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Abstract

This study presents an empirical-statistical downscaling (ESD) method for high-
altitude, glaciated mountain sites. In the ESD model validation emphasis is put on
appropriately considering the pitfalls of small observational data records that are ty-
pical of high mountains. An application example is shown with daily mean air tempe-5

rature time series on a glaciated mountain range (Cordillera Blanca, Peru) as target
variables, and an ensemble of reanalyses air temperature time series as “a priori” pre-
dictor (i.e. a predictor selected without preceding data analysis). Results reveal strong
seasonal variations of the predictor’s performance. With increasing data availability, the
skill tends to increase. Similarly for lower temporal resolutions, the skill increases. Ap-10

plied to a choice of different atmospheric reanalysis predictor variables, the ESD model
identifies only air temperature and geopotential height as significant predictors with re-
gard to local-scale air temperature variability. Accounting for natural periodicity in the
data is vital in the ESD procedure to avoid spuriously high performances of certain
predictors, which is demonstrated for 2 m air temperature versus air temperature in the15

pressure level close to the mountain station site.

1 Introduction

Ongoing developments in atmospheric modelling have made available choices of long-
term, temporally high-resolution atmospheric data sets for the entire globe. These data,
however, are still restricted in terms of spatial resolutions, such that their immediate20

application to study regional and local climate is not recommended. Especially over
complex topography, such as glacier-covered mountains, atmospheric models often
miss significant processes that characterize local weather and climate. So-called down-
scaling methods bridge this gap between the available data from global atmospheric
models and the required local-scale information (for an overview see, e.g. Christensen25

et al., 2007). Generally two types of downscaling exist, namely dynamical downscaling
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(e.g. Hill, 1968; Giorgi and Bates, 1989; Mearns et al., 2003), and empirical-statistical
downscaling (ESD; e.g. Klein et al., 1959; Wilby et al., 2004; Benestad et al., 2008).
Since the early development of both downscaling classes a variety of different models
and approaches has emerged.

An important step in general ESD procedures is the selection and assessment of5

global atmospheric model data for the input to the downscaling model (e.g. Von Storch,
1999; Wilby et al., 2004; Benestad et al., 2008). Given the increasing availability of at-
mospheric models and variables, the issue of predictor selection and assessment has
become even more intricate over the last decades, concerning the choice of (i) the
physical variable type, (ii) the model grid points or spatial area (i.e. the downscaling10

domain), and (iii) of the data source (i.e. the type of global model). However, only few
studies (e.g. Winkler et al., 1997; Cavazos and Hewitson, 2005) have systematically as-
sessed the relevance of different predictors (in terms of variable types, spatial area, or
predictor model). In fact, there is little consensus on the most appropriate choice (e.g.
Von Storch, 1999; Fowler et al., 2007), since it depends upon various factors (such15

as predictand variable, spatial and time scales, season, as well as geographical loca-
tion). Wilby et al. (2002) propose a promising solution by providing regression-based,
automated tools for predictor selection in ESD (see also Wilby and Dawson, 2007; Hes-
sami et al., 2008). Yet these methods are suitable only if the observational data base
for model calibration is relatively large, i.e. daily time series for several decades. Be-20

yond the field of atmospheric sciences the problem of predictor and model selection is
also well known (e.g. Zucchini, 2000; Hastie et al., 2001); e.g. Bair et al. (2006) present
an interesting avenue based on supervised principal components.

This study presents an ESD method for high-altitude, mountainous sites. The ESD
method is designed (i) to be applicable when only short observational time series are25

available for model calibration (i.e. few years), (ii) to appropriately consider autocorre-
lation in the high-resolution time series, and (iii) to provide a solid tool for model (or
predictor) assessment and selection by avoiding subjective choices. The ESD method,
as presented here applicable to Gaussian variables only, is comprehensible and of
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minimum complexity, in order to be easily transferred to different sites, predictors, or
predictands. We show an application of the ESD method to quantify the skill of reana-
lysis data as predictors for local-scale, daily air temperature measured at high-altitude
automatic weather stations (AWSs) in the tropical Cordillera Blanca, where only a few
years of high-resolution air temperature measurements are available. Section 2 intro-5

duces the study site and observational data used in this study. Section 3 presents
reanalysis data that are used as the predictors in this study. Section 4 gives a compre-
hensive description of the ESD model. The results of the ESD model application are
discussed in Sect. 5 and summarized in Sect. 6.

2 Study site and observations: the predictands10

The investigation site of the present study is the Cordillera Blanca, a glaciated mountain
range located in the Northern Andes of Peru (Fig. 1) that harbors 25 % of all tropical
glaciers (with respect to surface area; Kaser and Osmaston, 2002). Glaciers in the
Cordillera Blanca have been shrinking since their last maximum extent in the late 19th
century (e.g. Ames, 1998; Silverio and Jaquet, 2005; Georges, 2004) and have sig-15

nificantly shaped the socio-economic development in the region. During the 20th cen-
tury, a series of the history’s most catastrophic glacier disasters – i.e. outburst floods
and avalanches – occurred (e.g. Carey, 2005, 2010). But Cordillera Blanca glaciers
also have important positive impacts for water availability in industry, agriculture and
households because they contribute to balancing the high runoff seasonality in the ex-20

tensively populated Rio Santa valley (Juen, 2006; Juen et al., 2007; Mark and Seltzer,
2003; Kaser et al., 2003, 2010).

Located in the the outer tropical climate zone, atmospheric seasonality in the
Cordillera Blanca is mainly characterized by precipitation variance, with the sea-
sonal air temperature variance being small (Niedertscheider, 1990; Kaser and Os-25

maston, 2002; Georges, 2005; Juen, 2006). More than 50 % of the annual precipita-
tion falls during the humid season (January–March), whereas during the dry season
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(June–August), less than 2 % of the annual precipitation falls (annual precipitation
amounts 770 mm in the Northern, and 470 mm in the Southern Cordillera Blanca;
Niedertscheider, 1990). A detailed description about the underlying mechanisms is
given in the work by Garreaud et al. (2003).

