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Abstract

The Ensemble Kalman Filter is an efficient algorithm for data assimilation; it allows for
an estimation of forecast and analysis error by updating the model error covariance
matrices at the analysis step. This algorithm has been coupled to the CHIMERE chem-
ical transport model in order to assimilate ozone ground measurements at the regional
scale. The analyzed ozone field is evaluated using a consistent set of observations
and shows a reduction of the quadratic error by about a third and an improvement of
the hourly correlation coefficient despite of a low ensemble size designed for opera-
tional purposes. A classification of the European observation network is derived from
the ozone temporal variability in order to qualitatively determine the observation spa-
tial representativeness. Then, an estimation of the temporal behavior of both model
and observations error variances of the assimilated stations is checked using a poste-
riori Desroziers diagnostics. The amplitude of the additive noise applied to the ozone
fields can be diagnosed and tuned online. The evaluation of the obtained background
error variance distribution through the Reduced Centered Random Variable standard
deviation shows improved statistics. The use of the diagnostics indicates a strong di-
urnal cycle of both the model and the representativeness errors. Another design of the
ensemble is constructed by perturbing model parameter, but does not allow creating
enough variability if used solely. Finally, the overall filter performance over evaluation
stations is found to be relatively unaffected by different formulations of observation and
simulation errors.

1 Introduction

Tropospheric ozone plays a major role in air pollution due to its impact on human
health and vegetation growth (WHO, 2003; Felzer et al., 2004). Ozone as a strong
oxidant affects the human respiratory system and is associated to a risk of premature
mortality which increases with its concentration (Bell et al. 2005). Integrated programs
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such as GMES (Global Monitoring for Environment and Security) foster the develop-
ment of environmental monitoring of ozone and other pollutants using a combination of
state-of-the-art numerical models, in-situ and space-borne observations. In this frame-
work, the European project GEMS (Global and regional Earth-system Monitoring using
Satellite and in-situ data) and the follow-up projects MACC and MACC II (Monitoring
Atmospheric Composition and Climate, http://www.gmes-atmosphere.eu/) promote the
monitoring of atmospheric constituents from global to regional scale at a high spatio-
temporal resolution (Hollingsworth et al., 2008).

Operational forecasting systems of regional air quality need well-defined modelling
platforms which perform direct model simulation and forecast in synergy with obser-
vations. A review of such platforms has recently been performed by Kukkonen et
al. (2012). They are based on regional Chemical Transport Models (rCTMs) whose
deterministic forecasts are driven in real time by an offline or online numerical weather
forecast model providing meteorological fields and by global CTMs for chemical bound-
ary conditions. Among these air quality forecasting systems, the PREV’AIR platform
(www.prevair.org, Rouil et al., 2009) delivers daily analysis and air quality forecasts of
pollutant concentrations such as ozone, nitrogen oxides and particulate matter. This
computational chain involves the rCTM CHIMERE at different spatial scales (Schmidt
et al., 2001; Bessagnet et al., 2004). The regional scale simulations based on the
CHIMERE model have been widely evaluated against measurements and give satis-
factory results, particularly to simulate ozone peaks (Honoré et al., 2008). The analysis
product is a fundamental result which depicts the best representation of the surface
pollutant concentrations. All the reporting activities, including calculations of air qual-
ity indicators (threshold exceedances ...) derived from PREV’AIR are based on the
analysis.

One of the challenges of these air quality modelling chains is to provide the uncer-
tainty associated to the modelling results. An ensemble of independent models has
been evaluated against ozone surface observations in Europe (Vautard et al., 2007,
2009) and in the United States (Solazzo et al., 2012b) in the context of the AQMEII (Air
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Quality Model Evaluation International Initiative). Ensembles of model simulations and
their statistical combinations have also been evaluated against satellite observations
for tropospheric NO, (Huijnen et al., 2010) and O3 (Zyryanov et al., 2012). These stud-
ies helped to identify if uncertainties given by the ensemble spread can represent the
error distribution for instance in terms of geographical and temporal patterns.

A step further that is now recognized as crucial in the air quality community is
the integration of chemical observations in the simulations by data assimilation meth-
ods (Carmichael et al., 2008; Zhang et al., 2012). After pioneering work in numerical
weather predictions (Courtier et al., 1998; Houtekamer and Mitchell, 1998), methods
already developed in this field have been successfully applied to air quality simulations:
Optimal Interpolation (Ol, Blond et al., 2003), the 4D-Var (Elbern et al., 1997), the En-
semble Kalman Filter and the Reduced Rank Square Root Filter (RRSQRT, Van Loon
et al., 2000; Hanea et al., 2004). These studies were intended to obtain more accurate
surface ozone analyzed fields as well as to improve the short-term forecast (Blond et
al., 2004; Elbern and Schmidt, 2001). One key point of the data assimilation process
is the representation of the Background Error Covariance Matrix (BECM) which needs
to include simulation errors. Another key point is the construction of the Observation
Error Covariance Matrix (OECM). The relative values of the BECM and of the OECM in
the observation space allow weighting the confidence between observations and mod-
els. In addition, the BECM matrix will serve to propagate the innovations (observed
value minus modeled one) where no observations are available. The principal origin of
uncertainties in rCTM are model parameterizations (chemistry, transport, deposition)
and input data, which include emissions, meteorological fields and chemical bound-
ary conditions (Beekmann and Derognat 2003, Mallet and Sportisse 2006). Thus, the
sensitivity to these factors and the fact that species are rapidly transported out of the
limited model domain reduces the importance of initial conditions in the overall error
budget (Blond and Vautard 2004, Sandu and Chai 2011). Two major strategies are em-
ployed to obtain an accurate 4D-analysis of ozone concentrations; the first one is to
produce a 4D-Var analysis which allows the correction of unobserved quantities such
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as emissions rates or even wind fields (Elbern et al., 2007; Semane et al., 2009), and
the second one is the use of an EnKF (Ensemble Kalman filter). In the latter method,
an ensemble of simulations following a Monte-Carlo approach is used to determine a
flow-dependant BECM matrix. By improving the model error representation, the work
on ensemble design greatly helps to increase the analysis accuracy and especially the
forecast performance of the EnKF (Constantinescu et al., 2007c, d; Wu et al., 2008;
Agudelo et al., 2011; Tang et al., 2011; Curier et al., 2012). One approach employed to
construct a representative ensemble is to perturb the main model parameters affecting
the ozone error variance and correlation (Hanea et al., 2004). Another strategy used
in data assimilation to estimate the model errors is to iteratively adjust the BECM us-
ing diagnostics such as Desroziers diagnostics which derives model errors intrinsically
from the assimilation procedure (Desroziers et al., 2005; Schwinger and Elbern, 2010).

