similar in character to the preceding610

sphere case, results are not reproduced in the paper. However this section serves as a pointer to

the implementation in the supplementary materials for readers interested in simulating on manifolds

other than the sphere. The code for this example is included in examples/torus. Of particular interest

may be torus mesh.py which contains a torus mesh object with the required specification of the

global normal direction, and a facility for providing expressions such as initial conditions in manifold615

(polar) coordinates.

5.4 Upwind discontinuous Galerkin transport on the sphere

In this section we discuss the transport equation

Dt + div(uD) = 0, (57)

which is a commonly encountered equation in the geosciences, describing the transport of a mass620

density D by a velocity u; it appears in the shallow-water equations as the continuity equation de-

scribing the evolution of the layer depth D. This equation takes the form of a conservation law and

therefore is ideally suited for discretisation using the discontinuous Galerkin (DG) approach which

uses finite element spaces with no continuity constraints across element boundaries, and which ex-

25

Fig. 10. Linear shallow water equations: kinetic Ek , potential Ep, and total energy ET versus
time t for an implicit midpoint in time and RT1 ×DG0 in space discretisation of Eqs. (54) and
(55). The total energy is conserved to machine precision, as expected.
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Fig. 11. Snapshots of the solution to the transport equation obtained using the method of Section 5.4.

We take as initial condition for D:

D0 = e−(x2
2+x2

3), (63)

where (x1,x2,x3) are the global Cartesian coordinates as before, and we use the time-independent

rigid rotation velocity field

u= (−x2,x1,0). (64)660

This means that after integrating the equations from t= 0 until t= 2π, we recover the initial con-

dition. For sufficiently small ∆t, chosen so that spatial discretisation error is the dominant error

term, the difference between D at t= 2π and the initial conditions provides a metric for the spatial

discretisation error.

Snapshots of the solutions using DG1 are presented in Figure 11. Moreover, plots of the L2 error665

versus mesh size h are provided in Figure 12, showing the expected second-order convergence. Note

that higher order DG spaces would not yield a higher order convergence rate since we are using a

second-order approximation to the sphere. This example tests the construction of facet normals and

facet integrals on manifold meshes. Code for this example is provided in the supplementary material

in examples/dg-advection/dg-advection.py.670

5.5 Nonlinear shallow water equations

The nonlinear shallow water equations are used to model a single incompressible thin layer of fluid

with a free surface. They are often used as a test bed for horizontal discretisations for use in numeri-

cal weather prediction and ocean modelling. A linearised version was used previously in Section 5.2;

the Coriolis parameter f and gravitational potential g are unchanged from before, but we allow spa-675

tial variations in topography, denoted by b. The velocity u and fluid depth D evolve according

to

ut + (u · ∇)u+ fu⊥+ g∇(D+ b) = 0, (65)

Dt + div(Du) = 0. (66)680

27

Fig. 11. Snapshots of the solution to the transport equation obtained using the method of
Sect. 5.4.
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Fig. 12. ‖D−Dh‖0 versus mesh size h (where D is the exact solution and Dh is the numerical solution to

the transport equation obtained using the method of Section 5.4). Second order convergence is observed as

expected.

The momentum equation (65) can be rewritten in terms of the relative vorticity ζ =∇⊥·u= div(u×
k), where k is again the local unit normal to the sphere:

ut + (ζ + f)u⊥+∇
(
g(D+ b) +

1

2
|u|2

)
= 0. (67)

Finally, defining a potential vorticity q = ζ+f
D , we obtain the coupled equations685

ut + qDu⊥+∇
(
g(D+ b) +

1

2
|u|2

)
= 0, (68)

Dt + div(Du) = 0. (69)

We use a mixed finite element discretisation of this, stabilised with the Anticipated Potential

Vorticity Method (APVM), which serves as a direct extension of the energy-conserving, enstrophy-690

dissipating C-grid finite difference scheme of Arakawa and Hsu (1990). We take u ∈ V , D ∈Q,

where (V,Q) are chosen from the stable pairs of finite element spaces listed in Table 1. The spatially

discretised equations are then

〈w,ut〉+

〈
w,(q− τ(u · ∇)q︸ ︷︷ ︸

APVM term

)F⊥

〉
−
〈

divw,g(D+ b) +
1

2
|u|2

〉
= 0, (70)

〈φ,Dt〉+ 〈φ,divF 〉= 0, (71)695

for allw in V , φ in Q, where we have introduced a stabilisation parameter τ and the volume flux F .