Since 1999, an observational network of several AWSs at and nearby glaciers in5

the Cordillera Blanca has been installed, primarily to provide high-resolution data for
glacier mass balance and runoff modeling (Juen et al., 2007). Maintaining the AWSs
to provide continuous and reliable atmospheric time series has represented a logistical
and technical challenge. Field work has been costly in terms of time and materials,
since the AWSs are located at very high altitudes (between 4700 and 5100 m a.s.l.)10

in remote areas. Further problems also include instrument theft and natural hazards
(Juen, 2006). Thus ESD methods have been required that are able to provide reliable
results also on the basis of limited measurement availability. Hofer et al. (2010) present
a comprehensive ESD modeling procedure to investigate if the short-term AWS time
series (air temperature and specific humidity) can be extended into the past, using rea-15

nalysis data as predictors. They find that the ESD model skill largely varies as function
of season and daytime, and emphasize uncertainty in the exact choice of variables that
constitute the mixed-field predictors, upon which the model results show large sensi-
tivity. Hofer et al. (2012) use a simpler methodology, based on single linear regression,
in order to determine the best reanalysis product for daily air temperature predictands20

measured in the Cordillera Blanca. In the present study, we present an ESD methodol-
ogy which is similar in terms of complexity to the one used by Hofer et al. (2012), with
more emphasis on important elements concerning the ESD model configuration and
application (for example, of how many measured data – in terms of sample size – are
needed exactly for the assessment to be significant, and how the targeted temporal25

resolution affects the model skill).
The target variables here are daily air temperature time series measured at two

AWSs located in the Northern Cordillera Blanca (hereafter referred to as AWS1 and
AWS2) and one AWS located in the Southern Cordillera Blanca (hereafter AWS3),
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which include the longest time series available from all installed AWSs to date. Yet
the measuring periods are still relatively short, ranging from July 2006 to July 2012
(AWS1), to August 2011 (AWS2), and to December 2009 (AWS3), with three months
of missing data at AWS2. AWS1, AWS2, and AWS3 are situated at 5050, 4825, and
4950 m a.s.l., respectively, on rocky terrain (glacial polish and moraines) in the vicinity5

of retreating glacier tongues. Whereas AWS1 and AWS2 are located very nearby each
other in the Paron valley (only about two km distance), AWS3 is located approximately
100 km more southwards in the Shallap valley. The sites are indicated in Fig. 1. In
technical terms, the measurements are carried out with a HMP45 sensor by Väisalla
and a ventilated radiation shield, described by Georges (2002).10

Figure 2 shows statistics of AWS1, AWS2, and AWS3 daily mean air temperature
for each month of the year (daily means are calculated from hourly samples mea-
sured at the AWSs), over the period for which data are available at all three AWSs
(July 2006–December 2009, hereafter period 1). The air temperatures are approxi-
mately normally distributed (not shown). The seasonal cycles in the data are small15

(< 2 ◦C), showing multiple local minima and maxima throughout the year. The warmest
months are November–January and April–May, and the coldest months March and July.
Note, however, that these statistics (in particular the occurrence of multiple maxima and
minima) should not be overvalued as a climatology, because they are based on only
four years of measurements. The lowest-elevation AWS2 systematically shows over-20

all slightly higher air temperatures, with the warmest months above 2 ◦C, whereas at
AWS1 and AWS2 monthly mean air temperatures are below 2 ◦C throughout the year.
At all AWSs, monthly mean air temperatures are above 0 ◦C in all months, and daily
means are above 0 ◦C in 75 % of all cases. The interquartile ranges (blue bars in Fig. 2)
show within-month daily mean air temperature variations of less than 2 ◦C in 50 % of25

all cases at all AWSs. The highest within-month variabilities occur from December to
January, which points to El Niño Southern Oscillation (ENSO) variability playing an im-
portant role in the region at this time of the year (e.g. Vuille et al., 2008b), whereas
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variabilities are generally lower for the dry season months June–July. Also shown in
Fig. 2 are statistics of the reanalysis data predictor that will be referred to later.

3 Reanalysis data: the predictors

In this study, we assess reanalysis data as the predictors for daily mean air tempe-
rature measured at AWS1, AWS2 and AWS3. Reanalysis data are a combination of5

general circulation model (GCM) “first guess” and quality-controlled observations, gen-
erated using a data assimilation system, similar to analysis data in numerical weather
prediction (NWP). First proposed in the studies of Bengtsson and Shukla (1988), and
Trenberth and Olson (1988) “re”-analyses have the advantage over NWP analyses that
their production is based on a fixed modeling system for the entire assimilation period.10

Thus data discontinuities due to changes in atmospheric model and assimilation tech-
niques are avoided. Today, global reanalysis data are available from four institutions
worldwide (in cooperation with partner institutions not mentioned here for brevity): the
NCEP (Kalnay et al., 1996), the European Centre for Medium-range Weather Fore-
casts (ECMWF; Uppala et al., 2005), the Japan Meteorological Agency (JMA; Kazu-15

toshi et al., 2007), and the National Aeronautics and Space Administration (NASA;
Bosilovich, 2008).

First-generation NCEP reanalyses have been a frequent choice in climate studies
about the Cordillera Blanca and the South American Andes (e.g. Garreaud et al., 2003;
Vuille et al., 2008a,b; Hofer et al., 2010). Hofer et al. (2012), however, show for the20

Cordillera Blanca that the interim reanalyses by the ECMWF, the MERRA (the Modern
Era Retrospective-Analysis for Research and Applications from NASA), the NCEP Cli-
mate Forecast System Reanalysis, CFSR (the latest reanalysis product by the NCEP),
as well as ensembles thereof, show considerably higher skill than the first generation
NCEP reanalyses, or JMA reanalyses. In this study, we use ensembles constructed by25

the interim, the CFSR, and the MERRA, as described later in Sect. 4.2, as well as the
interim reanalyses (who showed the overall highest performance in Hofer et al., 2012)
as the predictors.
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4 ESD model architecture

4.1 Accounting for seasonal periodicity

If atmospheric time series are considerably shorter than thirty years and the climatolog-
ical seasonal cycle is not known, the problem arises how to strictly distinguish periodic,
seasonal variations from aperiodic (or less periodic), day-to-day and inter-annual vari-5

ability. Especially in statistical forecasting, periodicity must be accounted for to avoid
that the periodic, seasonal variations dominate the model fit. When long enough data
series are available, the problem is often avoided by subtracting the climatological sea-
sonal cycle from the time series (e.g. Madden, 1976). This way seasonal periodicity is
removed from the time series, but not necessarily from the model error.10

In the present study we assume that seasonal atmospheric periodicity leads to
changing relationships between large- and local-scale atmospheric variables through-
out the year. Considering the atmospheric seasonal cycle in ESD models is important
especially if the study site is located in the mountains. For example, local-scale atmo-
spheric conditions can be affected by topographic shading that changes with the solar15

altitude throughout the year, but the topography is misrepresented and thus these ef-
fects can not be captured by the large-scale model. Due to the same effects related
to the diurnal cycle (sub-daily data) different models for the different times of day are
required (e.g. Hofer et al., 2010). By consequently using separate statistical predictor-
predictand transfer functions for the different months of the year, seasonal periodicity20

is eliminated not only in the time series, but also in the model error. In practice in
this study, each predictor-predictand pair is divided into twelve separate time series
for each month, the number of observations in each time series consequently being
approximately n = N/12, where N is the length of the complete data series. Then the
modeling procedure is repeated identically for each calendar month’s time series.25
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4.2 Predictor selection