The rCTM CHIMERE that is used in this study has already been successfully cou-
pled to a local EnKF square root scheme (Evensen et al., 2004) in order to assimilate
tropospheric ozone columns derived from the 1ASI instrument (Coman et al., 2012). In
this paper, we assess the set-up of the Chimere-ENKF in the context of surface ozone
data assimilation. We have built a consistent ensemble of assimilation and validation
stations for a summertime episode (Fig. 1). A first focus of this paper is to assess the
impact of the observation representativeness on the assimilation performance. Follow-
ing Flemming et al. (2005) (hereafter denoted FLEMO05), we have performed a clas-
sification of the ozone stations that takes into account the spatial representativeness
for model grid cells. A second focus of the paper is to investigate different formulations
and diagnostics of the model and observation error and their impact on the assimila-
tion system skills. We investigate sensitivities to the BECM properties by perturbing
model parameters together with the ozone state and by using Desroziers diagnostic to
estimate and tune the covariance inflation factor (Li et al., 2009b). We also diagnose
the observations error variance to evaluate its temporal variation as a function of the
observation types. In addition, we have tested two alternative ways in the prescription
of the OECM by using the Desroziers diagnostic or the parameterization described in
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Elbern et al. (2007). We compare the performance of the assimilation system using
these different error formulations for a 10 days simulation over Europe including a pho-
tochemical episode. The paper is organized as follows: The EnKF assimilation scheme
is described in Sect. 2; we present the classification of the surface ozone observations
in Sect. 3 and the rCTM CHIMERE and its evaluation in Sect. 4. Section 5 shows the
different assimilation experiment set-ups and results; the conclusion and future direc-
tions are given in Sect. 6.

2 Data assimilation: the EnKF Analysis scheme

First introduced by Evensen (1994, 2003), the EnKF is a sequential filter that allows
for a relatively simple implementation of a sophisticated data assimilation scheme ap-
propriate for a large 3-dimensional model. An ensemble of perturbed model states is
created using Monte-Carlo methods and evolves forward in time in order to obtain a

forecast x’ and the associated ensemble mean value over the N ensemble members
Eq. (1):

of 1N f
=NZX,- (1)

Here xf represents the vector of forecasted ozone concentrations and the subscript /

indicates the ensemble number. Also, the BECM, noted as P’ is approximated by the
ensemble spread over the N realizations of the model at a given time:

(xf = xN)(x! = x) (2)

1
=N
i

Mz

Pf
y
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Then, when measurements y are available along with the OECM noted R, each en-
semble member is updated following Eq. (3):

-1
X2 =xl 4 PTHT (/—/PfHT+R> (v - Hx) (3)

where H is a projection operator from the model space to the observation space. In
our case, it is a bi-linear interpolation of the closest model grid cells values onto the
observation location. Equation (3) yields an analysis model state xf which is used for
the initialization of the next forecast. The model error covariance matrix is also updated
at the analysis step:

-
pa = pf _ pfHT (/—/Pf HT + R) HP! (4)

One of the drawbacks of this method is the introduction of sampling errors due to the
limited ensemble size. This leads to an under-estimation of the model errors caused by
an artificial decrease of the ensemble variance in Eq. (4) and to spurious correlation in
the analyzed fields. This makes it necessary to localize the analysis spatially, in order
to prevent long-range spurious correlation (Houtekamer and Mitchell, 2001; Hamill et
al., 2001). The first approach to achieve this covariance localisation is based on the in-
troduction of a distance correlation in the BECM or in the Observation Error Covariance
Matrix (OECM) that smoothes the gain progressively to zero when distances between
observations and model grid cells increase. In our study we use a second method,
which is local analysis. Only observations within a fixed area around the analyzed cell
are assimilated. Despite their different algorithms, covariance localization and local
analysis yield similar results (Sakov and Bertino, 2010). There are two types of algo-
rithms to solve Egs. (3) and (4), the stochastic EnKF, where observations are treated
as random variables (Burgers et al., 1998; Houtekamer and Mitchell 1998; Evensen,
2003) and several form of deterministic EnKF that used a square root decomposition
of the model error covariance matrix (Whitaker and Hamill, 2002; Tippett et al., 2003;
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Evensen et al., 2004; Hunt et al., 2007 and reference therein). These square root fil-
ters avoid the measurement’s perturbations and thus have a lower analysis error by
reducing this additional source of sampling error.

In an EnKF, the model error is sampled by an ensemble of model realizations which
has the advantage of evolving in time (in contrast to a static BECM associated to Ol
methods). As mentioned above, with finite and generally small ensemble sizes, and
due to significant model errors, the EnKF estimate of the BECM generally underesti-
mates the true error covariance matrix. Thus, a particular strategy must be employed
for inflating the BECM, by treating model and analysis errors in the same framework.
In addition, the ensemble design must reflect the model error and generate adequate
error correlations. This goal is difficult to achieve as processes affecting model error
sources are often not well known and/or estimated. Because of the chaotic structure of
the atmosphere and the ocean dynamics, the errors were first naturally represented by
a set of perturbed initial conditions (Evensen et al., 1994). One way to build the ensem-
ble in the EnKF framework consists of applying a perturbation to the state vector, here
the ozone concentration fields. These are derived from a two-dimensional Gaussian
distribution which does not introduce bias, with a given variance, and a given spatial
correlation (Evensen et al., 2003). Concerning ozone assimilation with an EnKF, Con-
stantinescu et al. (2007d) have shown that the most efficient way to maintain sufficiently
dispersive ensemble was to apply an additive perturbation for the covariance inflation.
More than just evaluating the consistency of the model error weight in the analysis, we
propose here also to use the Desroziers et al. (2005) diagnostic to derive the model
error variance. In practice, diagnostics are computed in the observation space over p
observations following Eq. (5) for the model error and Eq. (6) for the observation error:

s =52 (v

)y -y (5)
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12
_Ez )y -)) (6)

i=1

Errors are thus estlmated a posteriori usmg the observations y°, the ensemble mean
of the forecast y and of the analysis y?. The background error variance has been
diagnosed in a variational framework for the assimilation of total ozone columns in
global CTM’s (Massart et al., 2012; Schwinger and Elbern, 2010) and surface ozone
observations (Jaumouillé et al., 2012). The tuning strategy of the covariance inflation
factor in EnKF is to adaptively adjust the model error standard deviation prescription
(Li et al., 2009b). In this study, the ability of the tuned ensemble to represent a more
accurate error statistic has been demonstrated in assimilation exercises that take into
account different ranges of true model errors. However, this error estimation requires
that the forecast model mean bias is small. Besides, an accurate prior estimate of these
observations and model error variances allows their simultaneous estimation although
the solution is not unique (Li et al., 2009b; Schwinger and Elbern, 2010). The relation
between the diagnostic of the model error in the observation space and in the model
space is reliable in the case of a spatially and temporally dense observation network.
In this case, the error in the model space can be sampled in the observation space.
The background error correlation can also be adjusted (Schwinger and Elbern, 2010;
Massart et al., 2012).