Note that the potential vorticity q ∈ E and the volume flux F ∈ V satisfy

〈γ,qD〉=
〈
−∇⊥γ,u

〉
+ 〈γ,f〉 , (72)

〈w,F 〉= 〈w,Du〉 , (73)700

28

Fig. 12. ‖D−Dh‖0 versus mesh size h (where D is the exact solution and Dh is the numeri-
cal solution to the transport equation obtained using the method of Sect. 5.4). Second order
convergence is observed as expected.
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Fig. 13. Rigid rotation nonlinear shallow water test case on the sphere: L2-error of the velocity u and depth D

fields versus mesh size h.
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Fig. 14. Mountain nonlinear shallow water test case on the sphere: L2-error of surface height field D + b

(compared to reference solution) versus mesh size h.

curved cells is a natural extension and will be considered in future work. Note that for these cases,

in contrast to the affine case, the Jacobian of the geometry transformation varies over each cell.770

Second, we point out that the current UFL design assumes that mixed finite elements are defined

in terms of a number of component elements sharing a common cell. A direct consequence of this is

that mixed elements defined over different cells, for instance a mixed element with two components

where one component is defined over cells of geometric dimension n and topological dimension m

and another component is defined over cells of geometric dimension n and topological dimension775

m−1, is not admitted. This restriction is however independent of the manifolds aspect: an extension

of UFL for the case where m= n would immediately carry over to the case m< n.

31

Fig. 13. Rigid rotation nonlinear shallow water test case on the sphere: L2-error of the velocity
u and depth D fields versus mesh size h.
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Fig. 13. Rigid rotation nonlinear shallow water test case on the sphere: L2-error of the velocity u and depth D

fields versus mesh size h.
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Fig. 14. Mountain nonlinear shallow water test case on the sphere: L2-error of surface height field D + b

(compared to reference solution) versus mesh size h.

curved cells is a natural extension and will be considered in future work. Note that for these cases,

in contrast to the affine case, the Jacobian of the geometry transformation varies over each cell.770

Second, we point out that the current UFL design assumes that mixed finite elements are defined

in terms of a number of component elements sharing a common cell. A direct consequence of this is

that mixed elements defined over different cells, for instance a mixed element with two components

where one component is defined over cells of geometric dimension n and topological dimension m

and another component is defined over cells of geometric dimension n and topological dimension775

m−1, is not admitted. This restriction is however independent of the manifolds aspect: an extension

of UFL for the case where m= n would immediately carry over to the case m< n.

31

Fig. 14. Mountain nonlinear shallow water test case on the sphere: L2-error of surface height
field D+b (compared to reference solution) versus mesh size h.
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Fig. 15. Snapshots of the solution to test case 5 for the nonlinear shallow water equations at 15 days. These

were obtained using the method of Section 5.5, with APVM stabilisation. We took E = CG3, V = BDM2 and

Q = DG1. Top: initial surface height field, D + b, and velocity field, u. Bottom: reference solution surface

height field; our final surface height and velocity fields.

7 Copyright and access to code

The FEniCS Project software, including the enhancements documented here, is available under ver-

sion 3 of the GNU Lesser General Public License. The functionality described here is available in780

release version 1.2 and will be maintained in subsequent versions. FEniCS 1.2 consists of: DOLFIN

1.2.0, FFC 1.2.0, FIAT 1.1, Instant 1.2.0, UFC 2.2.0, UFL 1.2.0. Users are encouraged to employ the

current release of FEniCS. This is available at http://fenicsproject.org/download. Archive packages

for version 1.2 will remain available at http://fenicsproject.org/download/older releases.html.

8 Supplementary material785

The supplementary materials include the source code for the code examples given in Section 3

and for each of the numerical examples presented in Section 5. In particular, scripts are provided

to reproduce all of the graphs contained in this paper. Relevant references to the supplementary

material appear in the paper at the point at which the material is used, and further information is

32

Fig. 15. Snapshots of the solution to test case 5 for the nonlinear shallow water equations at
15 days. These were obtained using the method of Sect. 5.5, with APVM stabilisation. We took
E = CG3, V = BDM2 and Q = DG1. Top: initial surface height field, D+b, and velocity field, u.
Bottom: reference solution surface height field; our final surface height and velocity fields.
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