In order to simplify the transference of our approach to different cases (in terms of
target variables, locations, or model), we distinguish two ways of predictor selection,
namely (1) a priori predictor selection, and (2) data-based predictor selection. More
precisely, (1) means predictor selection based on knowledge outside the data – e.g.5

about physical mechanisms – that is available without (“prior” to) looking at the data
or data analysis. Most downscaling studies more or less systematically use a com-
bination of (1) and (2), by first pre-selecting a subset of potential predictors from an
available pool based on process knowledge, and then choosing the definite, final pre-
dictors based on criteria derived from the data (i.e. data-based selection) (e.g. Klein10

and Glahn, 1974; Wilby et al., 2002). Yet, it is difficult to generalize data-based findings
for different cases (in terms of variables, sites or models), and it is desirable to find
objective, a priori criteria, that simplify predictor selection. Hofer et al. (2012), for ex-
ample, use an a priori predictor for the assessment of different reanalysis models with
regard to local, daily air temperature variations in the Cordillera Blanca.15

What information of a large-scale atmospheric model would we use to represent lo-
cal, daily air temperature, if no observations were available? The most intuitive choice
is to relate the same physical predictor and target variables; thus here, to use large-
scale air temperature as predictor for local-scale air temperature. Previous ESD studies
focusing on air temperature have suggested air temperature predictors in combination20

with sea level pressure (e.g. Benestad et al., 2002), with geopotential height (e.g. Kid-
son and Thompson, 1998), or with zonal wind speed and specific humidity (e.g. Hofer
et al., 2010). Similarly, Huth (2004) underline the necessity to use a combination of
both circulation-based, and radiation-based predictors for air temperature. Von Storch
(1999) recommends the use of air temperature predictors as surrogate indicator of at-25

mospheric radiative properties that are not captured by circulation predictors alone. Be-
yond these recommendations, though, the definite choice of concrete variables (as well
as horizontal extents, vertical levels or model) in every single case require data-based
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assessments. Even if, by selecting air temperature as single a priori predictor here, we
neglect any circulation-induced variations not included in the predictor air temperature,
our choice is useful especially for inter-comparisons of different models, because it is
reasonable to assume that the best model also shows the highest skill in representing
the same variable.5

As mentioned above, predictor selection includes not only the choice of a physical
variable type, but also of geographical allocation in terms of model grid points. Since
model topographies are smoothed representations of the real topography, the surface
height at a particular location in the model does generally not correspond to the real
surface height at that location. Therefore the question arises whether (1) surface or10

near surface predictors – to account for important surface processes, or (2) upper air
predictors that are located at the same elevation as the predictands, are the more re-
alistic choice for a predictand located at the surface. In the application example of this
study, all three AWSs are located between 500 and 600 hPa, at 5050 (AWS1), 4825
(AWS2), and 4950 (AWS3) m a.s.l. For comparison, Table 1 shows coordinates, sur-15

face elevations (h), and geopotential heights (gph) for the 550 hPa level of the closest
(relative to the study site) grid points in the interim, CFSR and MERRA models. The
grid points are all located between 3000 and 3500 m a.s.l., thus about 1500 m lower
than the AWS sites in reality. There is only a small difference between the geopotential
heights of the 550 hPa levels of the different reanalyses, all located at about 5100 m20

a.s.l.
In terms of horizontal, or spatial predictor domain, ESD studies suggest that the op-

timum downscaling domain is generally not limited to the closest grid points around the
study site, but includes important synoptic patterns around and upstream of the study
area (e.g. Benestad et al., 2008). For studies that use grid point predictors, it is gener-25

ally recommended to not using single, but rather ensembles of grid points as predictors.
Grid point averaging of atmospheric models is necessary in order to minimize numeri-
cal model errors apparent in single grid point data (e.g. Grotch and MacCracken, 1991;
Williamson and Laprise, 2000; Räisänen and Ylhäisi, 2011). Due to these numerical

2892

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2883/2013/gmdd-6-2883-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2883/2013/gmdd-6-2883-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 2883–2925, 2013

Skill assessment of
reanalysis data for air

temperature

M. Hofer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

errors, the minimum scale of a model (i.e. the distance of two neighbouring grid points)
can not be regarded as the skillful scale of the same model (e.g. Von Storch et al.,
1993; Zorita and Von Storch, 1997; Benestad et al., 2008; Hofer et al., 2012). For the
Cordillera Blanca, Hofer et al. (2012) analyze the optimum spatial averaging scales
of the interim, MERRA, CFSR, JCDAS, and the first NCEP/NCAR reanalyses. They5

find the optimum spatial averaging domains of the different reanalyses largely varying
(from eight grid points for the NCEP/NCAR reanalyses, to 507 grid points of the modern
CFSR reanalyses), with the minimum scales being only weak indicators of the optimum
scales. Hofer et al. (2012) show further that the problem of determining the optimum
scale of a model can be circumvented by using ensembles of grid points from different10

models, i.e. the mean of grid point data from different reanalyses. Hofer et al. (2012)
find that there is no or only marginal difference whether the ensemble is constructed
from the reanalyses at the closest grid points, or at their optimum scales. As a priori
choice, it is thus most reasonable to use reanalysis ensembles as predictors, because
this way no assessment is required in order to determine the optimum model for each15

case, or the optimum spatial domain of each model. Even if for our study site this choice
is already evaluated (Hofer et al., 2012), the usefulness of ensemble predictors is jus-
tifiable also in cases with no data-based assessments. In our a priori selection, we do
not consider remote grid point predictors, as recommended in several ESD studies for
precipitation predictands (e.g. Wilby and Wigley, 2000; Brinkmann, 2002; Sauter and20

Venema, 2011).
Finally, synthesizing all our above considerations concerning a priori predictor se-

lection, we define air temperature averaged over the three reanalyses that have been
available most recently: interim, MERRA and CFSR, at the grid points located closest
to the study site (the horizontally closest grid points in the reanalysis models, at the25

550 hPa levels, shown in Table 1), hereafter abbreviated by rea-ens-air. Statistics of
rea-ens-air are shown in Fig. 2 for each month of the year for the period, when data are
available for all AWSs (i.e. the same period as shown for the AWSs in Fig. 2, period 1).
rea-ens-air is proposed as a priori choice because it is based on simple assumptions
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that apply equally for different sites, seasons and large-scale models, without preced-
ing data analysis. Note however that we do not claim that this is necessarily the best
choice in each individual case. More precisely, the coarser the large-scale model, the
more complex a relationship between the simulated predictors and the local predictand
might be, e.g. involving multiple large-scale variables, and other than linear relation-5

ships (e.g. Hofer et al., 2010). However, such selections include data-based inference.
In practice, the relation between large- and local-scale variables can be investigated
best with limited-area numerical atmospheric models (LAMs), as they certainly include
the most complete framework of linkages between the different scales: i.e. expressed
by the governing atmospheric equations (e.g. Mölg and Kaser, 2011). Though, LAMs10

are computationally expensive, by contrast to ESD.