Another way to build the ensembile is to perturb physical parameters and uncertain
inputs of the model to set up a more physically sound model ensemble, as shown by the
work of Hanea et al. (2004). This approach is also tested in our study. For the CHIMERE
model, following the work of Boynard et al. (2011), we add stochastic perturbations to
the main error sources which are anthropogenic and biogenic emissions, the boundary
conditions, the land-use for dry deposition, and meteorological variables (see table in
supplementary material).

3041

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

3 Characterization of the surface observations

Ozone observations are operated by national and regional networks across Europe
and collected through the European Environment Agency in the airbase database
(http://acm.eionet.europa.eu/databases/airbase/). A classification of ozone measure-
ment sites corresponding to their representativeness is crucial for their use within the
data assimilation procedure, either for assimilating observed information (assimilation
sites) or for evaluating analyzed fields (validation sites). Rather than relying on a station
type classification of EEA (see for instance the European Union directive 2008/50/CE),
we derive here a classification defined by a specific criteria related to ozone concentra-
tions. The area of representativeness associated to a station depends on the chemical
and physical sources and sinks of the compound of interest. This area can be estimated
knowing the surrounding emission intensity and atmospheric and surface fluxes such
as deposition rates and vertical mixing (Henne et al., 2010). This spatial representa-
tiveness can be characterized using meta-data such as population density, land-cover,
emission’s inventory, topography and transport models (Tarasova et al., 2007; Spangl|
et al., 2007; Henne et al., 2010). Another approach is based on the identification of the
pollution regime following statistics on the ozone concentrations themselves (FLEMO5,
Joly and Peuch, 2012). This approach provides the advantage of being directly tar-
geted on the pollutant species of interest (ozone) in this paper and it does not require
any other metadata. The FLEMO5 classification is based on only two criteria, which
are the yearly median (P50) of the daily average (P50DA) and of the daily variability
(P50DV), which is the difference between the daily maximum and minimum divided
by the daily average (DA). Based on the entire set of available background airbase
stations with an altitude below 800 m above sea level (a.s.l), we derive four station
types using the P50DV (Table 1 in FLEMO5). These are background/mountain stations
(MOU, P50DV < 0.68), rural stations (RUR, 0.68 < P50DV < 1.07), suburban stations
(SUB, namely ‘U1’ in FLEMO5, 1.07 < P50DV < 1.45) and urban stations (URB corre-
sponding to “U2”, “U3” and street (“S”) classes in FLEMO05, P50DV > 1.45). According
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to this method, we find that the ozone hourly mean over each station type decreases
when variability increases (Table 1). In the FLEMO5 classification, generally high levels
of NO, and low levels of ozone are found in densely urbanized areas and the inverse
is true in countryside areas. This feature will be important later in the paper when
we will use different types of stations for the validation of the assimilation procedure.
Urban stations that have the highest daily variability are considered here as not rep-
resentative to the model grid spacing used for this study (0.5°x0.5°); we will neither
use these data for evaluation nor for assimilation. The general behavior of the ozone
mean and variability is close to the findings of FLEMO5 based on a set of German
stations (Fig. 2 and Table 1). We plotted on the Fig. 2 the daily average ozone profile
obtained for summer 2009. In this season, the suburban profile shows a higher ozone
concentration in the daytime while keeping the lowest nighttime ozone level, which is in
accordance to the variability criterion. Thus, differences in average ozone concentra-
tion between station’s types are more important in the early morning and are minimum
at 15:00 UTC where all station’s types reach similar daily maxima. Thus, differences in
average ozone concentration between station’s types are more important in the early
morning and are the lowest in the mid-afternoon when all station’s types reach similar
daily maxima. Observations associated to the lowest variability are mostly representa-
tive of a remote environment instead of a mountain’s one because we reject stations
with altitude above 800 m. However, background stations located between 300 m a.s.|
and 800 m a.s.| exhibit a higher baseline in ozone concentrations probably associated
to the tropospheric ozone vertical gradient (Chevalier et al., 2007). These stations are
therefore discriminated from the remaining ones that are shared between remote con-
tinental and coastal stations under the influence of little polluted marine air masses
such like the Mace-Head station in Ireland. Finally, the criterion can be extended to the
whole Europe with some exceptions; for instance, we can notice that background sta-
tions with low ozone variability which are located in Scandinavia do not have the highest
daily mean as observed usually for background stations. Furthermore, we note that the
geographical distribution of the stations is coherent with their attributed environment
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(Fig. 1); for example, suburban stations (red circles) are often located in high emis-
sions regions close to urban areas such as Paris, Berlin or in the P6 Valley. Also, as
seen from the Table 1, results obtained with the FLEMO5 approach are often consistent
with the Airbase stations where around 90 % of the MOU stations are “rural” and also
more than 80 % of the SUB stations are “suburban” or “urban”. However, also discrep-
ancies are found in the ozone categorization with respect to the standard classification.
For instance, the effect of the urban environment on ozone concentrations for many ‘ur-
ban’ Airbase sites is small enough so that these sites are still representative for a larger
environment: these sites constitute around 40 % of our total RUR sites.

4 The regional Chemistry Tranport Model CHIMERE
4.1 Model description

CHIMERE is a state-of-the-art rCTM (http://www.Imd.polytechnique.fr/CHIMERE/;
Menut et al., 2013). The general formulation and the first evaluation at regional scale
were presented by Schmidt et al. (2001). Our simulations cover the European conti-
nental domain GEMS (-15°, 35°E; 35°, 70° N) for 8 hybrid (o, p) vertical levels from
995 hPa to 500 hPa. To reduce computational time, we keep a 0.5°x 0.5° horizontal
grid spacing (Fig. 1); also, aerosols (Bessagnet et al., 2004) are not included in the
simulation. The mandatory meteorological variables are obtained from the Integrated
Forecasting System (IFS) of the European Centre for Medium-Range Weather Fore-
casts (ECMWF). Analysis at 00:00 UT and 12:00 UT with three-hourly output forecast
are linearly interpolated on an hourly basis and on our spatial domain. Biogenic emis-
sions are calculated using the MEGAN model (Guenther et al., 2006; Curci et al., 2009)
and hourly anthropogenic emission fluxes are derived from the TNO (http://www.tno.nl/)
inventory (Visschedijk et al., 2007). The global chemistry transport model MOZART-4
(Emmons et al., 2010) running at 1.875°x1.875° has been coupled to IFS (Flemming
et al., 2009) and provides global trace gas compositions on an hourly basis for O3, CO,
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HCHO, NO, and SO,. In this way, we obtain three-hourly boundary conditions that are
temporally and spatially interpolated on the CHIMERE grid.

