Supplement to 'EMPOL 1.0: A new parameterization of pollen emission in numerical weather prediction models'

EMPOL is an integral part of the NWP model system COSMO-ART. It is written in Fortran. The model is distributed over two different channels: COSMO can be obtained from the German Weather Service (DWD). The ART part of COSMO-ART can be obtained from Dr. Bernhard Vogel, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT). Contact email COSMO: cosmo-licence@cosmo-model.org Contact email ART: bernhard.vogel@kit.edu

Table 1 gives an overview about the necessary input and model fields that have to be provided when implementing the emission parameterization EMPOL into a different NWP model system.

Table 1: Parameters and their units used in the emission parameterization EMPOL. The letter in the third column gives practical information about the parameters: 'I' - the parameter has to be provided as an input field. 'M' - the parameter should be taken from the NWP model (at best from the model level that corresponds to the emission height). 'T' - the parameter can or needs to be tuned. 'C' - the parameter is calculated within EMPOL.

Parameter	Unit	Info	Description
$Q_{pollen,day}$	m^{-2}	Т	total amount of pollen that can be released per day under perfect conditions
$Q_{pollen,\Delta t}$	m^{-2}	Т	amount of pollen that can be released per time step under perfect conditions
R_{pollen}	m^{-2}	С	content of the pollen reservoir, current time step
$\hat{R_{pollen,old}}$	m^{-2}	С	content of the pollen reservoir, previous time step
$R_{pollen,sum}$	m^{-2}	С	total amount of released pollen since midnight
ΔR_{pollen}	m^{-2}	С	pollen released during the current time step
$F_{E,pollen}$	$m^{-2} s^{-1}$	С	emission flux of pollen grains
C_{pollen}	m^{-3}	С	pollen concentration
Ψ_{random}	-	Т	loss of pollen from the reservoir due to random processes
Ψ_{precip}	-	Т	loss of pollen from the reservoir due to precipitation
Φ_{plant}	-	С	plant-dependent influences on pollen emission
Φ_{met}	-	С	meteorological influences on pollen emission
Φ_{biol}	_	С	biological influences on pollen emission
$f_{R,T}$	-	Т	fraction of open flowers as a function of temperature
$f_{R,RH}$	-	Т	fraction of open flowers as a function of relative humidity
$f_{E,TKE}$	-	Т	fraction of emitted pollen as a function of turbulent kinetic energy
$f_{E,RH}$	-	Т	fraction of emitted pollen as a function of relative humidity
$f_{Q,cov}$	-	Ι	fraction of the grid box covered with the specific plant
$f_{Q,seas}$	-	Ι	mathematical description of the course of the pollen season
$f_{Q,alt}$	-	Ι	productiviy of the plants as a function of altitude
T	Κ	Μ	temperature at the lowest model level
rh	%	Μ	relative humidity at the lowest model level
TKE	$m^2 s^{-2}$	Μ	turbulent kinetic energy at the lowest model level
Δt	s	Μ	time step of the simulation
р	$kg \ m^{-2} \ s^{-1}$	Μ	sum of convective and grid-scale precipitation