4.3 Downscaling process: linear model calibration and cross-validation

In this section the entire ESD modeling procedure, including data preprocessing, ESD
model calibration, and skill estimation based on leave-one-out cross-validation is pre-
sented. Leave-one-out cross-validation is important especially in the case of short-term15

observational time series (as in the present study), because it allows each observation
to be used in the model building process as well as in the model evaluation process (if
time series are long, e.g. ten-fold cross-validation can be used instead of leave-one-out
cross-validation, Hastie et al., 2001). The modification of leave-one-out cross-validation
specifically presented here is appropriate for daily or sub-daily atmospheric time series,20

because it accounts for temporal autocorrelation (i.e. persistence, Madden, 1979).
First, the predictor and predictand time series, consisting of daily means, are sepa-

rated into twelve different time series of daily means for the twelve months of the year.
All steps described below are repeated separately and independently for each month’s
time series. The simplest way to relate the (a priori) predictor to a Gaussian target25

variable is a linear regression model. Note that the model is not appropriate for non
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Gaussian target variables (e.g. precipitation). It applies

ys(t) = α ·xs(t)+ε(t). (1)

ε is the model error, assumed to follow a Gaussian distribution with zero mean. α is
the least-squares regression parameter. Note that least-squares regression does not
account for the time ordering in data series, and is therefore not affected by the use of5

discontinuous (month-separated) time-series. Because ys(t) and xs(t) are standardized

predictand and predictor time series (it applies ys
t
= xs

t
:= 0 and σt(ys) = σt(xs) := 1,

with the standardization parameters ·t being the temporal mean, and σt(·) the temporal
standard deviation of a variable), it can be shown that α is equal to the correlation
coefficient (Von Storch and Zwiers, 2001).10

With ŷ(t) := y(t)−ε(t), Eq. (1) can generally be rewritten including untransformed
predictand y(t), predictor x(t), and ·t, and σt(·):

ŷ(t) = y
t
+α ·

σt(y)

σt(x)

(
x(t)−x

t
)

(2)

To estimate ŷ(t) and ε(t) a modification of leave-one-out cross-validation (Michaelsen,
1987) is applied. Cross-validation is repeated ncv times. Here we use ncv = n (n is15

the number of observations of each month-separated time series). Please note again
(as defined above) that an observation in the month-separated time series is a daily
mean value. Each cross-validation repetition, nlo observations (thus, daily means) are
excluded from the model fit (the “left-out” observations), with

nlo = 2 · τ +nio. (3)20

τ is the temporal lag, for which the autocorrelation function of y is within the 95 %
confidence interval of Gaussian white noise (the 5 % confidence interval is approxi-
mated with 2/n1/2). nio is the number of independent observations used to estimate the
model error. In general nio can be chosen to be larger than one, then the leave-one-out
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cross-validation becomes moving-block cross-validation (Kunsch, 1989). In this study
we choose nio = 1. In each cross-validation step (cv) nT = n−nlo (T for training) data
pairs {yT,xT} := {y (tT (cv)) ,x (tT (cv))} are used to estimate the parameters of the sim-
ple linear model. Thus in Eq. (2) it applies

α = α(yT,xT), σt(y)/σt(x) = σt(yT)/σt(xT), (4)5

and

y = yT, x = xT.

{yV, ŷV} := {y(tV(cv)), ŷ(tV(cv))} (V for validation) are then used to estimate the model
error ε (Eq. 1). yV is the central of the withheld observations in each cross-validation
step cv and can be considered as independent from the calibration process.10

When the cross-validation process is completed, the skill score (SS) can be calcu-
lated (e.g. Wilks, 2006):

SS = 1− mse
mser

, (5)

and, with Eq. (1):

mse =
1
ncv

·
∑

ε2(cv), (6)15

where ε(cv) = yV − ŷV, and cv = 1, . . . ,ncv.
mser is the mean of squared errors of the reference model, ŷr, as follows:

mser =
1
ncv

·
∑

(yV − ŷr)
2 yr := yT. (7)

SS, consisting of a contribution due to the correlation between the forecasts and ob-
servations, and two penalty terms relating to the reliability and bias of the forecast20
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(Murphy, 1988), is the more accurate skill measure than the correlation coefficient r2

(Wilks, 2006). SS as specifically presented here can be considered as r2 deflated by
the conditional bias term (the unconditional bias is by construction constrained to be
zero in least-squares regression; definitions of reliability and bias terms are given in
the work of Murphy, 1988).5

The ESD method and the skill assessment are appropriate also when only short
measured time series are available for the model calibration and validation. Below, we
show an application with about three to seven years’ measurement series from the
three AWSs introduced earlier. In order to give an exact quantification on whether the
data are long enough for the ESD model and skill assessment to be reliable (or useful),10

the significance of SS is determined by performing a left-tailed T-test of the null hypo-
thesis that the squared model error estimated by the cross-validation process, ε2(cv)
in Eq. (5), is equal to the mean of squared errors of the reference model, mser, against
the alternative that the mean of ε2(cv) is smaller than mser. SS is considered signifi-
cant, when the null hypothesis is rejected at the 5 % significance level. In performing the15

T-test, we consider the autocorrelation of ε2(cv), by replacing the sample size ncv = n
with the effective sample size neff (Wilks, 2006), approximated as

neff ≈ ncv
1− τ1

1+ τ1
, (8)

with τ1 being the lag-1 autocorrelation of ε2.
Finally, let v

cv
be the mean, and σcv(v) be the standard deviation of a variable (v)20

over all cv repetitions, then the final model ŷF, with model uncertainty estimated by
cross-validation (not to be mistaken for the model error ε(t)) is

ŷF(t) = ŷ(t)
cv
±σcv(ŷ(t)). (9)

Equations (1)–(7) apply similarly in multiple regression, where x has multiple columns
(i.e. x ∈ R(n×p)). Note that, even though not shown in this study, SS as defined above25
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is a powerful goodness-of-fit estimate especially in the case of multiple predictors, be-
cause it detects over-fitting (then SS is zero or not significant).