4.2 Evaluation of the reference simulation

Using the model configuration described above, a reference simulation is performed for
the period running from mid-May to the end of August 2009. We evaluate the simulated
ozone fields against the selected set of observations for June/July/August (JJA) 2009
including the period for which assimilation is performed (i.e. from the 14th August to the
23rd of August 2009). During the latter period, anticylonic conditions over central Eu-
rope followed by a low pressure system led to a short ozone pollution episode between
the 19th to the 21st August (Fig. 6a). Generally, the modeled ozone fields appropri-
ately represent the synoptic pattern: lower values are simulated for westerly regimes
when marine air masses flow into Europe and higher levels for periods of stagnation
under anticyclonic conditions. In order to characterize the simulation’s accuracy in dif-
ferent environments, the evaluation is conducted separately for each station type using
the station classification presented above. Figure 3 shows the average daily profile of
the ozone observations, the simulations, and the associated Root Mean Square Error
(RMSE) for the JJA period (Fig. 3a) and also for the assimilation period (Fig. 3b).
Statistics over the whole summer demonstrate that daily maxima are on average
well reproduced by the model. There is a minimum of the RMSE of about 8 ppb for all
stations types in the afternoon (Fig. 3a) as well as for the daily maximum during the
episode (Table 4). The decreasing amplitude of the diurnal cycle of ozone concentra-
tions from the suburban to the background stations is also captured by the model. At
SUB and RUR stations, comparisons between observations and simulations show a
good correlation of around 0.7-0.8 (see “REF” statistics in Table 3); on average, ob-
servations are overestimated all day long, except mid-afternoon. These errors can be
typically attributed to the model resolution that does not allow a good estimation of the
subgrid processes such as vertical turbulent transport and spatial variability of anthro-
pogenic emissions (Valari and Menut, 2010). This leads to a wrong representation of
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night-time and early morning chemistry, especially ozone titration, and maybe also dry
deposition. The background ozone level (i.e. the MOU stations) is also well captured;
average errors range between 8 and 10 ppb, but the correlation is lower (0.53). Simu-
lation of background stations above 300 m a.s.l. exhibits a much stronger positive bias
during nighttime. This is probably an artifact in our evaluation process since for these
stations we compare observations to the model ground level, while these stations are
generally more representative of higher model layers which are less affected by dry
deposition.

We also plot the average diurnal profile of ozone concentrations and for the RMSE
during the period between the 14th August and the 23rd of August 2009 (Fig. 3b).
We notice an increase in the ozone baseline by 5ppb and in the amplitude of the
diurnal cycle for suburban, rural and background stations located above 300m a.s.l.
For this period, the maxima over the SUB and RUR stations are underestimated by
the model simulation. Background stations do not show the same behavior, the ozone
level is even reduced with respect to summer average values; this is because some
stations are located in north-eastern Europe or in the United Kingdom, where weather
conditions were not favorable to ozone formation.

5 Set-up and results of assimilation experiments

We shall present in Sect. 5.1 the set-up and the results of the assimilation experiments
applied to the 10 days summertime period in August 2009 including an ozone pollution
episode. An evaluation of the overall performance of the data assimilation system is
proposed (cf. Sect. 5.2). Further, we discuss the sensitivity induced by the design and
the formulation of the BECM (Sect. 5.3) and the OECM (Sect. 5.4). A review of the
different assimilation experiments is shown in the Table 2.
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5.1 Evaluation of the reference simulation

In order to increase the available data and the observation’s spatial coverage, we in-
clude data from all the three stations types both for assimilation and evaluation. Then,
for each observation type (i.e. MOU, RUR, SUB), we randomly divide the station set into
two subsets (Fig. 1). In this way, we get one set for the assimilation with 350 stations
(MOU: N =44; RUR: N =117; SUB: N =189) and another one for evaluation with
344 stations (MOU: N =45; RUR: N = 112; SUB: N = 187). The assimilation period
extends from the 14th August at midnight to the 23rd August at 23:00 UTC, with an
hourly assimilation step.

At each analysis step, we perform a local analysis with a horizontal cut-off radius
of 250 km around the analyzed cell and within the boundary layer for vertical levels
by using the diagnosed boundary layer height (BLH) for each time step and grid cell.
These choices are made to avoid spurious correlation as the ensemble size is quite
low. Only tri-dimensional ozone fields are included in the state vector at the analysis
step. Ozone perturbations are added to the analysed state, the same noise is applied
for all vertical layers inside the boundary layer. Pseudo-random fields are generated
with a fixed horizontal decorrelation length (Evensen, 1994) of 200 km (Coman et al.,
2012). This parameter is close to the value of 270 km used in several other studies
(Chai et al., 2007; Constantinescu et al., 2007c; Frydendall et al., 2009) and in any
case our results are similar with both values.

The inspection of relative errors of the CHIMERE reference run shows that these
errors exhibit a clear diurnal cycle (left panel of Fig. 4). This is due to the fact that
on the one hand the photochemical build up of ozone and the associated mid day
maximum is quite well reproduced by the model (relative RMSE < 20 %); on the other
hand, the night time minimum of ozone associated to the lowest daily BLH is partly
missed (relative RMSE up to 40 %). We have chosen to prescribe perturbations which
represent this error diurnal cycle (light blue curve on the left panel of Fig. 4). The
resulting standard deviation of the forecast ensemble (green curve on the left panel of
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Fig. 4) is similar to the relative RMSE of this forecast (purple curve on the right panel
of Fig. 4).

The prescription of the observation covariance matrix R is also a key point of the
assimilation procedure. In general, assuming no observational error correlation, the
OECM matrix R is defined by the observation error variance (diagonal terms). As high-
lighted above (Sect. 2), the main observational error source is the representativeness
error (and thus is dependent on the model resolution). The random part of the observa-
tion error can be defined as an average value of the standard deviation of observations
within a grid cell. For the city of Paris, Blond et al. (2003) have determined an obser-
vation error of 5 ppb at 15 pm for a 6 km model resolution. Using observations from the
AIRNOW database in the USA, Chai et al. (2006) got on average a daily range be-
tween 5 ppb and 13 ppb (at night) and assumed an observation error of 8ppb at 60 km
horizontal resolution. Using the observational methods (Hollingsworth and Lonnberg,
1986), Flemming et al. (2004) got on average an absolute standard deviation of 5 ppb,
independently from the station type of the FLEMO5 classification. Following this last
study, we first use for all types of stations an observation error standard deviation of
5 ppb which is typically used in data assimilation systems (Hanea et al., 2004; Wu et
al., 2008). This corresponds to a lower relative error for the background stations as their
mean concentration is higher and also a lower relative error during the afternoon ozone
maximum (Fig. 4). In the following, these set-ups will be referred to as the REF_ASSIM
experiment; it corresponds to the reference case to which the other assimilation exper-
iments will be compared.