4.4 Example

Figure 3 provides a comprehensible example of the skill estimation procedure de-
scribed above. The two plots show daily air temperature time series (y in Eq. 2) of5

the months March (top) and July (bottom) at AWS1 (blue line). The red line is the linear
model ŷ based on rea-ens-air, as defined by Eq. (2). The example shows the model
building and error estimation in an individual cross-validation repetition cv (Eqs. 6–7).
The grey bar indicates the nlo observations left out in the model calibration (note that
each cross-validation round cv, the grey bar is shifted one observation to the right).10

The amount of observations left apart is determined by the cross-validation parameter
τ (the temporal lag for which the autocorrelation of the time series can be assumed to
be zero). The values of τ are 9 in March, and 2 in July. This means that, e.g. in the
March time series an observation is considered independent from an other observa-
tion only if there is a shift of at least 9 time steps (in this case, days) between the two15

observations (thus, the grey bar includes 9 ·2+1 = 19 left-out observations). The error
εcv for each repetition cv (Eq. 6) is estimated as the difference between the central (in-
dependent) observation (yV, the blue star in the grey bar in Fig. 3) and the model value
at this time step (ŷV, the red star in the grey bar in Fig. 3). yr in Eq. (7) is the black star
in Fig. 3, calculated as the mean of yT, the observations used in the model training.20

Cross-validation is repeated until each observation is used once as yV to determine
the model error. This way independence between the observations used in the model
training and the validation process is warranted, and at the same time all observations
can be used to determine the final model (Eq. 9). Note that the results in Fig. 3 are
discussed in Sect. 5.2.25
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5 ESD model application

5.1 Downscaling parameters

In this section the above presented ESD procedure is applied to daily mean air tem-
perature time series of the AWSs in the Cordillera Blanca (introduced in Sect. 2). As
mentioned in Sect. 4.3, the linear models are calibrated and validated independently5

for each calendar month and for each of the AWSs’ time series. Thus the time series
finally input to the ESD procedure (e.g. January at AWS1) consist of seven months
(consecutive Januaries) of daily data from the seven years of available observations
(July 2006–July 2012), consequently approximately 200 observations per month and
AWS (data gaps included) to calibrate the ESD model (e.g. the AWS1 March time se-10

ries consists of 186 values and the AWS1 July time series as well of 186 values, in
Fig. 3).

We define the standardization parameter Rσ as the ratio between the standard devi-
ation of the predictand σt(y) and the standard deviation of the predictor σt(x)

Rσ :=
σt(y)

σt(x)
. (10)15

Rσ is a parameter in the ESD Eq. (2). Figure 4 shows the regression parameter α (equal
to the correlation coefficient, Eq. 1) and the standardization parameter Rσ with uncer-
tainties, estimated by cross-validation (Eqs. 4–9), for each calendar month, and data
from AWS1. Most remarkably, both α and Rσ show a relativelay high inter-monthly vari-
ability. Values of α are relatively high all year round, but highest for the months January–20

May (wet season in the Cordillera Blanca), with a second maximum in September, and
slightly lower for the dry-season months June–August, and November–December. The
largest coefficient uncertainties are evident for the months February–April. Rσ through-
out the year varies from approximately 0.9–1.4. In December, the difference between
the (day-to-day or year-to-year) variabilities of the predictand and rea-ens-air is largest,25

whereas in May–August the variability of the predictand is about the same as (or even
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lower than) the variability of rea-ens-air. The rather high inter-monthly variations in the
downscaling parameters clearly support the importance of using different models for
the different calendar months.

Figure 5 (red circles) shows values of the cross-validation parameter τ of AWS1 daily
air temperature means for each month of the year. As defined in Sect. 4.3, τ can be5

interpreted in terms of the temporal lag (in days), for which the time series values can
be assumed independent. Values of τ for the different calendar months vary between
2 (small persistence) and 11 days (high persistence). Values of τ are 2 or 3 for all
months despite the wet-season months February, March and the transitional-season
month April, where values of τ are considerably higher (7, 9 and 11, respectively).10

The higher values of τ in these months are probably related to the prevailing intra-
seasonal variability in the tropical Andes: i.e. rainy episodes in terms of sequences
of wet days followed by sequences of dry days, with associated variances in air tem-
perature (Garreaud et al., 2003). In the tropics, such synoptic episodes are known to
typically range from 30 to 60 days (with the basic mechanism known as the Madden–15

Julian Oscillation, MJO; Madden and Julian, 1994), however for the Bolivian Altiplano
(located nearby the Cordillera Blanca), Garreaud et al. (2003) report about shorter syn-
optic periods of approximately 15 days length. Please note that by examining τ of the
month-separated time series, it is not possible to identify the full length of MJO cy-
cles. Small values of τ especially for the austral winter months indicate not only small20

day-to-day (intra-seasonal), but also small inter-annual variability. Consequently there
are no important differences amongst the different years of the respective austral win-
ter months. In fact, ENSO, the most important source of inter-annual variability in the
region, has its strongest and most widespread impacts during austral summer.

5.2 Skill assessment and significance analysis25

Figure 6 shows values of SS of rea-ens-air for each month of the year, with AWS1
daily air temperature as the predictands. As mentioned earlier, data from AWS1 repre-
sent the longest high-resolution measurement series available at high altitude in the
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Cordillera Blanca (i.e. July 2006–July 2012, without data gaps, hereafter period 2;
green circles in Fig. 6). Values of SS show a distinct seasonal pattern, with two max-
ima for April and for September (SS≈ 0.6), and two minima for June and for November
(SS≈ 0.3). Overall, values of SS are lowest for the core dry season months June and
July, and highest for the wet season months February–April. The high values of SS5

in the wet season imply that the largest portion of day-to-day variability of the AWS1
air temperature time series can be explained by rea-ens-air, indicating high spatial
homogeneity of air temperature fluctuations for these months of the year. In fact, Gar-
reaud et al. (2003) report spatially very coherent intra-seasonal weather patterns for
the nearby Bolivian Altiplano, and also MJO is known to act on large spatial scales10

(local wavelengths of 1.2−2×103 km). By contrast in the core dry season, values of
SS of rea-ens-air reach only half of the wet season values. We suggest that variability
in these months must be governed by processes that act more locally (e.g. triggered by
the strong radiation interacting with the complex topography), in a way that the gener-
ally weaker synoptic forcing in these months impacts the local-scale variability in a more15

complex way that is only partially captured by the single linear predictor rea-ens-air.
In Fig. 3 (lower panel), the model chosen by least-squares regression for the dry-

season month July shows only minor variance, as the co-variability between rea-ens-
air and the predictand data series is small. Year-to-year as well as day-to-day variability
in the observational time series are evidently smaller than for the wet-season month20

March (upper panel in Fig. 3). However, the underestimation of observed variance is
nevertheless smaller for the wet-season month March, indicating a higher co-variability
between the predictor and predictand time series (note that, by construction of least-
squares-regression, the difference in underestimation of observed variance is immedi-
ately related to the co-variability between predictand and predictor time series).25

The grey bars in Fig. 6 show results of the skill assessment applied to the AWS1,
AWS2, and AWS3 data over the period, where measurements are available for all
three AWSs (i.e. from 2006/7 to 2009/12, period 1). Whereas for the same period,
differences of SS for the different AWSs are rather small (all AWSs showing a similar
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seasonal pattern, with similar minima and maxima like for AWS1 for the entire data
period, and an additional minimum in the core wet season), differences in the values of
SS between period 1 and period 2 are quite evident. Overall, but mostly for the core wet
season, values of SS for AWS1 based on the shorter period 2 are considerably lower,
than based on period 1. This is a somehow expected result, because the periods for5

the skill assessment are very limited. Thus, as the data base for the model training
increases with an almost doubling from period 1 to period 2, the model parameters are
estimated more accurately, and the cross-validation results are more positive. Values
of SS are expected to be less dependent on the length of the measuring period with an
increasing amount of available data.10

The significance analysis as described in Sect. 4.3 reveals that the skill scores for
all months and all AWSs shown in Fig. 6 are significant at the 5 % significance level.
By systematically assessing the significance of SS for decreasing time periods, a mini-
mum time period can be identified for which the skill assessment is significant (and thus
useful). This threshold time period can be quantified in terms of a minimum number of15

observations required in each calendar month for the skill assessment to be signifi-
cant. An AWS time series can be considered long enough for the skill assessment, if
for all months the number of available observations exceeds this minimum number of
observations. Figure 5 shows the minimum number of observations required, nmin, at
the example of data from AWS1, for each month of the year. This minimum number20

of observations is a function of SS of each month, as well as of the autocorrelation of
each month’s time series (by considering the effective sample size of each time series
neff, Eq. 8, also shown in Fig. 5). The minimum number of observations largely varies
from about 40, for months with high values of SS (December–March, May, September),
to 140, for months with low values of SS (July, November). Since the AWS1 time series25

includes more than 120–150 (period 2), and 210 (period 1), respectively, observations
for each month (daily means), the minimum time length for the skill assessment to be
significant is achieved for all months (see also Fig. 3); though only hardly for July and
November for period 1.
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Values of SS and r2 averaged over all months for the different AWSs are shown in
Table 2. The values are shown for the entire period of available data at each AWS, and
additionally for AWS1 and AWS2 for period 1, the period of common available data at
all AWSs. On average, SS is highest at AWS2 (mean SS= 0.48) and lowest at AWS3
(mean SS= 0.4). As discussed above for AWS1, values of SS are considerably lower5

for the shorter time period (period 1) also for AWS2. Table 2 further shows that values
of r2 overestimate the skill, compared to SS based on cross-validation, with up to 0.08
lower values (AWS3). The overestimation of skill by r2 can be expected to increase
strongly in the case of multiple predictors (multiple regression), due to overfitting.

5.3 Results for different time scales10

In this study the short length of the data represents a lower limit of possible time reso-
lutions for the skill assessment, because for lower temporal resolutions the number of
observations n available for the model set-up decreases. More specifically, the seven-
years observations at AWS1 include a time series of 84 monthly means, or 2555 daily
means. As we use separate models for each month, the time series include only seven15

monthly means, but approximately 210 daily means. With this regard it makes sense
to profit from the higher (daily) temporal resolution to have more observations for the
model fit. Nevertheless it is worth to investigate if the reanalysis data show higher skill
for temporal resolutions lower than the daily time resolution.

In this section we repeat the modeling procedure as introduced in Sect. 4.3, but20

for different temporal resolutions. The number of observations n in each time scale
is set constant, in order to allow for a comparison of SS of the different time scales.
The lowest temporal resolution for which the AWS1 time series (period 1) still include
enough values for the skill assessment to be significant (as defined in Sect. 4.3), differ
for the different calendar months. Figure 7 shows values of SS for decreasing time25

scales (from daily means to twelve-daily means), and the different calendar months of
AWS1 data, for which SS is found to be significant at each respective time resolution.
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The values are weighted with the number of months with significant values of SS in
each time resolution, such that their sum (total length of each colored bar in Fig. 7) is
the average skill for each time scale. Note that the values for the daily means are lower
than the values of SS found in Fig. 6, because they are based on considerably smaller
data samples.5

As one would expect, the average SS shows an increase for longer averaging in-
tervals. However, the increase is not monotonously, but rather stepwise, with a con-
siderable increase from the three- to four-day averages, with rather constant values
thereafter and another considerable increase from the nine- to ten-days averages. This
suggests that it makes sense to use one-, four- or ten-days averages, rather than three-10

or nine-days averages, in order to obtain the highest possible skill based on the highest
possible number of observations (thus the highest skill with the greatest significance).
To sum up, predictability based on large-scale predictors is found to increase with de-
creasing time resolution. Consequently, when longer time series are available, we can
suggest to use longer averaging windows in order to obtain higher skill.15

5.4 Towards automated predictor selection

To this point we presented the ESD model assessment with a predictor selected by
arguments independent of the data (a priori predictor selection). In this section we
compare the performance of the a priori selected predictor rea-ens-air to a list of other
potential predictors, to show how the skill assessment presented here can be used20

for data-based predictor selection. Table 3 gives a list of all abbreviations of the nine
variables presented hereafter: shm, gph, air, uwn, vwn, spr, vor, t2m, and wwn. For
the demonstrative purpose here, all assessed variables are from the ECMWF interim
reanalyses at their optimum scale (i.e. four times four grid points located around the
study site, Hofer et al., 2012) that have shown the highest skill for the study site out of all25

global reanalyses (Hofer et al., 2012). We use the ECMWF interim reanalysis instead
of the reanalysis ensembles, because not all variables assessed here are available
by all reanalyses as analysis variables, and because we observed inhomogeneities in
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the CFSR variables spr and wwn between data prior and after December 2010 (the
discrepancies are due to changes in the model configurations from CFSR available
until December 2010, to the subsequently operationally available CFSV2).

The results of the skill assessment reveal that only three of the assessed variables
show significant skill for the local measured daily air temperature predictand: air, t2m5

and gph. Values of SS of these variables for AWS1 data are shown in Fig. 8 for each
month of the year. For all other variables listed in Table 3, values of SS are non-
significantly different from zero. t2m clearly shows lower values of SS than air in all
months. Thus the reanalysis variables that are less affected by the model surface ac-
tually emerge as the better predictors for surface predictand air temperature at AWS1.10

This is consistent with findings in earlier studies (e.g. Murphy, 1999; Rummukainen,
1997) and supports our a priori assumption that unrealistic surface information nega-
tively affects the data. We conclude from Fig. 8 that (1) only air temperature predic-
tors, or gph (which is physically closely linked with air temperature) show significant
skill regarding day-to-day and year-to-year variability based on our linear model set up15

(presented in Sect. 4.3), (2) the a priori predictor choice is clearly supported by the
data, and (3) even if values of SS show a distinct seasonal cycle, the same predictors
show the highest skill throughout the year.