5.2 Evaluation of the base case assimilation experiment

In order to analyze the performance of this first assimilation experiment, we compare
results from the reference run and the analysis (i.e. the mean of the analyzed ensem-
ble) against observations from validation stations (not assimilated). Figure 6a shows
the simulated surface ozone on the 20th August 2009 at 15:00 UTC along with the
observations. The reference run correctly displays spatial patterns associated to the
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episode in which a cold front separates Europe into two parts: a western part with
marine air masses associated to low ozone values, and an eastern part associated to
higher ozone concentrations expanding from Italy up to Norway. Compared to the ref-
erence, the analyzed field exhibits higher values and more pronounced spatial ozone
gradients which seem to be more realistic as confirmed by observations; as an exam-
ple, the general underestimation of the peaks over a large region of Denmark, eastern
Germany and Austria is corrected. As an example, the time series of surface ozone ob-
servation at the Odense stations in Denmark (10.4° E, 55.4° N) along with the analysis
and the reference run is plotted on Fig. 7. It shows a clear improvement of the analysis
which, contrary to the reference run, captures the high temporal variability of the ozone
measurements including the ozone peak of the 20th of August. At this station, the tem-
poral correlation coefficient over the period is increased from 0.8 for the reference run
to 0.9 for the analysis. In locations where only few measurements are available, obser-
vations assimilated from a single station are propagated over large areas as in Spain
or Greece (see Fig. 1 for the location of assimilated stations). Over these regions, often
no validation stations are available to verify if these changes are realistic. However, the
spatial shape of the corrections, for instance over the North Sea illustrate the ability of
the ensemble to extend innovations along with the ozone flow (directed to north-west),
which is a clear advantage of the Kalman filter with a variable BECM as compared to
optimal interpolation methods with a fixed BECM.

In addition to these particular elements, we present the statistics for the whole set
of sites and for each station type of validation stations on a daily basis for the hourly
profile, 8-h mean maxima and daily peaks (REF_ASSIM statistics in Tables 3 and 4).
The RMSE of the analysis is largely reduced: by 30 % as compared to the reference
run, around 95 % of sites retained for evaluation show a decrease of RMSE. The hourly
correlation average over each day and over all the stations increased to 0.87 against
0.75 for the reference run; it is improved for all station types (Table 3). Both the analysis
and the reference run only show small bias (below 5 ppb for around 75 % of the evalua-
tion stations). The bias is not corrected (slightly more positive) for the rural stations but
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is reduced for suburban and background ones. In order to evaluate an indicator for the
impact of ozone exposure to human health, we also calculate the daily maximum of the
running eight hour mean; its RMSE decreases from about 8 ppb in the reference run
to 5 ppb in the analysis. The assimilation allows an improvement in the reproduction of
the daily maxima with errors around 6—7 ppb (Table 4) while reducing the negative bias
for rural and suburban stations.

The error profile shows globally reduced values and still shows a daily cycle with a
minimum of 6 ppb during daytime for all station types (Fig. 5). Contrasting results are
obtained for night time regarding the station types; for instance, in the morning, sub-
urban ozone levels are overestimated by the analysis while rural as well as mountain
ozone concentrations are underestimated. Some of the errors can be the result of re-
duced spatial representativeness of the observations early in the morning. In the next
sections, we will investigate how different formulations in the model and observation
error formulation can change the assimilation performance.

5.3 Sensitivity to model error

Since the representation of BECM can be a crucial point in assimilation systems,
we have evaluated the sensitivity to its formulation. Especially, we have built different
BECM following approaches recently used in the field: either by adjusting the covari-
ance inflation factor based on diagnostics of previous assimilations, or by perturbing
physical parameters that are controlling the model error to get a more physical ensem-
ble and by this way a better error representation. We show here the results of the three
sensitivity tests made in this respect: first we present the online tuning of the covari-
ance inflation factor (MOD _DESR Table 5), then we present the combined perturbation
of ozone and models parameters (NEWPAR, Table 5), and finally the combination of the
model parameter perturbation with the online tuning (NEWPAR_MOD_DESR Table 5).
We propose to use here an appropriate diagnostic of the ensemble design, useful to
compare the different experiments, which is the Reduced Centered Random Variable
diagnostic (Candille et al., 2006).
3050

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

In the case of the MOD_DESR experiment, the diurnal cycle of the BECM profile
is adjusted from an on-line diagnostic (Desroziers et al., 2005). This adjustment is
performed by calculating online within the assimilation procedure the product of the dif-
ferences between analysis and background and between observation and background
state in the observation space Eq. (5). This temporal profile (Fig. 4) is then used for the
prescription of the model error for the next day. This treatment is important because
model errors strongly vary with the time of the day, for instance dispersion and photo-
chemical processes, and their associated model errors show a strong diurnal cycle (as
discussed in Sect. 5.2).

The diagnosed errors calculated for the REF_ASSIM experiment (light blue curve
on the left panel of Fig. 8) show lower values than the ensemble standard deviation
(green curve). This diagnostic thus suggests an overestimation of the model error when
using the REF_ASSIM ensemble standard deviation. The comparison with the forecast
RMSE indicates that the shape of the diagnostic is more realistic than the model error
variance; in particular the morning peak in RMSE corresponds to a peak in the model
error diagnostic. In the MOD_DESR experiment (Fig. 8, right panel), the ensemble
standard deviation is close to the diagnostic of the first experiment. This demonstrates
a rapid convergence towards a stable model error through this procedure. Thus, the
ensemble standard deviation globally represents much better the shape of the diurnal
cycle of the forecast RMSE, particularly, the morning (7 a.m.) and evening peaks (7 and
8 p.m.) of the RMSE are well diagnosed. However, the night time ensemble standard
deviations are almost at the same level than those obtained during daytime, suggesting
that the higher night time RMSE are not due to errors in model formulation, but rather to
observational (i.e. representativeness) errors. The reduction of the ensemble variance
gives more weight to the model (compared to the observations) and therefore increases
the RMSE of the analysis against assimilated stations. Thus, the lower model error
variances in the MOD_DESR experiment reduce the magnitude and the spatial extent
of the analysis increment. This is illustrated by the analyzed maps (Fig. 6b, c): over
large areas, for instance in Spain (one station near Madrid) or in Greece (one station
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near Athens), the ozone field is controlled by only few assimilated observations. This is
an advantage when errors are spatially correlated,; it leads to a reduced RMSE against
evaluation stations for daily peaks. However, 8 h mean average and hourly statistics
are not substantially modified.

A further sensitivity study is performed by creating different ensemble members us-
ing a perturbation of the input data of the model, instead of perturbing the ozone fields
directly. Choices of the perturbed parameters, their standard deviation and spatio-
temporal correlation (Table in supplementary material) are inspired from several previ-
ous studies (Hanna et al., 2001, Beekmann and Derognat, 2003, Hanea et al., 2004,
Wu et al., 2008 and Boynard et al., 2010). The scheme of the perturbation is similar to
the one applied to the ozone fields with fixed horizontal spatial decorrelation (Evensen
et al., 2003), however, the distribution is log-normal and we include a temporal cor-
relation. The standard deviation of the 20 ensemble members of the free run (without
assimilation) with perturbed parameter reaches a maximum of 8 ppb at some loca-
tions after four days of simulation, but is only about 1 ppb on average, so it generally
underestimates the model error. In our case, the model parameters are not included
in the state vector, the ensemble size is low and the ensemble spread is reduced at
the analysis step, therefore, this ensemble cannot create enough variability (ensemble
spread) between two analyses, i.e. during a one hour time step. Thus we choose to
combine this perturbation of the model parameters to the classical perturbation of the
ozone field itself. We then reproduce the two previous experiments with the addition
of the parameter perturbations, namely NEWPAR associated to the REF_ASSIM one
and NEWPAR_MOD_DESR for the online tuning experiment (MOD_DESR) applying
this new way of making hybrid perturbations.