5.5 Accounting for the effects of diurnal periodicity

Finally we show a simple analysis based on AWS1 air temperature data to demonstrate20

the effects of periodicity (in this case diurnal) for regression analysis based solely on
r2 (an often applied criterium for predictor selection). Figure 9 shows values of r2 be-
tween six-hourly (all-month) time series of AWS1 air temperature, and the predictors
assessed in Sect. 9: shm, gph, air, uwn, vwn, spr, vor, t2m, and wwn. The same anal-
ysis is shown at a daily time scale (thus r2 between the same time series, but the six-25

hourly data averaged to daily means). Results show for the six-hourly data (left hand
side in Fig. 9) that t2m emerges as the best predictor, showing a relatively high co-
variance (r2 > 0.7), whereas all other predictors show only minor covariance (r2 < 0.1)
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to the predictand (including air, which emerged as the best predictor in Sect. 9). This
pattern significantly changes in the daily time scale (right hand side in Fig. 9): now
the predictor air shows the highest covariance (r2 is almost 0.5), but t2m shows only
very small covariance (r2 = 0.2 – yet still higher than all other assessed predictors). In
the diurnal analysis t2m appears as important predictor only because it has the most5

pronounced diurnal variations which explain the largest portion of variability also in the
predictand data (i.e. high values during day-time and low values in the night). However
this is achieved easily with a constant diurnal cycle. For example, the covariance be-
tween the hourly air temperature series and a time series composed by consecutive
constant diurnal cycles is r2 = 0.7. This shows why predictor selection that does not ac-10

count for diurnal (or other) periodicity is not meaningful. This analysis is by no means
innovative in statistics, but given here as an illustration, since the issue of periodicity is
not accounted for appropriately in numerous studies.

6 Summary and conclusions

We have presented an ESD technique that links large-scale atmospheric model pre-15

dictors to Gaussian, local-scale target variables measured over complex terrain. The
method is appropriate for temporally high-resolution, sub-daily to daily time series, and
is designed to give a significant estimate of large-scale model skill on the basis of small
observation availability (i.e. few-years) as is often the case at mountainous sites. We
highlight the importance of systematically eliminating seasonal (or diurnal) periodicity20

in the meteorological time series, and at the same time in the ESD model error, by us-
ing separate models for the different times of year (and times of day, respectively). The
presented skill estimation is based on leave-one-out cross-validation that accounts for
autocorrelation in the observational data.

We have shown an application of the ESD model with reanalysis data as the pre-25

dictors, and daily mean air temperature measured at three high-altitude sites in the
glaciated Cordillera Blanca (Peru) as the target variables. First, the skill of the a priori
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predictor rea-ens-air is assessed for the longest AWS air temperature series. High
seasonality of statistical data properties (e.g. persistence) and ESD model parameters
emphasizes the importance of using different models for different times of year. The
ESD model skill shows high seasonality as well, with generally higher skill in the wet
season, and lower skill in the dry season. Whereas differences in skill for the different5

AWSs are rather small, the seasonal pattern of skill shows an increasing tendency for
increasing numbers of available observations. The skill assessment is shown to be sig-
nificant at a 5 % test level for a minimum of 40–140 daily observations available for each
calendar month (depending on calendar month). For the same number of observations
at different temporal resolutions (i.e. from one-day to twelve-day averages), values of10

skill averaged over all months increase with increasing averaging time windows. Con-
sequently we suggest switching to lower temporal resolutions when the ESD model
skill is low, given that long enough data series are available.

The predictor air clearly shows higher skill than other potential predictors, such as
t2m or gph. We suggest that large-scale surface variables are weak predictors if the15

model surface is not representative for the real surface, because unrealistic boundary
layer variability masks the relevant synoptic forcing and variability. By skill assessments
that do not account for periodicity, the remarkably lower performance of t2m, compared
to air, can not be identified. For six further assessed reanalyses predictors the skill as-
sessment reveals no significant skill. The presented ESD model can be generalized to20

non-linear, multiple regression problems (not shown here). The validation process is
especially useful in multiple predictor fitting because it detects over-fitting. The method
is not restricted to reanalysis data and can be applied to any atmospheric model pre-
dictors.
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Table 1. Specifications of the reanalyses’ data grid points applied as predictors: coordinates,
surface heights (h), and mean geopotential heights (gph), with standard deviations in brackets,
during the investigation period (all values are in units meters above see level).

h [m a.s.l.] gph 550 hPa [m a.s.l.]

interim (77.5◦ W 9◦ S) 3324 5113 (±11.4)
CFSR (77.5◦ W 8.5◦ S) 3409 5106 (±11.6)

MERRA (77.3◦ W 8.5◦ S) 3120 5103 (±11.4)
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Table 2. Values of SS and r2 for the three assessed AWSs, averaged over all months of the
year, estimated using the entire measuring periods from each AWS, and in brackets the respec-
tive values based on period 1 (the shortest, AWS3 measuring period) for AWS1 and AWS2.

AWS1 AWS2 AWS3

r2 0.47 (0.4) 0.5 (0.38) 0.48
SS 0.45 (0.37) 0.48 (0.32) 0.4
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Table 3. List of predictors (and their abbreviations) assessed in Sect. 9. All predictors are from
the interim reanalyses at their optimum spatial domain (as determined in the work of Hofer
et al., 2012).

shm specific humidity at 550 hPa
gph geopotential height at 550 hPa
air air temperature at 550 hPa
uwn zonal wind speed at 550 hPa
vwn meridional wind speed at 550 hPa
spr surface pressure
vor potential vorticity at 550 hPa
t2m air temperature at 2 m a.s.l.
wwn vertical pressure velocity at 550 hPa
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Fig. 1. The map shows the Rio Santa watershed with the Cordillera Blanca mountain range with the positions

of AWS1, AWS2 and AWS3 (mentioned in the text). Also indicated is the 1990 glacier extent (grey shaded

area, Georges, 2004).

Table 2. Values of SS and r2 for the three assessed AWSs, averaged over all months of the year, estimated

using the entire measuring periods from each AWS, and in brackets the respective values based on period 1 (the

shortest, AWS3 measuring period) for AWS1 and AWS2.

AWS1 AWS2 AWS3

r2 0.47 (0.4) 0.5 (0.38) 0.48

SS 0.45 (0.37) 0.48 (0.32) 0.4

22

Fig. 1. The map shows the Rio Santa watershed with the Cordillera Blanca mountain range
with the positions of AWS1, AWS2 and AWS3 (mentioned in the text). Also indicated is the
1990 glacier extent (grey shaded area, Georges, 2004).
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Fig. 2. Statistics of daily air temperature time series at AWS1 (5050 m a.s.l.), AWS2 (4820 m a.s.l.), and AWS3

(4950 m a.s.l.), and of the a priori selected predictor rea-ens-air (as defined in the text), for each month of the

year (abscissa: January to December). Shown are the means (blue solid line) and the medians (red dashes). The

edges of the thick blue bars are the 25th and the 75th percentiles. The thin blue bars extend to the most extreme

data not considered as outliers, and the red crosses are the outliers. All statistics are computed for period 1

(7/2006 to 12/2009).

Table 3. List of predictors (and their abbreviations) assessed in section 55.4. All predictors are from the interim

reanalyses at their optimum spatial domain (as determined in the work of Hofer et al., 2012).

shm specific humidity at 550 hPa

gph geopotential height at 550 hPa

air air temperature at 550 hPa

uwn zonal wind speed at 550 hPa

vwn meridional wind speed at 550 hPa

spr surface pressure

vor potential vorticity at 550 hPa

t2m air temperature at 2 m a.s.l.

wwn vertical pressure velocity at 550 hPa

23

Fig. 2. Statistics of daily air temperature time series at AWS1 (5050 m a.s.l.), AWS2 (4820 m
a.s.l.), and AWS3 (4950 m a.s.l.), and of the a priori selected predictor rea-ens-air (as defined
in the text), for each month of the year (abscissa: January–December). Shown are the means
(blue solid line) and the medians (red dashes). The edges of the thick blue bars are the 25th
and the 75th percentiles. The thin blue bars extend to the most extreme data not considered
as outliers, and the red crosses are the outliers. All statistics are computed for period 1 (July
2006–December 2009).
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Fig. 3. Example of the skill estimation procedure using cross-validation as described in section 44.3, for AWS1

predictands and the rea-ens-air predictor in March (top) and July (bottom): y(t) (blue line), ŷ(t) (red line), yr

(black line), yV (cv) (blue star), ŷV (cv) (red star), and yr(cv) (black star). The grey shaded area highlights the

observations left out in the model calibration process. The vertical dashed line indicates the minimum number

of observations necessary for obtaining statistical significant skill for the respective calendar month (the same

numbers as given in figure 5).

24

Fig. 3. Example of the skill estimation procedure using cross-validation as described in
Sects. 4.3 and 4.4, for AWS1 predictands and the rea-ens-air predictor in March (top) and
July (bottom): y(t) (blue line), ŷ(t) (red line), yr (black line), yV(cv) (blue star), ŷV(cv) (red star),
and yr(cv) (black star). The grey shaded area highlights the observations left out in the model
calibration process. The vertical dashed line indicates the minimum number of observations
necessary for obtaining statistical significant skill for the respective calendar month (the same
numbers as given in Fig. 5).
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Fig. 4. Medians (dots) of the downscaling model parameters α (top) and Rσ (bottom) estimated by cross-

validation for the AWS1 predictands and the rea-ens-air predictor, for all calendar months. The edges of the

boxes are the 25th and the 75th percentiles. The dashes extend to the most extreme data not considered as

outliers.
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Fig. 5. The black filled circles show the minimum number of AWS1 air temperature observations (n) required

for each calendar month’s model (based on rea-ens-air) to obtain statistically significant skill (as described in

the text). The black empty circles show the effective sample size, neff , associated with n. The red circles (with

axes to the right) show the decorrelation time (τ ), for each month’s daily air temperature time series measured

at AWS1.

25

Fig. 4. Medians (dots) of the downscaling model parameters α (top) and Rσ (bottom) estimated
by cross-validation for the AWS1 predictands and the rea-ens-air predictor, for all calendar
months. The edges of the boxes are the 25th and the 75th percentiles. The dashes extend to
the most extreme data not considered as outliers.
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Fig. 5. The black filled circles show the minimum number of AWS1 air temperature observations (n) required

for each calendar month’s model (based on rea-ens-air) to obtain statistically significant skill (as described in

the text). The black empty circles show the effective sample size, neff , associated with n. The red circles (with

axes to the right) show the decorrelation time (τ ), for each month’s daily air temperature time series measured

at AWS1.
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Fig. 5. The black filled circles show the minimum number of AWS1 air temperature observa-
tions (n) required for each calendar month’s model (based on rea-ens-air) to obtain statistically
significant skill (as described in the text). The black empty circles show the effective sample
size, neff, associated with n. The red circles (with axes to the right) show the decorrelation time
(τ), for each month’s daily air temperature time series measured at AWS1.
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Fig. 6. Values of SS for AWS1 (black), AWS2 (gray), and AWS3 (white) for the predictor rea-ens-air for

period 1. The green circles show the respective values of SS at AWS1 for its entire data period (period 2).
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Fig. 7. SSs for the different time scales (from one-day averages to twelve-day averages) and the different

months (January to December), for which SS is found to be significant at each time scale, for the AWS1

predictand and the predictor rea-ens-air. The values are divided by the number of months, for which SS is

found to be significant at each time scale, such the sum of the bars is equivalent to the average SS at each time

scale.
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Fig. 6. Values of SS for AWS1 (black), AWS2 (gray), and AWS3 (white) for the predictor rea-
ens-air for period 1. The circles show the respective values of SS at AWS1 for its entire data
period (period 2).
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Fig. 6. Values of SS for AWS1 (black), AWS2 (gray), and AWS3 (white) for the predictor rea-ens-air for

period 1. The green circles show the respective values of SS at AWS1 for its entire data period (period 2).
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months (January to December), for which SS is found to be significant at each time scale, for the AWS1

predictand and the predictor rea-ens-air. The values are divided by the number of months, for which SS is

found to be significant at each time scale, such the sum of the bars is equivalent to the average SS at each time

scale.
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Fig. 7. SS for the different time scales (from one-days averages to twelve-days averages) and
the different months (January–December), for which SS is found to be significant at each time
scale, for the AWS1 predictand and the predictor rea-ens-air. The values are divided by the
number of months, for which SS is found to be significant at each time scale, such that the sum
of the bars is equivalent to the average SS at each time scale.
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Fig. 8. Values of SS for each month (here for AWS1), and the three predictors assessed in section 54.2 with

significant results.
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Fig. 9. r2 for 6-hourly and daily (all-month) time series of AWS1 air temperature and all predictors assessed in

sections 54.2.

27

Fig. 8. Values of SS for each month (here for AWS1), and the three predictors assessed in
Sect. with significant results.
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Fig. 9. r2 for 6-hourly and daily (all-month) time series of AWS1 air temperature and all predictors assessed in

sections 54.2.
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Fig. 9. r2 for six-hourly and daily (all-month) time series of AWS1 air temperature and all pre-
dictors assessed in Sect. .
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