In order to check and compare the ensemble dispersion from these simulations, we
calculate the (RCRV) (Candille et al., 2006). For each observation / of the system, the
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RCRYV is defined by the ratio between the innovation and the associated error Eq. (7):

y{ - Hy]

RCRYV = (7)

2 2
O, + 0,

Innovations are the differences between the observations and the forecasted ensem-
ble mean at the observation location. Errors are estimated by the square root of the
sum of observation error variances (og) and model error variances (represented by the
ensemble variance, oﬁ). Here the observation error variance is set to 25 ppb2 for all

experiments; ensemble mean and variance (05) are calculated using the Desroziers
diagnostic Eq. (5) in the observation space. For a representative ensemble (i.e. when
the diagnosed errors are comparable to the innovations), the RCRV should be normally
distributed with a zero mean and a standard deviation of 1.

The mean of RCRV (Fig. 9) indicates the relative bias of the one hour forecast, it is
important in an EnKF framework since systematic errors are not taken into account in
the analysis formulation. However, the analysis allows globally an initialization of the
ensemble forecast from an unbiased ozone state. Figure 9 indicates that ensemble
predictions have a weak positive bias in the afternoon and in the evening and a nega-
tive bias at 7a.m. and around 7 p.m. In the morning and in the early evening, the bias
is important and is formed rapidly. At that time, the model simulation can be very un-
certain, due to increasing or still large emissions and a developing (morning) or fading
(evening) PBL. These processes are locally variable, and thus lead to a reduced site
representativeness that is not resolved at the models horizontal and vertical resolution.
An evaluation of the time evolution of the spatial pattern of the ensemble bias indi-
cates a large variability in space and time. But the morning bias is more pronounced
at suburban stations and especially at those located in the P6 Valley and in the south-
eastern Europe (not shown). Globally, a slightly lower bias is found for REF_ASSIM and
NEWPAR, for which analyses are closer to the observations, but only small differences
are found between the different experiments. In fact, the analysis field is not biased
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because the bias is removed by the assimilation procedure. The use of the diagnostic
leads to an increase of the additive noise, thus, it allows a prediction of the increase of
the errors due to the higher bias (Figs. 8 and 9). A step further would be the use of a
bias correction procedure or the correction of the model parameters in order to improve
the ensemble forecast and subsequently the assimilation performance.

The standard deviation of the RCRV provides a framework for the verification of the
ensemble spread, namely, if it is greater (lower) than one, this means that the ensemble
is under dispersive (over dispersive) (Fig. 10). The tuned simulations (MOD_DESR and
NEWPAR_MOD_DESR) display a correct error budget during day time with a standard
deviation of the RCRYV close to 1. By contrast, the ensemble is under dispersive for all
simulations at night time. The addition of the perturbation of model parameters slightly
improves the error representation during nighttime. As the observational error is taken
as constant in the calculation of the RCRV statistics, Desroziers diagnostic of the night
time error could also suggests that observation errors are underestimated in the night
(see Sect. 5.4).

Although we obtain different ensemble spread profiles that change weights between
model and observation in the assimilation procedure, only small changes are found
in the comparison against the observations used for validation. The ozone mean, the
average bias and RMSE are not significantly modified in the different simulations. How-
ever, as the ensemble spread is controlled by the added noise, it is preferable to reduce
the amount of perturbation. Particularly, the ensemble standard deviation can become
important in large areas where observation are absent or scarce, this leads to unreal-
istic spatial correlation of the error fields, see for instance the differences in the ozone
fields in Spain or in Greece when only one or two observation are assimilated (Fig. 6b,
c). Furthermore, we can notice that the model parameter perturbations (slightly) im-
prove the results in all cases.
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5.4 Sensitivity to the observation error formulation

Similarly to the previous section (i.e. 5.3) for the BECM, we propose to examine the
sensitivity of the system to the formulation of the OECM. In the case of surface ozone
observations, measurement errors are generally weak, but representativeness errors
can be important. This latter error is model dependent and particularly on its horizon-
tal resolution, in our case 0.5°. In this section, we investigate different approaches to
estimate the observation error variance which should lead to a more realistic and de-
tailed error estimation, rather than fixing it to a constant value as done in the previous
sections. Besides this modification, the ensemble configuration is the same as for the
base case experiment (REF_ASSIM). Figure 11 (left panel) shows the 5 ppb error (black
line) prescribed for the REF_ASSIM experiment, and in addition the Desroziers error
diagnostic estimated for each subset of stations following the FLEMO5 classification
(cf. Sect. 3); first, it shows that the diagnosed errors are rather similar with the pre-
scribed error for remote stations (MOU) but larger for RUR and SUB station types. For
SUB sites, this is probably linked to the coarse horizontal resolution of our model (0.5°)
that is not representative enough for urban environments; this result is close to the one
of Chai et al. (2006) for similar grid spacing. Moreover, the diagnosed error shows a di-
urnal cycle with lowest values at noon (about ~ 6 ppb for SUB and RUR sites), close to
the prescribed value, but are higher at nighttime and in the morning. More specifically,
SUB stations show an error maximum when the boundary layer develops and fades. In
these cases, ozone titration by NO emissions is most effective, and representativeness
errors are expected to be larger.

Next, we use the above results in the assimilation scheme. As for the tuning of
the model error, we apply the diagnostic Eq. (6) of the observational error diurnal
profile from the previous day to the OECM, as a function of the stations type (TUN-
ING_OBS_TYPE experiment). Figure 11 (middle panel) shows that the mean error di-
urnal cycle as a function of station type is well captured, because prescribed and newly
diagnosed errors coincide (convergence). Nevertheless, the skill scores do not show a
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significant improvement or modification with respect to the reference experiment (Ta-
ble 4), only a slight reduction of the RMSE is found for the mountain stations due to
their reduced prescribed error.

As an alternative estimation of the observational error we apply the parameteriza-
tion following the work of Elbern et al. (2007). Errors are calculated explicitly as the
sum of the measurement error variance (set here to 3 % (sdeas) Of the instantaneous
observation value with a minimum of 3 ppb (Parrish and Fehsenfeld, 2000) and of the
representativeness error. The latter is defined by the ratio of the model resolution and
the observation representativeness length scale. Here, we used the distance (x) be-
tween the stations and the centers of the analyzed cell to the observation location
divided by a length scale (L) prescribed in Elbern et al. (2007) to 2 km for suburban,
10 km for rural and 20 km for background sites. In particular, for the case when only
one suburban station is assimilated within the localized radius of 250 km, we wanted to
reduce its influence independently from the decorrelation of model errors by increasing
the observational errors variances along with the distance. It means that the distance
to the station is explicitly taken into account in the observational error. The formulation
of the parameterization is written here as:

2 2 2 (X)
R = Neas + rreprz(Sdmeas*Y,q) +(

x1.2)2 (8)

I-repr

In this experiment, called R_LEXPLICIT, the observation error variance is therefore
changing for each observation site and each analyzed model grid cell. Figure 11 (right
panel) shows both the average observational errors for each class of station type de-
termined with Eq. (8) and the diagnostic daily error profile. In the R_LEXPLICIT case, as
the representativeness term increases with the distance, it is dependent of the model
grid and not unique; here we average the observation error variance over the closest
grid cell to each site. This method gives a realistic spread of values of average obser-
vational errors for different station types between 3 and 6 ppb. It gives slightly better
scores for suburban stations. But it actually relies on the observation classification and
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the specific choice of a representativeness length scale associated to the station types.
Following Egs. (5) and (6) of the diagnostics for each time step, one can see that the
sum of the diagnosed observational and the model error variances must be equal to the
mean square error of the ensemble forecast. Therefore, the use of the diagnostics sug-
gests that the representativeness error is higher than expected and would contribute
to a major part of the total error. Also, it should be noted that the diagnostic efficiency
can be reduced by the model bias; it can lead to an overestimation of observation er-
ror variances (Li et al., 2009b). Although observational errors strongly depend on site
representativeness and type, the sensitivity to the observational error is globally small.
Then, a change of the observational errors of assimilated stations does not improve
the scores for validation stations.

6 Conclusions

In this paper we introduced a new data assimilation chain based on the rCTM
CHIMERE in an EnKF framework using ozone surface observations provided by the
European database Airbase. The system is based on a local analysis computed by a
deterministic square root filter and is applied to an ensemble of 20 perturbed CHIMERE
rCTM simulations. For a 10 days period in summer 2009, the reference run shows good
performance with root mean square errors (RMSE) around 10 ppb and an average cor-
relation coefficient of 0.7. However, it generally overestimates night time and morning
concentrations, while it underestimates midday ozone peaks in particular during the re-
gional ozone pollution episode that occurs during this period. Similar results are found
for a longer 3months summer period. The statistical evaluation of the analysis field
using a substantial set of unassimilated observations indicates a 30 % reduction of the
RMSE which reaches on average a minimum around 6 ppb in the afternoon, regardless
the stations type. The analysis increment can be propagated at synoptic scale, thus al-
lowing corrections downwind to the continental observations, as for example shown
for northern Europe. More than 95 % of evaluation stations show a decrease in their
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RMSE. The average of the ensemble forecast, corrected each hour by the filter, shows
also a better performance than the reference run but has a more limited success at
transitions between day and night and vice versa. This is due to the formation of a
positive bias of the 1-hour ensemble forecast, which is more pronounced for suburban
stations. Therefore, the model error is in this case not sensitive to the improvement of
ozone initial conditions. As suggested by other studies, a step further would be the si-
multaneous adjustment of precursor’s initial conditions and emissions rate (Tang et al.,
2011) or other models parameters (Hanea et al., 2004; Agudelo et al., 2011). Also, the
application of a bias correction procedure combine with the data assimilation scheme
(Li et al., 2009a) could improve the EnKF performance.

A series of different assimilation experiments are performed with different formula-
tions of the OECM and BECM matrices. Considering values of model and observational
errors, the results from different formulations are rather different. We focused on the es-
timation of the hourly variation of the model and observational errors using Desroziers
diagnostics. We used the RCRV standard deviation as a tool to evaluate the result of
the tuning of the model error obtained by the diagnostic. The ensemble dispersion is
more consistent during daytime while an underestimation of the model error is found
during night time; it is attributed to the larger and unaccounted observational error at
that time. Generally, the diagnostic indicates a large contribution of the observational
error in the evaluated quadratic error of the ensemble forecast. As pointed by Li et
al. (2009b), an overestimation of the observation error can be found when the model
forecast shows large bias. However, the use of the FLEMO5 classification of the mea-
surement’s sites allowed diagnosing observational errors for specific types of sites. As
expected, larger representativeness errors were estimated for suburban than for rural
and remote sites. The spatial representativeness shows as expected a daily variation
with a maximum in the daytime, and a nighttime reduction according to the increase of
the ozone precursor’s level close to the sources. In addition, skill scores (at evaluation
stations) do not show a substantial sensitivity to the modification of observational error
variance. This underlies the needs to determine a priori the observation representative-
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ness such as the FLEMO5 classification. The diagnostic can provide a determination
of observation data suitable for data assimilation (observation thinning) since the ob-
servation error and analysis sensitivity can be estimated individually for each stations.
Stations used for assimilation or evaluation are spatially close, where the ozone obser-
vations network is dense. Then, in terms of evaluation scores, small changes are found
among experiments even for substantial changes (up to a factor of two) in the model
and observation errors. Given the low ensemble size, it suggests the robustness of this
data assimilation system.

For future work, the evaluation of the system performance should be made over a
longer time period. Also, ideally, to be physically consistent, the BECM should more
rely on the perturbation of uncertain physical parameters than on the ozone concen-
trations. This would also allow assessing the impact of an ozone correlation on other
chemical variables by including and updating them in the state vector. In addition to
the model parameter perturbations already implemented, or by replacing them, a new
ensemble should be designed taking model input as emissions, meteorological forc-
ing, and chemical boundary conditions from different sources (models). However, due
to its robustness, already the present system appears suitable for implementation in
operational systems supported by the European FP7 MACC project.

Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/6/3033/2013/
gmdd-6-3033-2013-supplement.pdf.
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Table 1. Number of stations, daily mean and median of the daily variability (P50DV) average & ’ )

over the different stations types (lines) of the FLEMO5 classification (MOU, RUR, SUB). The %-
number of corresponding stations in the initial Airbase (right columns) classification (Rural, %

Suburban, and Urban) is also indicated with the relative contribution (percentage) of the new & g
N mean (ppb) P50DV Rural Suburban  Urban o

(period: JJA 2009) (period: JUA 2009) (N =405) (N =256) (N =391) g ! !

MOU(>300m) 47 388 0.56 42 (89%) 4 (9%) 1(2%) 2 ! !
MOU(<300m) 42 365 0.58 32(76%) 3 (7%) 7 (17 %) 73
RUR 228 33.2 0.9 98 (43%) 40 (18%) 90 (39%) o

suB 376 31.6 1.17 63(17%) 70 (19%) 243 (65%) % ! !
URB 359 30,1 1.46 170 (47%) 139 (39%) 50 (14%) Q
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Table 2. List of assimilations experiments with different formulations of OECM and BECM

variances.
OECM (variance) BECM (variance)
REF_ASSIM 25 ppb2 fixed hourly profile
MOD_DESR 25 ppb2 diagnosed hourly profile
NEWPAR 25 ppb2 parameter perturbations
NEWPAR_MOD DESR 25 ppb2 diagnosed profile and parameter perturbations
TUNNING_OBS_TYPE f(stations type) fixed hourly profile

R_-EXPLICIT

f(stations type, distance) fixed hourly profile
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Table 3. Hourly skill scores (ppb) for the CHIMERE run (REF) and the REF_ASSIM experiment
(ANA) calculated for the evaluation set for suburban stations (N = 187), rural stations (N = 112),
and for background stations located below an altitude of 300 m above the sea level (N = 18)
and above 300m (N = 27).

TOT MOU<300 RUR SUB MOU>300
RMSE (REF) 10.79 85 11.04 10.86 15.77
RMSE (Ana) 7.76 723 816  7.58 13.06
Bias (REF) -0.42 -1.91 0.78 -0.99 7.95
Bias (ana) 0.18 067 143 -0.62 7.61
Correlation (REF) 0.75 053 0.71 0.8 0.43
Correlation (ana) 0.87 069 0.85 0.9 0.67

3070

Jaded uoissnosiq | Jaded uoissnosiq

I i

Jadeq uoissnasiq | Jaded uoissnosiq

GMDD
6, 3033-3083, 2013

Regional scale
ozone data
assimilation

B. Gaubert et al.

(8
S

o
2


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3033/2013/gmdd-6-3033-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 4. daily maximum and maximum of the daily eight-hour ozone mean RMSE average over

the evaluation data set.

RMSE (ppb) CHIMERE REF_ASSIM TUNNING_OBS_TYPE R_EXPLICIT

8havgmax 7.83 4.89 4.89 4.79

Daily Max 10.74 7.21 7.27 7.04
MOD_DESR NEWPAR NEWPAR_MOD_DESR

8havgmax 4.91 4.81 4.88

Daily Max 7.31 7.15 7.25
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Table 5. Comparison of the statistical score for each assimilation experiment over the validation
set for suburban stations (N = 187), rural stations (N = 112), and for background stations that

have altitude below 300 m. a.s.l. (N = 18) and above (N = 27).

TOT MOU<300 RUR

SuB MOU > 300

RMSE (ppb)

MOD_DESR 7.74 711 8.13 7.58 13.08
NEWPAR 7.69 713 8.07 7.52 12.93
NEWPAR_MOD_DESR 7.69 6.99 8.04 7.54 13.07
REF_ASSIM 7.76 723 8.16 7.58 13.06
TUNNING_OBS_TYPE 7.8 729 8.14 7.65 12.96
R_EXPLICIT_REF_ASSIM 7.7 717 8.11 7.51 13.16
Bias (ppb)

MOD_DESR 0.26 06 149 -0.52 8.12
NEWPAR 0.12 045 1.39 -0.67 7.89
NEWPAR_MOD_DESR 0.15 058 1.39 -0.63 8.01
REF_ASSIM 0.18 0.67 1.43 -0.62 7.95
TUNNING_OBS_TYPE 0.08 058 1.28 -0.68 7.77
R_EXPLICIT_REF_ASSIM 0.02 027 123 -0.73 7.77
Correlation coefficient

MOD_DESR 0.87 0.69 0.85 0.91 0.67
NEWPAR 0.87 0.69 0.85 0.91 0.68
NEWPAR_MOD_DESR 0.87 0.7 0.85 0.91 0.67
REF_ASSIM 0.87 0.69 0.85 0.9 0.67
TUNNING_OBS_TYPE 0.87 0.68 0.85 0.9 0.67
R_EXPLICIT_REF_ASSIM 0.87 0.69 0.85 0.91 0.67
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Fig. 1. Modeled domain and horizontal grid spacing (0.5° ) with sites retained for assimilation
(filled circles) and validation (filled in white circles). Colors indicate the station type with red
for suburban, blue for rural and green for background stations. The rural evaluation station for
which the ozone concentration time series is plotted in Fig. 7 (located in Odense in Denmark)
is shown as a square filled in cyan.
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Fig. 2. Average daily ozone profile during JJA 2009 for each type of observation chosen for
assimilation and validation. Colors indicate the station type with red for suburban, blue for rural,
green for background stations under 300 m a.s.| and orange for background stations between

300m and 800 m a.s.l.
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Fig. 4. Relative Errors of the assimilated stations (N = 295) for the REF_ASSIM experiment. On
the left panel, we plot the diurnal profile of the white noise prescribed to the model ensemble
after each assimilation step (light blue curve) and the observation error standard deviation
(black curve). The forecast ensemble standard deviation is in green and the analyzed standard
deviation in orange. The RMSE (right panel) is calculated for the reference run (blue curve), the
ensemble mean analysis (red curve) and the one hour ensemble forecast (purple curve).
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Fig. 5. Average diurnal cycle of ozone and the associated RMSE (for the assimilation period
at validation stations) for the CHIMERE reference run and the analysis. Separated panels are
shown for the suburban stations (left, N = 172), rural stations (middle left, N = 102), and for
background stations with an altitude below 300 m a.s.l (middle right, N = 17) and above (right
N =27).
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Fig. 6. Simulated ozone fields for (a) the CHIMERE reference run (top), (b) the REF_ASSIM
analysis (middle), and (c) the MOD_DESR analysis (bottom) on 15th August at 03:00 UTC.
Ozone measurements at validation stations are plotted by circles, squares and triangles for
respectively MOU, RUR and SUB stations type.
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Fig. 7. Ozone measured (blue line) at the Odense site (not assimilated) in Denmark (10.4° E,
55.4° N) compared with CHIMERE reference run (black line) and the analysis (purple line).
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Fig. 8. Mean hourly value (over all assimilated observations) of the RMSE for the ensemble
mean analysis (red curve), the one hour ensemble forecast (purple curve), the ensemble stan-
dard deviation (green) and the model error Desroziers diagnostic (light blue). The left panel
displays these values for the reference analysis run (REF_ASSIM) and right panel for the sim-
ulation using the online tuning Desroziers diagnostics (MOD_DESR). Error bars display the
temporal standard deviation.
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Fig. 9. Mean of the RCRV averaged over the whole assimilation steps for the REF_ASSIM,
NEWPAR, MOD_DESR, and the NEWPAR_MOD DESR assimilation experiment.
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Fig. 10. Standard deviation of the RCRV average over all assimilation steps for the REF_ASSIM,
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NEWPAR, MOD_DESR, and the NEWPAR_MOD DESR assimilation experiment.
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Fig. 11. Prescribed observational error variance and corresponding diagnostics averaged over &
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